Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/21672
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOliveira, Joyce Mattos de-
dc.date.accessioned2025-05-15T13:05:16Z-
dc.date.available2025-05-15T13:05:16Z-
dc.date.issued2022-03-11-
dc.identifier.citationOLIVEIRA, Joyce Mattos de. Avaliação farmacológica das atividades antinociceptiva e anti-inflamatória do composto híbrido: (±-cis) (6-etil-tetraidro-2H-pirano-2-il)metil 2-(2- (2,6-diclorofenilamino) fenil acetato. 2022. 128 f. Tese (Doutorado em Ciências Fisiológicas e Farmacologia) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/21672-
dc.description.abstractOs analgésicos estão entre uma das classes de medicamentos mais utilizadas para o tratamento ou alívio de situações dolorosas e inflamatórias. Porém, devido ao grande número de efeitos colaterais e muitas vezes da ineficácia dessas drogas, se faz necessária a busca por novos fármacos. Quando um novo composto apresenta respostas promissoras, a conjugação de estruturas bioativas específicas em uma única molécula pode ser realizada através da hibridação molecular. Uma saída eficaz de planejar racionalmente novos fármacos que tenha ação sinérgica e/ou diminuição de efeitos adversos. O objetivo deste estudo foi avaliar a atividade antinociceptiva aguda e crônica e anti-inflamatória do novo composto híbrido: (±- cis) (6-etil-tetraidro-2H-pirano-2-il)metil 2-(2-(2,6-diclorofenilamino) fenil acetato (LS26), sintetizado a partir da hibridação do composto [(±)-Cis)(6-etil-Tetrahidro-2H-Pirano-2- il]Metanol (LS20) e o anti-inflamatório não-esteroidal diclofenaco de sódio. O composto LS26 foi administrado pela via oral em todos os animais e em todos os modelos experimentais. De acordo com os resultados, o composto possui atividade antinociceptiva aguda observada nos modelos de contorções abdominais, formalina (ambas as fases) e imersão da cauda em água quente. O mecanismo de ação do composto envolve o sistema opioide, tendo em vista que a aplicação de antagonistas seletivos opioides foram capazes de reduzir o efeito antinociceptivo do composto híbrido. A via NO/GMPc/K+ATP também é um dos mecanismos de ação do LS26 devido a redução do efeito antinociceptivo com a administração prévia de L-NAME, ODQ e glibenclamida. A atividade antinociceptiva aguda e crônica sobre a alodinia induzida pela constrição crônica do nervo ciático, também foi observada no modelo de dor neuropática devido a inibição da produção de IL-1β e IL-6 no nervo ciático. O composto não apresenta relação entre o efeito antinociceptivo e um déficit motor, de acordo com os resultados do teste de rota-rod. Quanto a atividade anti-inflamatória, o composto LS26 apresentou atividade anti-edematogênica, pois foi capaz de reduzir a migração leucocitária e a produção de citocinas pró-inflamatórias como IL-1β, TNF-α e IL-6 e aumentar a síntese da citocina anti-inflamatória IL-10 no modelo da bolsa de ar subcutânea. O composto apresentou seletividade para a inibição da COX-2 observada na avaliação in vitro. No teste toxicológico, o composto não apresentou alterações agudas e subcrônica nas avaliações microscópicas e macroscópicas. Esses resultados indicam atividade antinociceptiva através dos receptores opioides e a via NO/GMPc/K+ATP, além de atividade anti-inflamatória com inibição da migração leucocitária, redução dos níveis de IL-1β, TNF-α e IL-6, aumento de IL-10 e atividade inibitória seletiva sobre a COX-2. Podemos então sugerir que o composto híbrido LS26 possui efeitos antinociceptivo e anti-inflamatório além de ser atóxico em modelos animais.pt_BR
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectnocicepçãopt_BR
dc.subjectsistema opioidept_BR
dc.subjectinflamaçãopt_BR
dc.subjectmigração leucocitáriapt_BR
dc.subjectnociceptionpt_BR
dc.subjectopioid systempt_BR
dc.subjectinflammationpt_BR
dc.subjectleukocyte migrationpt_BR
dc.titleAvaliação farmacológica das atividades antinociceptiva e anti-inflamatória do composto híbrido: (±-cis) (6-etil-tetraidro-2H-pirano-2-il)metil 2-(2- (2,6-diclorofenilamino) fenil acetatopt_BR
dc.title.alternativePharmacological evaluation of the antinociceptive and anti-inflammatory activities of the hybrid compound: (±-cis) (6-ethyl-tetrahydro-2H- pyran-2-yl)methyl 2-(2-(2,6-dichlorophenylamino) phenyl acetateen
dc.typeTesept_BR
dc.description.abstractOtherAnalgesics are among one of the most commonly used drug classes for the treatment or relief of painful and inflammatory conditions. However, due to the large number of side effects and often the ineffectiveness of these drugs, it is necessary to search for new drugs. When a new compound shows promising responses, the conjugation of specific bioactive structures in a single molecule can be performed through molecular hybridization. An effective way to rationally plan new drugs that have synergistic action and/or decrease adverse effects. The aim of this study was to evaluate the acute and chronic antinociceptive and anti-inflammatory activity of the new hybrid compound: (±-cis) (6-ethyl-tetrahydro-2H-pyran-2-yl)methyl 2-(2- (2, 6-dichlorophenylamino) phenyl acetate (LS26), synthesized from the hybridization of the compound [(±)-Cys)(6-ethyl-Tetrahydro-2H-Pyran-2-yl]Methanol (LS20) and the non- inflammatory anti-inflammatory steroid diclofenac sodium. The compound LS26 was administered orally in all animals and in all experimental models. According to the results, the compound has acute antinociceptive activity observed in the abdominal writhing models, formalin (both phases) and immersion of the tail in hot water. The mechanism of action of the compound involves the opioid system, considering that the application of selective opioid antagonists were able to reduce the antinociceptive effect of the hybrid compound. The NO/cGMP/K+ATP pathway is also one of the mechanisms of action of LS26 due to the reduction of the antinociceptive effect with the administration prior L-NAME, ODQ and glibenclamide. Acute and chronic antinociceptive activity on allodynia induced by chronic constriction of the sciatic nerve was also observed in the neuropathic pain model due to inhibition of IL-1β and IL-6 production in the sciatic nerve. The compound shows no relationship between the antinociceptive effect and a motor deficit, according to the results of the rota-rod test. As for anti-inflammatory activity, the LS26 compound showed anti- edematogenic activity, as it was able to reduce leukocyte migration and the production of pro- inflammatory cytokines such as IL-1β, TNF-α and IL-6 and increase cytokine synthesis anti- inflammatory IL-10 in the subcutaneous air bag model. The compound showed selectivity for COX-2 inhibition observed in in vitro evaluation. In the toxicological test, the compound did not present acute and subchronic alterations in the microscopic and macroscopic evaluations. These results indicate antinociceptive activity through opioid receptors and the NO/cGMP/K+ATP pathway, in addition to anti-inflammatory activity with inhibition of leukocyte migration, reduction of IL-1β, TNF-α and IL-6 levels, increase of IL-10 and selective inhibitory activity on COX-2. We can therefor suggest that the hybrid compound LS26 has antinociceptive and anti-inflamatory effects in addition to being non-tocix in animal models.en
dc.contributor.advisor1Marinho, Bruno Guimarães-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2685794388394484pt_BR
dc.contributor.referee1Marinho, Bruno Guimarães-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2685794388394484pt_BR
dc.contributor.referee2Rocha, Fábio Fagundes da-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3804957959723162pt_BR
dc.contributor.referee3Côrtes, Wellington da Silva-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1305510562756172pt_BR
dc.contributor.referee4Patricio, Beatriz Ferreira de Carvalho-
dc.contributor.referee4IDhttps://orcid.org/0000-0002-2477-9798pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/6104390189092918pt_BR
dc.contributor.referee5Romero, Thiago Roberto Lima-
dc.contributor.referee5Latteshttp://lattes.cnpq.br/0515606040272550pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6150014037458549pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Ciências Biológicas e Da Saúdept_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciências Fisiológicaspt_BR
dc.relation.referencesABRAIRA, V. E.; KUEHN, E. D.; CHIRILA, A. M.; HEINTZ, N.; HUGHES, D. I.; GINTY, D. D. The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn. Cell, v. 168, n. 1-2, p. 295-310 e19, Jan 12 2017. ACHENBACH, J.; TIIKKAINEN, P.; FRANKE, L.; PROSCHAK, E. Computational tools for polypharmacology and repurposing. Future Med. Chem. 3(8), 961–968; 2011. AGGARWAL, D.; LINDI, J.K. Anti-TNF therapy is associated with a reduction in radiation exposure in patients with Crohn ́s disease. European Journal of gastroenterology & hepatology, v.27, p.13-19, 2015. AGHASAFARI, P.; GEORGE, U.; PIDAPARTI, R. A review of inflammatory mechanism in airway diseases. Inflamm Res, v. 68, n. 1, p. 59-74, Jan 2019. AHMED, A. U. An overview of inflammation: mechanism and consequences. Frontiers in Biology, v. 6, n. 4, p. 274, July 29. 2011. AIRES, M. M. Fisiologia. 5a ed. Rio de Janeiro. Guanabara Koogan. 1376p. 2018. AJONA, D.; ORTIZ-ESPINOSA, S.; PIO, R. Complement anaphylatoxins C3a and C5a: Emerging roles in cancer progression and treatment. Semin Cell Dev Biol, v. 85, p. 153- 163, Jan 2019 AKIL, H.; OWENS, C.; GUTSTEIN, H.; TAYLOR, L.; CURRAN, E.; WATSON, S. Endogenous opioids: overview and current issues. Drug Alcohol Depend, v. 51, n. 1- 2, p. 127-40, 1998. AL-CHALABI, M.; REDDY, V.; GUPTA, S. Neuroanatomy, Spinothalamic Tract. In: (Ed.). StatPearls.Treasure Island (FL), 2020. AL-HASANI, R.; BRUCHAS, M. R. Molecular mechanisms of opioid receptordependent signaling and behavior. Anesthesiology, v. 115, n. 6, p. 1363-81, 2011. 109 AMARANTE-MENDES, G. P. et al. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Front Immunol, v. 9, p. 2379, 2018. AMARANTE, L.H.; DUARTE, I.D. The Kappa-opioid agonist (+/)-bremazocine elicits peripheral antinociception by activation of the L-arginine/nitric oxide/ cyclic GMP pathway, Eur. J. Pharmacol. 454: 19–23, 2002 AMORY, J.K.; AMORY, D.W. Dosing frequency of aspirin and prevention of heart attacks and strokes. Am. J. Med. 120(4); 2007. ANCION, A., TRIDETTI, J., TRUNG, M.L.N., OURY, C., LANCELLOTTI, P. A Review of the Role of Bradykinin and Nitric Oxide in the Cardioprotective Action of Angiotensin- Converting Enzyme Inhibitors: Focus on Perindopril. Cardiol Ther, v. 8, n. 2, p. 179- 191, Dec 2019. ANWAR, K. Pathophysiology of pain. Dis Mon, v. 62, n. 9, p. 324-9, Sep 2016. ARAÚJO, C.; FILHO, C.; SANTOS, V.; MAIA, G.; GONÇALVES, A. Desenvolvimento De Fármacos Por Hibridação Molecular: Uma Aula Prática de Química Medicinal Usando Comprimidos de Paracetamol e Sulfadiazina e a Ferramenta Virtual Scifinder®. Química Nova, São Paulo, v. 38, n. 6, p. 51-59, 2015. ARAÚJO-SOUZA, P. S.; HANSCHKE, S. C. H.; VIOLA, J. P. B. Epigenetic Control of Interferon-Gamma Expression in CD8+ T Cells. Journal of Immunology Research, p. 849573, 2015. ARCILLA, C. K.; TADI, P. Neuroanatomy, Unmyelinated Nerve Fibers. In: (Ed.). StatPearls. Treasure Island (FL), 2020. ARENDT-NIELSEN, L.; MORLION, B.; PERROT, S.; DAGAN, A.; DICKENSON, A.; KRESS, H.G.; WELLS, C.; BOUHASSIRA, D.; DREWES, A.M. Assessment and manifestation of central sensitisation across diferente chronic pain conditions. Eur J Pain, v. 22, n. 2, p. 216-241, Feb 2018. 110 ARMSTRONG, S. A.; HERR, M. J. Physiology, Nociception. In: (Ed.). StatPearls. Treasure Island (FL), 2020. ARRIAGADA, C.; SILVA, P.; TORRES, V. A. Role of glycosylation in hypoxia-driven cell migration and invasion. Cell Adh Migr, v. 13, n. 1, p. 13-22, Dec 2019 BALEMANS, D.; BOECKXSTAENS, G. E.; TALAVERA, K.; WOUTERS, M. M. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol, v. 312, n. 6, p. G635-G648, Jun 1 2017. BALIKI, M.; APKARIAN, A. Nociception, pain, negative moods, and behavior selection. Elsevier Inc. Neuron 87, Aug., 5, 2015. BALLANTYNE, Jane C.; SULLIVAN, Mark D. The discovery of endogenous opioid systems: what it has meant for the clinician's understanding of pain and its treatment. Pain, 2017. BAPNA, M.; CHAUHAN, L.S. The ambidextrous cyclooxygenase: an enduring target. Inflamm Allergy Drug Targets. 13(6):387-92. 2015. BATLOUNI, M. Anti-inflamatórios não esteroides: efeitos cardiovasculares, cérebro- vasculares e renais. Arq Bras Cardiol, v. 94, n. 4, p. 556-63, 2010. BAUSBAUM, A. I., BAUTISTA, D. M., SCHERRER, G., & JULIUS, D. Cellular and Molecular Mechanisms of Pain. Cell, 139(2), 267–284. 2009. BASBAUM, A. I.; JESSELL, T. The Perception of Pain. In: KANDEL, E. R.; SCHWARTZ, J.; JESSELL, T. Principles of Neuroscience. New York: Appleton and Lange; p. 472-491, 2000. BARRETO, R.L.; CORREIA, C.R.; MUSCARÁ, M.N. Óxido nítrico: propriedades e potenciais usos terapêuticos. Quim. Nova, vol. 28, n.6, p.1046-1054, 2005. 111 BARON R, BINDER A, WASNER G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol;9:807–19. 2010. BLASZCZYK, L.; MAITRÊ, M.; LASSERRE, T. L.; CLARK, S.; COTA, D.; OLIET, S. H. R.; FENELON, V. S. Sequential alteration of microglia and astrocytes in the rat thalamus following spinal nerve ligation. J Neuroinflammation, v. 15, n. 1, p. 349, Dec 20 2018 BINSHTOK, A.M.; WANG, H.; ZIMMERMMANN, K.; AMAYA, F.; VARDEH, D.; SGHI, L.; BRENNER, G.J.; JI, R.R.; BEAN, B.P.B.; WOOLF, C.J.; SAMAD, T.A. Nociceptors are interleukin- 1beta sensors. J Neurosci v. 28 p. 14062–14073, 2008. BOLIN, L.M.; VERITY, A.N.; SILVER, J.E.; SHOOTER, E.M.; ABRAMS, J.S. Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J Neurochem; v. 64 p.850–858. 1995 BRANCO, A. et al. Role of Histamine in Modulating the Immune Response and Inflammation. Mediators Inflamm, v. 2018, p. 9524075, 2018. BRANDÃO, A.F.; MARTINS- PINGE, C.M. Nitric oxide alteration in the cardiovascular function by exercise training. Semina: Ciências Biológicas e da Saúde. V.28, n.1, p. 53-68, jan, 2007. BURKE, N. N.; FINN, D. P.; MCGUIRE, B.E., ROCHE, M. Psychological stress in early life as a predisposing factor for the development of chronic pain: Clinical and preclinical evidence and neurobiological mechanisms. J Neurosci Res, v. 95, n. 6, p. 1257-1270, Jun 2017. CALDER, P. C. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem SocTrans, v. 45, n. 5, p. 1105-1115, Oct 15 2017. 112 CALLERA, G., TOSTES, R., SAVOIA, C., Vasoative peptides in cardiovascular (patho)physiology. Expert Rev. Cardiovasc Ther. 5(3):531-52, 2007. CÂMARA, C. C. Estudo dos efeitos antinociceptivos, comportamentais e regenerativos do tratamento com gabapentina em modelo experimental de dor neuropática. 220f. Tese de Doutorado. Programa de Pós-Graduação em Farmacologia / UFC, Fortaleza, Ceará, 2009. CAPIM, S.L; CARNEIRO, P.H.P; CASTRO, P.C; BARROS, M.R.M; MARINHO, B.G; VASCONCELLOS, M.L.A.A. Design, Prins-cyclization, reaction promoting diastereoselective synthesis of 10 new tetrahydropyran derivatives and in vivo antinociceptive evaluations. European Journal of Medicinal Chemistry. 58:1-11, 2012 CERQUEIRA, N. F. / YOSHIDA, W. B. Óxido nítrico: revisão. Acta Cir Bras [serial online] Nov-Dez;17(6), 2002. CHANDRASEKHARAN, N.V.; DAI, H.; ROOS, K L.; EVANSON, N.K.; TOMSIK, J.; ELTON, T.S.; SIMMONS, L.D. COX-3, a cyclooxygenase-1 variantinhibited by acetaminophen and otheranalgesic/antipyretic drugs: cloning, structureand expression. Proc Natl Acad Sci USA, v.99 p.13926-13931, 2002. CHEN S.R., PAN, H.L. Antinociceptive effect of morphine, but not mu opioid receptor number, is attenuated in the spinal cord of diabetic rats. Anesthesiology v.99: p.1409– 1414, 2003 CHESSELL, I.P.; HATCHER, J.P.; BOUNTRA, C.; MICHEL, A.D.; HUGHES, J.P.; GREEN, P.; EGERTON, J.; MURFIN, M.; et al: Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain v. 114 p. 386–396, 2005. CHOI, S. I.; HWANG, S. W. Depolarizing Effectors of Bradykinin Signaling in Nociceptor Excitation in Pain Perception. Biomol Ther (Seoul), v. 26, n. 3, p. 255-267, May 1 2018. 113 CHOI, S.-R. et al. Astrocyte D-serine modulates the activation of neuronal NOS leading to the development of mechanical allodynia in peripheral neuropathy. Molecular Pain, v. 15, p. 1744806919843046, dez. 2019. CHOPRA, S.; GIOVANELLI, P.; VASQUEZ, P. A. A.; ALONSO, S.; SONG, M.; SANDOVAL, T. A.; CHAE, C. T.; FONSECA, M. M.; GUTIERREZ, S.; JIMENEZ, L.; SUBBARAMAIAH, K.; IWAWAKI, T.; KINGSLEY, P. J.; MARNETT, L. J.; KOSSENKOV, A. V.; CRESPO, M. S.; DANNENBERG, A. J., GLIMCHER, L. H.; SANDOVAL, E. A. R.; RUIZ, J. R. C. IRE1alpha-XBP1 signaling in leukocytes controls prostaglandin biosynthesis and pain. Science, v. 365, n. 6450, Jul 19 2019. CHUNG, E.; BURKE, B.; BIEBER, A.J.; DOSS, J.C.; OHGAMI, Y.; QUOCK, R.M. Dynorphinmediated antinociceptive effects of L-arginine and SIN-1 (an NO donor) in mice. Brain Res. Bull. v.70 p. 245–250, 2006. CHYAD A H; OMAR S I; AHMMED H; Study The Analgesic And Anti-Inflammatory Activity Of Zingiber Officinale Rhizome Extract Comparison With Ibuprofen In Male Mice. Kufa Journal For Veterinary Medical Sciences Vol. (7) No. (1) 2016 CONCEIÇÃO, M.J. Desafios na pesquisa da dor. Revista Brasileira de Anestesiologia. v.62, no 3 p. 287-288; 2012. COSTANTINO, C. M; GOMES, I.; STOCKTON, S.D; LIM, M.P; DEVI, L.A. Opioid receptor heteromers in analgesia. Expert Rev Mol Med, v. 14, p. e9, 2012. COOK, A. D.; CHRISYENSEN, A. D.; TEWARI, D.; MCMAHON, S. B.; HAMILTON. Immune Cytokines and Their Receptors in Inflammatory Pain. Trends Immunol, v. 39, n. 3, p. 240-255, Mar 2018. COLLOCA, L.; LUDMAN, T.; BOUHASSIRA, D.; BARON, R.; DIECKENSON, A.H. et al. Neuropathic pain. Nat. Rev. Dis. Primers 3:17002, 2017 CUNHA, T.M.; ROMAN-CAMPOS, D.; LOTUFO, C.M.; DUARTE, H.J.; SOUZA, W.A.; VERRI, J.R.; FUNES, M.I.; DIAS, Q.M.; SCHIVO, I.R.; DOMINGUES, A.C.; SACHS, D.; 114 CHIAVEGATTO, S.; TEIXEIRA, J.S., HOTHERSALL, J.S.; CUNHA, Q.F.; FERREIRA, S.H.Morphine peripheral analgesia depends on activation of the PI3Kgamma/ AKT/nNOS/NO/KATP signaling pathway, Proc. Natl. Acad. Sci. USA v.107 p. 4442–4447; 2010. CURY, Y.; PICOLO, G.; GUTIERREZ, V.P.; FERREIRA, S.H. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Elsevier, v. 25, p. 243-254, 2011. DAI, Y. TRPs and pain. Semin Immunopathol, v. 38, n. 3, p. 277-91, May 2016 DA SILVA, J, M. Antiinflamatórios não esteróides e suas propriedades gerais. Revista Científica do ITPAC, Araguaína, v.7, n.4, 2014. DEMBO, T.; BRAZ, J. M.; HAMEL, K. A.; KUHN, J. A.; BASBAUM, A. I. Primary Afferent-Derived BDNF Contributes Minimally to the Processing of Pain and Itch. eNeuro, v. 5, n. 6, Nov-Dec 2018. DERAEDT, R.; JOUQUEY, S.; DELEVALLEE, F.; FLAHAUT, M. Release of rostaglandins E and F in an algogenic reaction and its inhibition. European Journal of Pharmacology, v. 61, n. 1, p. 17-24, 1980. DEROUICH-GUERGOUR, D.; BRENIER-PINCHART, M. P.; AMBROISE-THOMAS, P.; PELLOUX, H. Tumor necrosis factor a receptors: role in the physiopatholoy of protozoan parasite infections. International Journal for Parasitology, v.31, p. 763-769, 2001. DESAI, S. J.; PRICKRIL, B.; RASOOLY, A. Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer. Nutr Cancer, v. 70, n. 3, p. 350-375, Apr 2018. DJOUHRI, L. Electrophysiological evidence for the existence of a rare population of C- fiber low threshold mechanoreceptive (C-LTM) neurons in glabrous skin of the rat hindpaw. Neurosci Lett, v. 613, p. 25-9, Feb 2 2016. 115 DRAY, A. Neurophatic pain: emerging treatments. British Journal of Anesthesia 101 (1): 48-58, 2008. DRUMITRASCUTA, M.; BERMUDEZ, M.; TROVATO, O.; DE NEVE, J.; BALLET, S.; WOLBER, G.; SPETEA, M. Antinociceptive efficacy of the μ-opioid/Nociceptin Peptid- Based Hybrid KGNOP1 in inflammatory pain without rewarding effects in mice: An experimental assessment and molecular docking. Molecules., 26, 3267, 2021 DUARTE, D.B.; VASKO, M.R.; FEHRENBACHER, J.C. Models of inflammation: carrageenan air pouch. Current protocols in pharmacology. v. 56, p. 561-568, 2012. DUARTE, I.D.; LORENZETTI, B.B.; FERREIRA, S.H. Peripheral analgesia and activation of the nitric oxide–cyclic GMP pathway. Eur. J. Pharmacol. v. 186 p. 289– 293, 1990. DUBIN, A.E.; Patapoutian, A. Nociceptors: The sensors of the pain pathway. J. Clin. Investig., 120, 3760–3772, 2010. EDER, C. Mechanism of interleukin-1 beta release. Immunobiology, 214(7):543-53,2009. EL ALWANI, M.; WU, B. X.; OBEID, L. M.; HANNUN, Y. A. Bioative sphingolipids in the modulation of the inflammatory response. Pharmacol Ther. 112(1):171-83, 2006. ELLISON, D. L. Physiology of Pain. Crit Care Nurs Clin North Am, v. 29, n. 4, p. 397- 406, Dec 2017. FEIN, A. Nociceptores: As células que sentem dor. Petrov P, Francischi JN, Ferreira SH, et al. tradutores. Ribeirão Preto – SP: Dor On Line; 2011. 106 p. Disponivel em: http://www.dol.inf.br/nociceptores. Acessado em 14 de dezembro de 2021. FERDOUSI, M.; FINN, D. P. Stress-induced modulation of pain: Role of the endogenous opioid system. Prog Brain Res, v. 239, p. 121-177, 2018. 116 FERREIRA, A.A; AMARAL, F.A; DUARTE, I.D.G; OLIVEIRA, P.M; ALVES, R.B; SILVEIRA, D; AZEVEDO, A.O; RASLAN, D.S; CASTRO, M.S.A. 57 Antinociceptive effect from Ipomoea cairica extract. J. Ethnopharmacol; 105: 148–53. 2006. FERREIRA, F.S., BRITO, S.V., SARAIVA, R.A., ARARUNA, M.K.A., MENEZES, I.R.A., COSTA, J.G.M., COUTINHO, H.D.M., ALMEIDA, W.O., ALVES, R.R.N. Topical anti- inflammatory activity of body fat from the lizard Tupinambis merianae. J. Ethnopharmacol. 130: 514–520. 2010 FINSTERER, J.; WANSCHITZ, J.; QUASTHOFF, S.; IGLSEDER, S.; LOSCHER, W.; GRISOLD, W. Causally treatable, hereditary neuropathies in Fabry's disease, transthyretinrelated familial amyloidosis, and Pompe's disease. Acta Neurol Scand, v. 136, n. 6, p. 558-569, Dec 2017. FISCHER, L.G.; SANTOS, D.; SERAFIN, C.; MALHEIROS, A.; MONACHE, F.D.; MONACHE, G.D.; FILHO, V.C.; SOUZA, M.M. Further Antinociceptive Properties of Extracts and Phenolic Compounds from Plinia glomerata (Myrtaceae) Leaves. Biol. Pharm. Bull. 31(2) 235—239, 2008. FISCHER, M., CARLI, G., RABOISSON, P., AND REEH, P. The interphase of the formalin test. Pain 155, 511–521. 2014. FITZGERALD, G.A.; PATRONO, C. The coxibs, selective inhibitors of cyclooxygenase-2. N Eng J Med, v. 345 p. 433-442, 2001. FLECKENSTEIN, J.; SIMON, P.; KONIG, M.; VOGT, BANZER. The pain threshold of high-threshold mechanosensitive receptors subsequent to maximal eccentric exercise is a potential marker in the prediction of DOMS associated impairment. PLoS One, v. 12, n. 10, p. e0185463, 2017. FRANCO, P.; LAURA, F.; VALENTINA, C.; SIMONA, A.; GLORIA, A.; ELEONORA. Interleukin-6 in rheumatoid arthritis. International Journal of Molecular Sciences. 21(15):5238, 2020. 117 GABAY, E.; WOLF, G.; SHAVIT, Y.; YIRMIJA, R.; TAL, M. Chronic blockade of interleukin-1 (IL-1) prevents and attenuates neuropathic pain behavior and spontaneous ectopic neuronal activity following nerve injury. Eur J Pain. v. 15 p. 242– 248, 2011. GADANI, P.S.; CRONK, J.C.; NORRISG.T.; KIPNIS, J. Interleukin-4: A cytokine to remember. J. Immunol. v.189(9), p. 4213-4219, 2012. GALDINO, G. S.; DUARTE, I. D.; PEREZ. The Nitric oxide/CGMP/KATP pathway mediates systemic and central antinociception induced by resistance exercise in rats. International Journal of Neuroscience, v. 125, n. 10, p. 765–773, 3 out. 2015. GAVVA, N. R.; SANDROCK, R.; ARNOLD, G. E.; DAVIS, M.; LAMAS, E.; LINDVAY, C.; LI, C. M.; SMITH, B.; BACKONJA, M.; GABRIEL, K., VARGAS, G. Reduced TRPM8 expression underpins reduced migraine risk and attenuated cold pain sensation in humans. Sci Rep, v. 9, n. 1, p. 19655, Dec 23 2019. GAZERANI, S.; ZARINGHALAM, J.; MANAHEJI, H.; GOLABI, S. The Role of C Fibers in Spinal Microglia Induction and Possible Relation with TRPV3 Expression During Chronic Inflammatory Arthritis in Rats. Basic Clin Neurosci, v. 7, n. 3, p. 231- 40, Jul 2016. GEBHART, G. F.; BIELEFELDT, K. Physiology of Visceral Pain. Compr Physiol, v. 6, n. 4, p. 1609-1633, Sep 15 2016. GONÇALVES, G. M; CAPIM, S. L; VASCONCELLOS, M. L. A. A; MARINHO, B. G. Antihyperalgesic effect of [(±)-(2,4,6-cis)-4-chloro-6-(naphthalen-1-yl)-tetrahydro-2H- pyran-2-yl]methanol: participation of the NO/cGMP/KATP pathway and κ-opioid receptor.. Behavioural Pharmacology, 27(6), 506–515, 2016. GONÇALVES, G.M.; DE OLIVEIRA, J.M.; FERNANDES, T.F.C.; CID, G.C.; LAUREANO-MELO, R.; CÔRTES, W.S.; CARVALHO, V.A.N.; CAPIM, S.L.; VASCONCELLOS, M.L.A.A.; MARINHO, B.G. Evaluation of the systemic and spinal antinociceptive effect of a new hybrid NSAID tetrahydropyran derivative. Clinical and Experimental Pharmacology and Physiology. 2021. 118 GRASSEL, S.; MUSCHTER, D. Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology. Int J Mol Sci, v. 18, n. 5, Apr 28 2017 GRIFFITHS, H. R.; GAO, D.; PARARASA, C. Redox regulation in metabolic programming and inflammation. Redox Biol, v. 12, p. 50-57, Aug 2017. GRUNDMANN, K.; JASCHONEK, K.; KLEINE, B.; DICHGANS, J.; TOPKA, H.; Aspirin non-responder status in patients with recurrent cerebral ischemic attacks. J. Neurol. 250(1), 63–66; 2003. GUGINSKI, G; LUIZ, A.P; SILVA, M.D; MASSARO, M; MARTINS, D.F; CHAVES, J; MATTOS, R.W; SILVEIRA, D; FERREIRA, V.M; CALIXTO, J.B; SANTOS, A.R. Mechanisms involved in the antinociception caused by ethanolic extract obtained from the leaves of Melissa officinalis (lemon balm) in mice. Pharmacol. Biochem. Behav. 93:10–16, 2009 GUTIERREZ, V; ZAMBELLI, V; PICOLO, G; CHACUR, M; SAMPAIO, S; BRIGATTE, P; CURY, Y. Peripheral L-arginine-nitric oxide-cGMP pathway and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine on neuropathic pain in rats. Behav. Pharmacol., (1):14-24, 2012. HALICI, Z.; DENGIZ, G.O.; ODABASOGLU, F.; SULEYMAN, H.; CADIRCI, E.; HALICI, M. Amiodarone has anti-inflammatory and anti-oxidative properties: An experimental study in rats with carrageenan-induced paw edema. Eur J Pharmacol. 566:215-21, 2007. HARIRFOROOSH, S.; ASGHAR, W.; JAMALI, F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci.;16(5):821-47. 2013. 119 HENRIQUES, M.G.; SILVA, P.M.; MARTINS, M.A.; FLORES, C.A.; CUNHA, F.Q.; ASSUREY-FILHO, J.; CORDEIRO, R.S. Mouse paw edema. A new model for inflammation? Braz. J. Med. Biol. Res., v.20, n.2, p.243-249, 1987. HERVERA, A; LEANEZ, S; NEGRETE, R; POL, O. The peripheral administration of a nitric oxide donor potentiates the local antinociceptive effects of a DOR agonist during chronic inflammatory pain in mice. Naunyn Schmiedebergs Arch. Pharmacol 380: 345–352, 2009. HESS, S.; PADOANI, C.; SCORTEGANHA, L.C.; HOLZMANN, I.; MALHEIROS, A.; YUNES, R.A,; et al. Assessment of mechanisms involved in antinociception caused by myrsinoic acid B. Biol Pharm Bull 33:209–215. 2010. HOPKINS, A,L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4(11), 682–690; 2008. HOSSAIN, M. Z.; BAKRI, M. M.; YAHYA, F.; ANDO, H.; UNNO, S.; KITAGAWA, J. The Role of Transient Receptor Potential (TRP) Channels in the Transduction of Dental Pain. Int J Mol Sci, v. 20, n. 3, Jan 27 2019. HUGHES, P.; BRIERLEY, S. M.; YOUNG, R. L.; BLACKSHAW, A. A. Localization and comparative analysis of acid-sensing ion channel (ASIC1, 2, and 3) mRNA expression in mouse colonic sensory neurons within thoracolumbar dorsal root ganglia. J Comp Neurol, v. 500, n. 5, p. 863-75, Feb 10 2007. HUNSKAAR, S; HOLE, K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30: 103–14, 1987. HYLANDS-WHITE, N.; DUARTE, R. V.; RAPHAEL, J. H. An overview of treatment approaches for chronic pain management. Rheumatol Int, v. 37, n. 1, p. 29-42, Jan 2017. INNES, J. K.; CALDER, P. C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids, v. 132, p. 41-48, May 2018 120 ITO, Y.; YAMAMOTO, M.; LI, M.; DOY, M.; TANAKA, F.; MUTCH, T.; MITSUMA, T.; SOBUE, G. Differential temporal expression of mRNAs for ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), interleukin-6 (IL- 6), and their receptors (CNTFR alpha, LIFR beta, IL-6R alpha and gp130) in injured peripheral nerves. Brain Res; v. 793 p. 321–327. 1998 JAIN, M.; PARMAR, H.S. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflammation research. v.60, p. 483-491, 201 JAVANMARDI, K, M; PARVIZ, S.S; SADR, M; KESHAVARZ, B; MINAII; DEHPOUR, A.R. Involvement of N-methyl-D-aspartate receptors and nitric oxide in the rostral ventromedial medulla in modulating morphine pain-inhibitory signals from the periaqueductal grey matter in rats. Clin. Exp. Pharmacol. Physiol. 32: 585–589, 2005. JIA, G. et al. Endothelial cell senescence in aging-related vascular dysfunction. Biochim Biophys Acta Mol Basis Dis, v. 1865, n. 7, p. 1802-1809, Jul 1 2019. JÚNIOR, W.B. Estudo da atividade antinociceptiva e anti-inflamatória de protótipos de fármacos. 126f. Tese de Doutorado. Programa de Pós-Graduação em Biotecnologia/ IQB, Alagoas, Maceió, 2013. KAWABATA, Y.; FUKUZUMI, Y.; FUKUSHIMA, H.; TAKAGI. Antinociceptive effect of L-arginine on the carrageenin-induced hyperalgesia of the rat: possible involvement of central opioidergic systems, Eur. J. Pharmacol. v.218 p.153–158, 2002. KAWABATA, A.; FUKUZUMI, Y.; FUKUSHIMA, H.; TAKAGI. Antinociceptive effect of L-arginine on the carrageenin-induced hyperalgesia of the rat: possible involvement of central opioidergic systems, Eur. J. Pharmacol. v. 218 p. 153–158, 1992. KHAN, A.; KHAN, S.; KIM, Y. S. Insight into Pain Modulation: Nociceptors Sensitization and Therapeutic Targets. Curr Drug Targets, v. 20, n. 7, p. 775-788, 2019. 121 KELLENBERGER, S.; SCHILD, L. International Union of Basic and Clinical Pharmacology. XCI. structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol Rev, v. 67, n. 1, p. 1-35, 2015 KNEZEVIC, N. N.; TVERDOHLEB, T.; KNEVECIV, I., CANDIDO, K.D. The Role of Genetic Polymorphisms in Chronic Pain Patients. Int J Mol Sci, v. 19, n. 6, Jun 8 2018. KNOX, C.; LAW, V.; JEWISON, T. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 39(Database issue), D1035–D1041; 2011. KUMAR, VINAY et al. Robbins, patologia básica. Rio de Janeiro : Elsevier,. 928 p. 2013. KUNNUMAKKARA, A. B. SAILO, B. L.; BANIK, K.; HARSHA, C.; PRASAD, S.; GUPTA, S.C.; BHARTI, A. C.; AGGARWAL, B.B. Chronic diseases, inflammation, and spices: how are they linked? J Transl Med, v. 16, n. 1, p. 14, Jan 25 2018. KUREK, J.B.; AUSTIN, L.; CHEEMA, S.S.; BARLETT, P.F.; MURPHY, M. Up-regulation of leukaemia inhibitory factor and interleukin-6 in transected sciatic nerve and muscle following denervation. Neuromuscul Disord. v.6 p.105–114. 1996 LAW, Ping-Yee; WONG, Yung H.; LOH, Horace H. Molecular mechanisms and regulation of opioid receptor signaling. Annual review of pharmacology and toxicology, v. 40, n. 1, p. 389-430, 2000. LE BARS, D.; GOZARIU, M. CADDEN, S.W. Animals models of nociception. Pharmacology, v. 53, p. 597-652, 2001. LESNIAK, A.; LIPKOWSKI, A. W. Opioid peptides in peripheral pain control. Acta Neurobiol Exp (Wars), v. 71, n. 1, p. 129-38, 2011. LEUNG, R. H.; STROMAN, P. W. Neural Correlates of Cognitive Modulation of Pain Perception in the Human Brainstem and Cervical Spinal Cord using Functional 122 Magnetic Resonance Imaging: A Review. Crit Rev Biomed Eng, v. 44, n. 1-2, p. 33-45, 2016. LI, X.; Clark, J.D. Spinal cord nitric oxide synthase and heme oxygenase limit morphine induced analgesia, Brain Res. Mol. Brain Res. v.95 p.96–102, 2001. LIN, E; CALVANO, S.E; LOWRY, S.F. Inflammatory cytokines and cell response in surgery. Surgery,;127:117-126, 2000 LIU, J.; ZHAN, X.; WAN, J.; WANG, Y.; WANG, C. Review for carrageenan-based pharmaceutical biomaterials: Favourable physical features versus adverse biological effects. Carbohydrate Polymers, v. 121, p. 27–36, 2015. LOZANO-CUENCA, J.; CASTANEDA-HERNANDEZ, G.; GRANADOS-SOTO, V. Peripheral and spinal mechanisms of antinociceptive action of lumiracoxib. Eur. J. Pharmacol. 513: 81–91, 2005 MARCEAU, F.; BACHELARD, H.; BOUTHILLIER, J.; FORTIN, J.P.; MORISSEETE, G.; BAWOLAK, M.T.; MORIN, X. C.; GERA, L. Bradykinin receptors: Agonists, antagonists, expression, signaling, and adaptation to sustained stimulation. Int Immunopharmacol, v. 82, p. 106305, Feb 24 2020. MARINHO, B.G; MIRANDA, L.S.M.; GOMES, N.M.; MATHEUS, M.E.; LEITÃO, S.G.; VASCONCELLOS, M.L.A.A.; FERNANDES, P.D. Antinociceptive action of (±)-cis-(6-ethyl-tetrahydropyran-2-yl)-formic acid in mice. European Journal of Pharmacology. 550: p. 47-53, 2006 MARTINEZ, J. E.; PEREIRA, G. A. F.; RIBEIRO, L. G. M.; NUNES, R.; ILIAS, D.; NAVARRO, L. G. M. Estudo da automedicação para dor musculoesquelética. Pontifícia Universidade Católica - São Paulo. Revista Brasileira de Reumatologia, v. 54, n. 2, p. 90-94, 2014. MARTUCCI, C.; TROVATO, A.E.; COSTA, B.; BORSANI, E.; FRANCHI, S.; MAGNAGHI, V.; PENARI, A.; RODELLA, L.F.; VALSECCHI, A.E.; COLLEONI, M. The 123 purinergic antagonist PPADS reduces pain related behaviours and interleukin-1 beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain. v.137 p. 81– 95, 2008. MEDZHITOV, R. Origin and physiological roles of inflammation. Nature. (454) 428-435, 2008. MENDES, R.T. Inibição seletiva da ciclo-oxigenase-2: riscos e benefícios. Rev. bras. reumatol, v. 52, n. 5, p. 774-782, 2012. MERRER,J.L.; JECKER, J.A.; BEFORT, K.; KIEFFER, B.L. Reward processing by the opioid system in the brain. Physiol Rev. Oct;89(4):1379-412, 2009 MILLAN, M. J. Descending control of pain. Progress in Neurobiology, v. 66, n. 6, p. 355– 474, 2002. MINNEMAN, K.P; IVERSEN, I.L. Enkephalin and opiate narcotics increase cyclic GMP accumulation in slices of rat neostriatum. Nature 262, 313–314, 1976. MONTENEGRO, M.R.; FECCHIO, D. Inflamações: conceitos gerais e inflamação aguda. In: MONTENEGRO, M.R, FRANCO, M. Patologia: processos gerais 4oed. São Paulo: Atheneu; p.109-128, 1992. MONTINARI, M.R, MINELLI, S, DE CATARINA, R. The first 3500 years of aspirin history from its roots - A concise summary. Vascul Pharmacol. Feb;113:1-8. 2019. MOSQUINI, A.F; ZAPPA, V; MONTANHA, F. P. Características farmacológicas dos antiinflamatórios não esteroidais – revisão de literatura. Revista científica eletrônica de medicina veterinária, n. 17, Julho de 2011. MULLER, W. A. How endothelial cells regulate transmigration of leukocytes in the inflammatory response. The American Journal of Pathology, v. 184, n. 4, p. 886– 896, abr. 2014. 124 NAPIMOGA, C.J.T; PELLEGRINI-DA-SILVA, A; FERREIRA, V.H; NAPIMOGA, M.H; PARADA, C.A; TAMBELI, C.H. Gonadal hormones decrease temporomandibular joint kappa-mediated antinociception through a downregulation in the expression of kappa opioid receptors in the trigeminal ganglia. Eur. J. Pharmacol. 617: 41–47, 2009. NEPALI, K; SHARMA, S; SHARMA, M; BEDI, P.M.S; DHAR, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur J Med Chem, 77:422-87., 2014. O’GARRA, A.; VIEIRA, P. TH1 cells control themselvesby producing interleukin-10. Nature Rev. Immunol. v.7, p. 425–428, 2007. OMOTE, L.; HAZAMA, K.; KAWAMATA, M.; NAKAYAKA, Y.; TORIYABE, M.; NAMIKI, A. Peripheral nitric oxide in carrageenan-induced inflammation. Brain Res. 912: 171-175, 2001. OMOTE, K.; KAWAMATA, T.; KAWAMATA, T.; NAMIKI, A. Formalin-induced release of excitatory aminoacids in the skin of rat hindpaw. Brain Research, v. 787, p. 161-164, 1998. OPREA, T.I.; MESTRE, J. Drug repurposing: far beyond new targets for old drugs. AAPS J. 14(4), 759–763; 2012. OPREA, T.I.; NIELSEN, S.K.; URSU, O. Associating Drugs, Targets and Clinical Outcomes into an Integrated Network Affords a New Platform for ComputerAided Drug Repurposing. Mol. Inform. 30(2–3), 100–111; 2011. OPREE, A.; KRESS, M. Involvement of the proinflammatory cytokines tumor necrosis factor-alpha, IL-1 beta, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J Neurosci, v. 20, n. 16, p. 6289-93, 2000. OSSIPOV, M. H.; DUSSOR, G. O.; PORRECA, F. Central modulation of pain. J Clin Invest, v. 120, n. 11, p. 3779-87, Nov 2010. 125 ORR, P. M.; SHANK, B. C.; BLACK, A. C. The Role of Pain Classification Systems in Pain Management. Crit Care Nurs Clin North Am, v. 29, n. 4, p. 407-418, Dec 2017. PACHER, P., BECKMAN, J. S.; LIAUDET, L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 87(1):315-424, 2007. PASTERNAK, Gavril W.; PAN, Ying-Xian. Mu opioids and their receptors: evolution of a concept. Pharmacological reviews, v. 65, n. 4, p. 1257-1317, 2013. PASTERNAK, G.W.; CHILDERS, S.R.; PAN, Y.-X. Emerging insights into mu opioid pharmacology. Handb. Exp. Pharmacol. v. 258, p. 89–125; 2019. PATHAN, Hasan; WILLIAMS, John. Basic opioid pharmacology: an update. British Journal of Pain, v. 6, n. 1, p. 11-16, 2012 PATIDAR, A.; SELVARAJ, S.; SARODE, A.; CHAUHAN, P.; CHATTOPADHYAY, D.; SAHA, B. DAMP-TLR-cytokine axis dictates the fate of tumor. Cytokine, v. 104, p. 114- 123, Apr 2018. PATTISON, L.A.; CALLEJO, G., JOHN S.E. Evolution of acid nociception: ion channels and receptors for detecting acid. Phil. Trans. Royal Society. B v.374, n. 20, p.190-291. 2019 PAULSEN, O.; LAIRD, B.; AASS, N.; LEA, T.; FAYERS, P.; KAASA, S.; KLEPSTAD, P. The relationship between pro-inflammatory cytokines and pain, appetite and fatigue in patients with advanced cancer. PLoS One, v. 12, n. 5, p. e0177620, 2017. PENG, Y.; VAN WERSCH, R.; ZHANG, Y. Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. Mol Plant Microbe Interact, v. 31, n. 4, p. 403-409, Apr 2018. PERAZA, G.G. Uso de modelos animais para avaliar o potencial antinociceptivo dos produtos de origem natural. Vitalle, v.9, p. 35-44, 2077 126 PICOLO, G.; CURY. Y. Peripheral neuronal nitric oxide synthase activity mediates the antinociceptive effect of Crotalus durissus terrificus snake venom, a deltaand kappa- opioid receptor agonist. Life Sci. v.75 p. 559–573, 2004 PINHO-RIBEIRO, F. A.; VERRI, W. A., JR.; CHIU, I. M. Nociceptor Sensory Neuron- Immune Interactions in Pain and Inflammation. Trends Immunol, v. 38, n. 1, p. 5-19, Jan 2017. PINTO, W.B.V.R.; KO, G.M. Teste de rotarod: contribuições no estudo das doenças neuromusculares, das síndromes extrapiramidais e das ataxias cerebelares. Revista da Sociedade Brasileira de Ciência em Animais de Laboratório, v.1 n.2, p. 202-212, 2012 POZSGAI, G.; BATAI, I. Z.; PINTER, E. Effects of sulfide and polysulfides transmitted by direct or signal transduction-mediated activation of TRPA1 channels. Br J Pharmacol, v. 176, n. 4, p. 628-645, Feb 2019. RAAIJMAKERS, TK, VAN DEN BIJGAART, RJE, SCHEFFER, GJ, ANSERMS, M, ADEMA, GJ. NSAIDs affect dendritic cell cytokine production. PLoS One. Oct 13;17(10). 2022. REDDY, S.; ZHANG, S. Polypharmacology: drug discovery for the future. Expert Rev. Clin. Pharmacol. 6(1), 41-47; 2013. REGLERO-REAL, N. et al. Endothelial Cell Junctional Adhesion Molecules: Role and Regulation of Expression in Inflammation. Arterioscler Thromb Vasc Biol, v. 36, n. 10, p. 2048-2057, Oct 2016. RIBEIRO, R.A.; VALE, M.L.; THOMAZZI, S.M. PASCHOALATO, A.B.P.; POOLE, S.; FERREIRA, S.H.; CUNHA, F.Q. Involviment of resident macrophages and mast cells in the writhing noceptive response induced by Zymosan and acetic acid in mice. European Journal of Pharmacology, v. 387, n. 1, p. 111-118, 2000. 127 RICCIARDOLO, F. L. M.; FOLKERTS, G.; FOLINO, A., MOGNETTI, B. Bradykinin in asthma: Modulation of airway inflammation and remodelling. Eur J Pharmacol, v. 827, p. 181-188, May 15 2018. ROCHA APC, KRAYCHETE DC, LEMONICA L, CARVALHO LR, BARROS GAM, GARCIA JBS, SAKATA RK — Pain: Current Aspects on Peripheral and Central Sensitization. Rev Bras Anestesiol Review article 57: 1: 94-105, 2007 RONCHETTI, S.; MIGLIORATI, G.; DELFINO, D. V. Association of inflammatory mediators with pain perception. Biomed Pharmacother, v. 96, p. 1445-1452, Dec 2017. ROSAS-BALLINA, M; OLOFSSON, P.S; OCHANI, M; VALDES-FERRER, S.I; LEVINE, Y.A; REARDON, C; TUSCHE, M.W; PAVLOV, V.A, ANDERSSON, U; CHAVAN, S; MAK, T.W; TRACEY, K.J. Acethylcoline-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334: 98-101. 2011. ROSBERG, H.E.; CARLSSON, K.S.; DAHLIN, L.B. Prospective study of patients with injuries to the hand and forearm: costs, function, and general health. Scandinavian Journal of Plastic Reconstruction Surgery and Hand Surgery 39 (6), 360-369, 2005 ROSLAND, JH.; HUNSKAAR, S.; HOLE, L. Diazepam attenuates morphine antinociception test-dependently in mice. Pharmacol Toxicol. v.66 n. 5, p.382-386. 1990 RUSSO, M. M.; SUNDARAMURTHI, T. An Overview of Cancer Pain: Epidemiology and Pathophysiology. Semin Oncol Nurs, v. 35, n. 3, p. 223-228, Jun 2019. SAFIEH-GARABEDIAN, B.; POOLE, S.; ALLCHORNE, A.; WINTER, J.; WOOLF, C.J. The contribution of interleukin-1 beta to the inflammationinduced increase in nerve growth factor levels and inflammatory hyperalgesia. Br J Pharmacol. 115:1265–75. 1995 SAIJO, Y.; LOO, E. P.; YASUDA, S. Pattern recognition receptors and signaling in plant-microbe interactions. Plant J, v. 93, n. 4, p. 592-613, Feb 2018. SALMON, J. A.; HIGGS, G. A. Prostaglandins and leukotrienes as inflammatory mediators. British Medical Bulletin, v. 43, n. 2, p. 285–296, abr. 1987. 128 SANTOS, G.C.M. FERNANDES, R.D; BARROS, T.R. ABREU, H.S. SUZART L.R., DE CARVALHO, M.G. BRAZ FILHO, R. MARINHO B.G.. Antinociceptive and Anti- inflammatory Activities of the Methanolic Extract from the Stem Bark of Lophanthera lactescens. Planta Medica, 81: 1688–1696. 2015. SBED – Sociedade Brasileira para o Estudo da Dor. 2020 Disponível em: <http://www.dor.org.br/duvidas-frequentes-2/dor-no-Brasil/> Acesso em: 06 out. 2021 SCHOLER, D. W; KU, E. C; BOETTCHER, I; SCHWEIZER, A. Pharmacology of diclofenac sodium. The American Journal of Medicine, 80(4), 34–38, 1986. SHERWOOD, E. R.; TOLIVER-KINSKY, T. Mechanism of the inflammatory response. Best Pract Res Clin Anaesthesiol. 18(3):385-405, 2004. SCHOENICHEN, C.; BODE, C.; DUERSCHMIED, D. Role of platelet serotonin in innate immune cell recruitment. Front Biosci (Landmark Ed), v. 24, p. 514-526, Jan 1 2019 SETHI, R.; CORONADO, N.G.; WALKER, A.J.; ROBERTSON, O.D.A., AGUSTINI, B.; BERK, M.; DODD, S. Neurobiology and Therapeutic Potential of Cyclooxygenase-2 (COX-2) Inhibitors for Inflammation in Neuropsychiatric Disorders. Front Psychiatry, v. 10, p. 605, 2019. SHEN, J. ABU AMER, Y.; MCALINDEN, O. A. Inflammation and epigenetic regulation in osteoarthritis. Connect Tissue Res, v. 58, n.1, p. 49-63, Jan 2017. SHI, G; LIU, Y; LIN, H; YANG, S; FENG, Y; REID, P.F; QIN, Z. Involvement of cholinergic system in supression of formalin-induced inflammatory pain by cobratoxin. Acta Pharmacologica Sinica, v. 32, p. 1233-1238, 2011. SHIRAZI, L.F.; BISSETT, J.; ROMEO, F.; MEHTA, J.L. Role of Inflammation in Heart Failure. Curr Atheroscler Rep. 2017 129 SILVA, C. S.; SARAIVA, S. R. G. L.; JÚNIOR, R. G. O; ALMEIDA, J. R. G. S.; Modelos experimentais para avaliação da atividade antinociceptiva de produtos naturais: uma revisão. Rev. Bras. Farm. 94 (1): 18-23, 2013 SIMPSON, M.R.; MASHETER, H.C. New drugs. 8. Flufenamic acid in rheumatoid arthritis. Comparison with aspirin and the results of extended treatment. Ann. Phys. Med. 8(6), 208–213; 1966. SMITH, W.L.; DEWITT, D.L. Prostaglandin endoperoxide H synthases-1 and -2. Adv Immunol, v.62 p.167-215, 1996. SLUKA, K. A.; WILLIS, W. D. Increased spinal release of excitatory aminoacids following intradermal injection of capsaicin is reduced by a protein kinase G inhibitor. Brain Research, v. 798, p. 281-286, 1998. SNEDDON, L.U.; ELWOOD, R.W.; ADAMO, S.; LEACH, M.C. Defining and assessing pain in animals. Anim. Behav. v.97, p. 201–212. 2014 SNYDER, Solomon H.; PASTERNAK, Gavril W. Historical review: opioid receptors. Trends in pharmacological sciences, v. 24, n. 4, p. 198-205, 2003. SOARES, A.C.; Duarte, I.D. Dibutyryl-cyclic GMP induces peripheral antinociception via activation of ATP-sensitive K(+) channels in the rat PGE2-induced hyperalgesic paw, Br. J. Pharmacol. v.134, p.127–13; 2001 SOARES, A.C.; LEITE, R.; TATSUO, M.A. DUARTE, I.D. Activation of ATP-sensitive K(+) channels: mechanism of peripheral antinociceptive action of the nitric oxide donor, sodium nitroprusside, Eur. J. Pharmacol. v.400 p.67–71; 2000. SOLOMON, D.H.; SCHNEEWEISS, R.J.; GLYNN, Y.; KIYOTA, R.; LEVIN, H.; MOGUN, J. Relationship between selective cyclooxygenase- 2 inhibitors and acute myocardial infarction in older adults. Circulation, v. 109 p. 2068-2073, 2004. 130 SOMMER, C. Serotonin in Pain and Analgesia - Actions in the Periphery. Molecular Neurobiology, v. 30, p. 117-125, 2004. SOMMER, C; WHITE, F. Cytokines, Chemokines, and Pain. Pharmacology of Pain. 1st Ed, Seattle, IASP Press,;279-302, 2010. STEFANO, G.B; SCHARRER, B; SMITH, E.M; HUGHES, T.K.J; MAGAZINE, H.I; BILFINGER, T.V; HARTMAN, A. R; FRICCHIONE, G.I; LIU, Y; MAKMAN, M.H. Opioid and opiate immunoregulatory processes. Crit. Rev. Immunol. 37 (2-6): 213-248. 2017. STEIN, C.; CLARK, J.D.; VASKO, M.R.; WILCOX, G.L.; OVERLAND, A.C.; VANDERAH, T.W.; SPENCER, R.H. Peripheral mechanisms of pain and analgesia. Brain Res Rev. 2009 Apr;60(1):90-113, 2009. STEIN C. Opioid Receptors. Annu Rev Med;67:433-51, 2016. SU, J. B. Role of Bradykinin in the Regulation of Endothelial Nitric Oxide Synthase Expression by Cardiovascular Drugs. Curr Pharm Des, v. 23, n. 40, p. 6215-6222, 2017. SUVAS, S. Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis. J Immunol, v. 199, n. 5, p. 1543-1552, Sep 1 2017. TANAKA, T.; NARAZAKI, M.; KISHIMOTO, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6, 2014 THOMPSON, J. M.; NEUGEBAUER, V. Cortico-limbic pain mechanisms. Neurosci Lett, v. 702, p. 15-23,May 29 2019. TJOLSEN, A; BERGE, O.G; HUNSKAAR,S; ROSLAND, J.H; HOLE, K. The formalin test: an evaluation of the method. Pain, v.51, p. 5-17, 1992. 131 TODA, N.; KISHIOKA, S.; HATANO, Y.; TODA, H. Modulation of opioid actions by nitric oxide signaling. Anesthesiology v.110 p.166–181, 2009. THOMAZZI, S. M.; SILVA, C. B.; SILVEIRA, D. C. R.; VASCONCELLOS, C. L. C.; LIRA, A. F.; CAMBUI, E. V. F.; ESTEVAM, C. S.; ANTONIOLLI, A. R. Antinociceptive and anti-inflammatory activities of Bowdichia virgilioides (sucupira). Journal of Ethnopharmacology, v. 127, p. 451 - 456, 2010. TRAYES, K. P. et al. Edema: diagnosis and management. Am Fam Physician, v. 88, n. 2, p. 102-10, Jul 15 2013. TSANTOULAS, C.; McMAHON, S.B.; Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci. 37(3):146–58, 2014 TSUGE, K., INAZUME, T., SHIMAMOTO, A.; SUGIMOTO, Y. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. Int Immunol, v. 31, n. 9, p. 597-606, Aug 23 2019 VARELA, M. L.; MOGILDEA, M.; MORENO, I.; LOPES, A. Acute Inflammation and Metabolism. Inflammation, v. 41, n. 4, p. 1115-1127, Aug 2018. VERRI, W.A; CUNHA, T.M; PARADA, C.A; POOLE, S; CUNHA, F.Q; FERREIRA, S.H. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther. :116-38, 2006. VIEIRA, J. S. et al. Analgesic Effects Elicited by Neuroactive Mediators Injected into the ST 36 Acupuncture Point on Inflammatory and Neuropathic Pain in Mice. J Acupunct Meridian Stud, v. 11, n. 5, p. 280-289, Oct 2018. WALTERS, E.T.; WILLIAMS, A.C. de C. Evolution of mechanisms and behaviour important for pain. Phil. The Royal Society. B 374: 20190275. 2019 WANG, T. et al. Arachidonic Acid Metabolism and Kidney Inflammation. Int J Mol Sci, v. 20, n. 15, Jul 27 2019. 132 WATKINS, L.R.; HUTCHINSON, M.R.; JOHNSTON, I.N.; MAIER, S.F.; Glia: novel counter-regulators of opioid analgesia. Trends Neurosci; v. 28 p. 661–9. 2005 WATKINS, L.R.; HUTCHINSON, M.R.; LEDEBOER, A.; WIESELER-FRANK, J.; MILLIGAN, E.D.; MAIER, S.F. Norman Cousins Lecture. Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun, v. 21 p.131–46. 2007 WITKAMP, R.; MONSHOUWER, M. Signal transduction in inflammatory processes, current and future therapeutic targets: a mini review. Vet Q. 22(1):11-6, 2000. WOLF, G.; GABAY, E.; TAL, M.; YIRMIJA, R.; SHAVIT, Y. Genetic impairment of interleukin-1 signaling attenuates neuropathic pain, autotomy, and spontaneous ectopic neuronal activity, following nerve injury in mice. Pain. v. 120 p. 315–324, 2006. WOOLF CJ, MANNION RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet v. 353 p. 1959–64. 1999. WU, H.; DENNA, T.H.; STORKERSEN, N. J., GERRIETS, V.A. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol Research, v. 140, p. 100-114, Feb 2019. XIE, L.; KINNINGS, S.L.; BOURNE, P.E. Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annu. Rev. Pharmacol. Toxicol. 52, 361–379; 2012. XU, J.; KUNHUA, W.; GUOJUN, Z.; LUJING, L.; DAWEI, Y.; WENLE, W.; QIHENG, H.; YUAN, X.; YAQIONG, B.; MIN, Y.; MINHUI, L. Ethnopharmacology, phytochemistry, and pharmacology of Chinese Salvia species: A review. J Ethnopharmacol, v. 225, p. 18- 30, Oct 28 2018. 133 YAM, M. F.; LOH, Y. C.; TAN, C. S.; ADAM, S. K..; MANAN, N. A.; BASIR, R. General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int J Mol Sci, v. 19, n. 8, Jul 24 2018. YANG, X. et al. Structural Biology of NOD-Like Receptors. Adv Exp Med Biol, v. 1172, p. 119-141, 2019. YAXLEY, J.; LITFIN, T. Non-steroidal anti-inflammatories and the development of analgesic nephropathy: a systematic review. Ren Fail, v. 38, n. 9, p. 1328-1334, Oct 2016. ZAIN, M.; BONIN, R. P. Alterations in evoked and spontaneous activity of dorsal horn wide dynamic range neurons in pathological pain: a systematic review and analysis. Pain, v. 160, n. 10, p. 2199-2209, Oct 2019. ZHANG, J.M, AN, J. Cytokines, inflammation, and pain. Int Anesthesiol Clin, 45:27, 37, 2007. ZHANG, Q.; LENARDO, M. J.; BALTIMORE, D. 30 Years of NF-kappaB: A Blossoming of Relevance to Human Pathobiology. Cell, v. 168, n. 1-2, p. 37-57, Jan 12 2017. ZHENG, B.X.; MALIK, A.; XIONG, M.; BEKKER, A.; XIANG TAO, Y. Nerve trauma- cauded downregulation of opioid receptors in primary afferent neurons: Molecular mechanims and potential managements. Experimental Neurology, 337, 113-572, 2021. ZHU, Z. Z.; MA, K. J.; RAN, X.; ZHANG, H.; ZHENG, C. J.; HAN, T.; ZHANG, Q. Y.; QIN, L. P. Analgesic, anti-inflammatory and antipyretic activities of the petroleum ether fraction from the ethanol extract of Desmodium podocarpum. Journal of Ethnopharmacology. v. 133, n. 3, p. 1126 – 1131, 2011. ZUARDI, L. R. Concentrações salivares, sanguíneas e plasmáticas de óxido nítrico em pacientes com doença periodontal antes e depois do tratamento periodontal não cirúrgico. Ribeirão Preto/USP, Dissertação de mestrado, 2012.pt_BR
dc.subject.cnpqFisiologiapt_BR
Appears in Collections:Doutorado em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022- Joyce Mattos de Oliveira.Pdf3.49 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.