Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/21828
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPereira, Asheley Henrique Barbosa-
dc.date.accessioned2025-05-20T12:55:33Z-
dc.date.available2025-05-20T12:55:33Z-
dc.date.issued2021-11-08-
dc.identifier.citationPEREIRA, Asheley Henrique Barbosa. Tuberculose em primatas não humanos do Novo e Velho Mundo. Seropédica, RJ. 2021. 66 f. Dissertação (Mestrado em Medicina Veterinária) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/21828-
dc.description.abstractA tuberculose é uma doença infecciosa crônica que causa alta morbidade e mortalidade em humanos e primatas não humanos, especialmente em cativeiro. No Brasil, a incidência desta doença em humanos tem aumentado lentamente nos últimos anos, o que a tornou uma doença classificada como reemergente. A tuberculose tem distribuição cosmopolita e é causada pelos microrganismos pertencentes ao complexo Mycobacterium tuberculosis. Neste estudo são descritos os achados epidemiológicos, clínicos, patológicos e moleculares dos diferentes estágios da tuberculose em primatas do Novo e do Velho Mundo naturalmente infectados com o Complexo Mycobacterium tuberculosis e mantidos sob cuidados humanos no Rio de Janeiro, Brasil. Quinze primatas não humanos de cinco colônias diferentes foram incorporados ao estudo, dos quais 60% (9/15) foram primatas do Velho Mundo e 40% (6/15) primatas do Novo Mundo. Os estágios da tuberculose foram classificados de acordo com os achados macroscópicos e histopatológicos em: tuberculose crônica-ativa, tuberculose extrapulmonar, estágio de ativação-inicial da tuberculose e reativação latente. Entre os primatas do Velho Mundo, 66,7% (6/9), todos macacos rhesus (Macaca mulatta), apresentaram pneumonia granulomatosa multifocal severa. Em todos os casos de tuberculose em primatas do Velho Mundo, granulomas típicos foram observados em pelo menos um órgão, independentemente do estágio da doença. Nos primatas do Novo Mundo, os granulomas pulmonares típicos foram vistos em 16,7% (1/6) dos casos, apenas no estágio de reativação latente em um espécime de Cuxiú (Chiropotes utahickae). Neste estudo, 66,7% (6/9) dos primatas do Velho Mundo e 83,3% (5/6) dos primatas do Novo Mundo apresentaram alterações pulmonares na avaliação histológica. O diagnóstico de tuberculose nos primatas não humanos neste estudo foi baseado nos achados patológicos, imuno-histoquímicos, moleculares e bacteriológicos. Embora a apresentação típica tenha sido observada em alguns casos, a ausência de granuloma pulmonar não excluiu a ocorrência de tuberculose em primatas não humanos do Novo e do Velho Mundo. A tuberculose deve ser incluída como causa de pneumonia intersticial com macrófagos espumosos nos primatas não humanos do Novo Mundo. Devido à alta sensibilidade da imuno- histoquímica com anti-Mycobacterium tuberculosis, sugerimos a incorporação dessa técnica como ferramenta diagnóstica da tuberculose em primatas não humanos, mesmo quando as alterações típicas não são observadas.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectSpilloverpt_BR
dc.subjectTuberculosept_BR
dc.subjectZoonosept_BR
dc.subjectTuberculosispt_BR
dc.subjectZoonosispt_BR
dc.titleTuberculose em primatas não humanos do Novo e Velho Mundopt_BR
dc.title.alternativeTuberculosis in nonhuman primates of the New and the Old Worlden
dc.typeDissertaçãopt_BR
dc.description.abstractOtherTuberculosis is a chronic infectious disease that causes high morbidity and mortality in humans and non-human primates, especially in captivity. In Brazil, the incidence of this disease in humans has slowly increased in recent years. Tuberculosis has a cosmopolitan distribution and is caused by microorganisms belonging to the Mycobacterium tuberculosis complex. This study describes the epidemiological, clinical, pathological and molecular findings of the different stages of tuberculosis in New and Old World primates naturally infected with the Mycobacterium tuberculosis Complex and kept under human care in Rio de Janeiro, Brazil. Fifteen nonhuman primates from five different colonies were incorporated into the study. There are 60% (9/15) Old World Monkeys and 40% (6/15) New World Monkeys. According to the gross and histopathologic findings, the lesions in nonhuman primates of this study are classified into the chronic-active, extrapulmonary, early-activation or latent-reactivation tuberculosis stage. Among the Old World Monkey, 66.7% (6/9) of nonhuman primates, all rhesus monkeys (Macaca mulatta), showed severe granulomatous pneumonia. In all Old World Monkeys cases, typical granulomas were seen in at least one organ regardless of the stage of the disease. In the New World Monkeys, the typical pulmonary granulomas were seen in 16.7% (1/6) of the cases, just in the latent-reactivation stage in Uta Hick’s Bearded Saki (Chiropotes utahickae). In this study, 66.7% (6/9) of Old World Monkeys (OWM) and 83.3% (5/6) of New World Monkeys (NWM) showed pulmonary changes at the histological evaluation. The tuberculosis diagnosis in the nonhuman primates in this study was based on pathological, immunohistochemical, molecular, and bacteriological culture. Although the typical presentation was observed in some cases, the absence of pulmonary granuloma did not exclude the tuberculosis occurrence in nonhuman primates of the Old and New World. Tuberculosis should be included as a cause of interstitial pneumonia with foamy macrophages infiltration in the New World nonhuman primates. Due to the high sensitivity of immunohistochemistry with anti-Mycobacterium tuberculosis, we suggest the addition of this technique as a diagnostic tool of tuberculosis in the nonhuman primates even when the typical changes are not seen.en
dc.contributor.advisor1Ubiali, Daniel Guimarães-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-8320-4567pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0255736629474813pt_BR
dc.contributor.referee1Ubiali, Daniel Guimarães-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-8320-4567pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/0255736629474813pt_BR
dc.contributor.referee2Pissinatti, Alcides-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9450591091169935pt_BR
dc.contributor.referee3Lucena, Ricardo Barbosa de-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3446602735778347pt_BR
dc.contributor.referee4Spyrides, Andressa Ferreira da Silva-
dc.contributor.referee4IDhttps://orcid.org/0000-0002-4800-767Xpt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/5459145983025712pt_BR
dc.creator.IDhttps://orcid.org/0000-0001-9704-9801pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/1696617582058459pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Veterináriapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Medicina Veterinária (Patologia e Ciências Clínicas)pt_BR
dc.relation.referencesABER V. R.; NUNN, A. J. Short term chemotherapy of tuberculosis. Factors affecting relapse following short term chemotherapy. Bulletin of the International Union against Tuberculosis v. 53, n. 4, p. 276-280, 1978. 57 ACHARYA, B.; ACHARYA, A.; GAUTAM, S.; GHIMIRE, S. P.; MISHRA, G.; PARAJULI, N.; SAPKOTA, B. Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Molecular Biology Reports, v. 47, n. 5, p. 4065–4075, 2020. ALLEN, A. M.; KINARD, R. F. Primary cutaneous inoculation tuberculosis in the Macaca mulatta monkey. The American Journal Of Pathology, v. 34, n. 2 , p. 337, 1958. AREND, S. M.; SOOLINGEN, D. Performance of Xpert MTB/ RIF Ultra: a matter of dead or alive. The Lancet Infectious Diseases, v.18, n. 1, p. 8-10, 2018. ARMSTRONG, J. A; HART, P. D. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli: reversal of the usual nonfusion pattern and observations on bacterial survival. The Journal of experimental medicine, v. 142, n. 1, p. 1-16, 1975. BARCLAY, W. R.; ANACKER, R. L.; BREHMER, W.; LEIF, W.; RIBI, E. Aerosol-induced tuberculosis in subhuman primates and the course of the disease after intravenous BCG vaccination. Infection and Immunity, v. 2, n. 5, p. 574-582, 1970. BARCLAY, W. R.; BUSEY, W. M.; DALGARD, D. W.; GOOD, R. C.; JANICKI, B. W.; KASIK, J. E.; RIBI, E.; ULRICH, C. E.; WOLINSKY. E. 1973. Protection of monkeys against airborne tuberculosis by aerosol vaccination with bacillus Calmette-Guerin. American Review of Respiratory Disease, v. 107, n. 3, p. 351-358, 1973. BARRY, C. E.; LEE, R. E.; MDLULI, K.; SAMPSON, A. E.; SCHROEDER, B. G.; SLAYDEN, R. A.; YUAN, Y. S.; Ying, Y. Mycolic acids: structure, biosynthesis and physiological functions. Progress in Lipid Research v. 37, n. 2-3, p. 143-179, 1998. BARRY, C. E.; BOSHOFF, H. I.; DARTOIS, V.; DICK, T.; EHRT, S.; FLYNN, J.; SCHNAPPINGER, D.; WILKINSON, R. J.; YOUNG, D. 2009. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Reviews Microbiology, v. 7, n. 12, p. 845-855, 2009. BASARABA, R. J. Experimental tuberculosis: the role of comparative pathology in the discovery of improved tuberculosis treatment strategies. Tuberculosis, v. 88, n. SUPPL. 1, 2008. BEHAR, S. M.; DASCHER, C. C.; GRUSBY, M. J.; WANG, C. R.; BRENNER, M. B. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. The Journal of Experimental Medicine, v. 189, n. 12 p. 1973-1980, 1999. BONE, J. F.; SOAVE, O. A. Experimental tuberculosis in owl monkeys (Aotus trivirgatus). Laboratory Animal Care, v. 20, n. 5, p. 946– 948, 1970. BRACK, M. Agents transmissible from simians to man. Springer Verlag, Berlin, Heidelberg, New York. 1987 BRAMMER, D. W.; O’ROURKE, C. M.; HEATH, L. A.; CHRISP, C. E.; PETER, G. K.; HOFING, G. L. Mycobacterium kansasii infection in squirrel monkeys (Saimiri sciureus sciureus). Journal of medical primatology 24, no. 4 (1995): 231-235. 58 BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Doenças de Condições Crônicas e Infecções Sexualmente Transmissíveis – DCCI. Boletim Epidemiológico Especial, Número Especial, Tuberculose, 2020. BURKHOLDER, C. R.; HIRSH, D. C.; HICKMAN, R. L.; SOAVE, O. A. Influence of isoniazid therapy on the course of tuberculosis in a rhesus monkey. Journal of the American Veterinary Medical Association, v. 151, n. 7, p. 918-919, 1967. BUSHMITZ, M.; LECU, A.; VERRECK, F.; PREUSSING, E.; RENSING, S.; MÄTZ- RENSING, K. Guidelines for the prevention and control of tuberculosis in nonhuman primates: Recommendations of the European Primate Veterinary Association Working Group on Tuberculosis. Journal of Medical Primatology, v. 38, n. 1, p. 59–69, 2009. CADENA, A. M.; KLEIN, E. C.; WHITE, A. G.; TOMKO, J. A.; CHEDRICK, C. L.; REED, D. S.; VIA, L. E.; LIN, P. L.; FLYNN, J. L. Very low doses of Mycobacterium tuberculosis yield diverse host outcomes in common marmosets (Callithrix jacchus). Comparative Medicine, v. 66, n. 5, p. 412–419, 2016. CADENA, A. M.; FORTUNE, S. M.; FLYNN, J. L. Heterogeneity in tuberculosis. Nature Reviews Immunology, v. 17, n. 11, p. 691–702, 2017. CAPUANO, S. V.; CROIX, D. A.; PAWAR, S.; ZINOVIK, A. MYERS, A.; LIN, P. L.; BISSEL, S.; FUHRMAN, C.; KLEIN, E.; FLYNN, J. L. 2003. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infection and immunity, v. 71, n. 10, p. 5831-5844, 2003. CARDONA, P. J. Reactivation or reinfection in adult tuberculosis: Is that the question? International Journal of Mycobacteriology, v. 5, n. 4, p. 400–407, 2016. CLARKE, G. L. The relationship of hypersensitivity to shedding of Mycobacterium tuberculosis in experimentally infected Macaca mulatta. American Review of Respiratory Disease, v. 98, n. 3, p. 416-423, 1968. CLARKE, G. L.; SCHMIDT, J. P. Effect of prophylactic isoniazid on early developing experimental tuberculosis in Macaca mulatta. American Review of Respiratory Disease, v. 100, n. 2, p. 224-227, 1969. CLEMENS, D. L.; HORWITZ, M. A. The Mycobacterium tuberculosis phagosome interacts with early endosomes and is accessible to exogenously administered transferrin." The Journal of Experimental Medicine, v. 184, n. 4, p. 1349-1355, 1996. DE BACKER, A. I.; MORTELE, K. J.; DE KEULENAER, B. L.; PARIZEL, P. M. Tuberculosis: epidemiology, manifestations, and the value of medical imaging in diagnosis. JBR BTR, v. 89, n. 5, p. 243, 2006. DHEDA, K.; BARRY, C. E.; MAARTENS, G. Tuberculosis. Lancet v. 387, p. 1211–1226, 2016. 59 DILLEHAY, D. L.; HUERKAMP, M. J. Tuberculosis in a tuberculin negativein rhesus monkey (Macaca mulatta) on chemoprophylaxis. Journal. of Zoo and Wildlife Medicine, v. 21, p. 480-484, 1990. DODD, P. J.; YUEN, C. M.; JAYASOORIYA, S. M.; VAN DER ZALM, M. M.; SEDDON, J. A. Quantifying the global number of tuberculosis survivors: a modelling study. The Lancet Infectious Diseases, v. 3099, n. 20, p. 1–9, 2021. DRAIN, P. K.; Bajema, K. L.; Dowdy, D.; Dheda, K.; Naidoo, K.; Schumacher, Samuel G Incipient and Subclinical Tuberculosis: a Clinical Review of Early Stages and Progression of Infection The Spectrum of Tuberculosis Infection to Disease. Clinical Microbiology Reviews, p. 1–24, 2018. DUNN, J. J.; STARKE, J. R.; REVELL, P. A. Laboratory diagnosis of Mycobacterium tuberculosis infection and disease in children. Journal of Clinical Microbiology, v. 54, n. 6, p. 1434–1441, 2016. EHLERS, L. P.; BIANCHI, M. V.; ARGENTA, F. F.; LOPES, B. C.; TAUNDE, P. A.; WAGNER, P. G. C.; DRIEMEIER, D.; PAVARINI, S. P.; MAYER, F. Q.; SIQUEIRA, F. M.; SONNE, L.. Mycobacterium tuberculosis var. tuberculosis infection in two captive black capuchins (Sapajus nigritus) in Southern Brazil. Brazilian Journal of Microbiology, v. 51, n. 4, p. 2169–2173, 2020. ELLNER, J. J. Tuberculosis. Goldman’s Cecil Medicine: Twenty Fourth Edition, v. 2, p. 1939–1948, 2012. FENHALLS, G.;; WONG, A.; BEZUIDENHOUT, J.; VAN HELDEN, P.; BARDIN, P.; LUKEY, P. T. In situ production of gamma interferon, interleukin-4, and tumor necrosis factor alpha mRNA in human lung tuberculous granulomas. Infection and immunity, v. 68, n. 5, p. 2827-2836, 2000. FLYNN, J. L.; CAPUANO, S. V.; CROIX, D.; PAWAR, S.; MYERS, A.; ZINOVIK, A.; KLEIN, E. Nonhuman primates: A model for tuberculosis research. Tuberculosis, v. 83, n. 1– 3, p. 116–118, 2003. FONG, I. W. Emerging and Difficult to Treat Nontuberculous Mycobacteria Infections. Current Trends and Concerns in Infectious Diseases, 289-317. 2020 FORBES B. A.; SAHM, D. F.; WEISSFELD, A. S. Tuberculosis. In:Bailey and Scott’s Diagnostic Microbiology, 10th edn. Mosby, St. Louis. 2000 FOREMAN, T. W.; MEHRA, S.; LACKNER, A. A.; KAUSHAL, D. Translational research in the nonhuman primate model of tuberculosis. ILAR Journal, v. 58, n. 2, p. 151–159, 2017. FORRELLAD, M. A.; KLEPP, L. I.; GIOFFR ́E, A.; SABIO, G. J.; MORBIDONI, H. R.; SANTANGELO, M. D. L. P.; CATALDI, A. A.; BIGI, F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence, v. 4, n. 1, p. 3–66, 2013. 60 FREMMING, B. D.; BENSON, R. E.; YOUNG, R. J.; HARRIS, M. D. Antituberculous therapy in Macaca mulatta monkeys. American Review of Tuberculosis and Pulmonary Diseases, v. 76, n. 2, p. 225-231, 1957. GARCIA, M. A.; YEE, J.; BOULEY, D. M.; MOORHEAD, R.; LERCHE, N. W. Diagnosis of tuberculosis in macaques, using whole-blood in vitro interferon-gamma (PRIMAGAM) testing. Comparative medicine, v. 54, n. 1, p. 86-92, 2004. GHODBANE, R.; DRANCOURT, M. Non-human sources of Mycobacterium tuberculosis. Tuberculosis, v. 93, n. 6, p. 589–595, 2013. GOOD R. C. Biology of the mycobacterioses. Simian tuberculosis: immunologic aspects. Annals of the New York Academy of Sciences, v. 154, n. 1, p. 200-213, 1968. GOOD, R. C. Diseases in nonhuman primates. In The mycobacteria: A sourcebook (ed. Kubica GP, Wayne LG), p. 903–921. Dekker, New York, 1984. HABERLE, A. J. Tuberculosis in an orangutan. The Journal of Zoo Animal Medicine, v. 1, no. 2, p. 10-15, 1970. HALDAR S.; BOSE, M.; CHAKRABARTI, P.; DAGINAWALA, H. F.; HARINATH, B. C.; KASHYAP R. S. Improved laboratory diagnosis of tuberculosis - the Indian experience. Tuberculosis, v. 91, n. 5, p. 414-426, 2011. HENRICH, M.; MOSER, I.; WEISS, A.; REINACHER, M. Multiple Granulomas in Three Squirrel Monkeys (Saimiri sciureus) Caused by Mycobacterium microti. Journal of Comparative Pathology, v. 137, n. 4, p. 245–248, 2007. HERNANDEZ-PANDO, R.; JEYANATHAN, M.; MENGISTU, G.; AGUILAR, D.; OROZCO, H.; HARBOE, M.; BJUNE, G. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. The Lancet, v. 356, n. 9248, p. 2133-2138, 2000. HINES, M. E.; KREEGER, J. M.; HERRON, A. J. Mycobacterial infections of animals: pathology and pathogenesis. Laboratory Animal Science, v. 45, n.4, p. 334– 351, 1995. INDZHILA, L. V.; YAKOVLEVA, L. A.; SIMOVONJAN, V. G.; DSHIKIDZE, E. K.; KOVALJOVA, I.; POPOVA, V. N. The character and results of comparative experimental therapy of tuberculosis in Macaca arctoides monkeys. Immunity, v. 19, p. 13-25, 1977. INGEN, J. V.; RAHIM, Z.; MULDER, A.; BOEREE, M. J.; SIMEONE, R.; BROSCH, R.; SOOLINGEN, D. Characterization of Mycobacterium orygis as M. tuberculosis complex subspecies. Emerging Infectious Diseases, v. 18, n. 4, p. 653–655, 2012. JANICKI, B.W.; GOOD R.C.; MINDEN, P.; AFFRONTI, L. F.; HYMES, W. F. Immune responses in rhesus monkeys after bacillus Calmette-Guerin vaccination and aerosol challenge with Mycobacterium tuberculosis. American Review of Respiratory Disease, v. 107, n. 3, p. 359-366, 1973. 61 KANABALAN, R. D.; LEE, L. J.; LEE, T. Y.; CHONG, P. P.; HASSAN, L.; ISMAIL, R.; CHIN, V. K. Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiological Research, v. 246, e.126674, 2021. KAPLAN, G.; POST, F. A.; MOREIRA, A. L.; WAINWRIGHT, H.; KREISWIRTH, B. N.; TANVERDI, M.; BEKKER, L. G. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infection and immunity, v. 71, n. 12, p. 7099-7108, 2003. KARIMI, S. SHAMAEI, M.; POURABDOLLAH, M.; SADR, M.; KARBASI, M.; KIANI, A. BAHADORI, M. Immunohistochemical findings of the granulomatous reaction associated with tuberculosis. International Journal of Mycobacteriology, v. 5, p. 234–235, 2016. KIM, M. J.; WAINWRIGHT, H. C.; LOCKETZ, M.; BEKKER, L. G.; WALTHER, G. B.; DITTRICH, C.; RUSSELL, D. G. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Molecular Medicine, v. 2, no. 7 p. 258-274, 2010. KOCK, R.; MICHEL, A. L.; YEBOAH-MANU, D.; AZHAR, E. I.; TORRELLES, J. B.; CADMUS, SIMEON, I.; BRUNTON, L.; CHAKAYA, J. M.; MARAIS, B.; MBOERA, L.; RAHIM, Z.; HAIDER, N. Z. Zoonotic Tuberculosis – The Changing Landscape. International Journal of Infectious Diseases, e342293. 2021. KOLK A. H. J.; SCHUITEMA, R. J.; KUIJPER, S.; VAN LEEUWEN, J.; HERMANS, W. M.; VAN EMBDEN, J. D. A. Detection of Mycobacterium tuberculosis in clinical samples by using polymerase chain reaction and a nonradioactive detection system. Journal of Clinical Microbiology v. 30, n. 10, p. 2567-2575, 1992. LAWN S. D.; NICOL, M. P. Xpert® MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiology, v. 6, n. 9, p. 1067–1082, 2011. LENAERTS, A.; BARRY, C. E.; DARTOIS, V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunological Reviews, v. 264, n. 1, p. 288– 307, 2015. LIN, P. L.; PAWAR, S.; MYERS, A.; PEGU, A.; FUHRMAN, C.; REINHART, T. A.; CAPUANO, S. V.; KLEIN, E.; FLYNN, J. L. Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infection and immunity, v. 74, p. 3790–3803, 2006. LIN, P. L.; YEE, J., KLEIN, E; LERCHE, N. W. Immunological concepts in tuberculosis diagnostics for nonhuman primates: A review. Journal of Medical Primatology, v. 37, n. SUPPL.1, p. 44–51, 2008. LIN, P. L.; RODGERS, M.; SMITH, L.; BIGBEE, M.; MYERS, A.; BIGBEE, C.; CHIOSEA, I.; CAPUANO, S. V.; FUHRMAN, C.; KLEIN, E.; FLYNN, J. L. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infection and immunity, v. 77, p. 4631–4642, 2009 62 MARTINEZ F.O.; HELMING, L.; GORDON, S. Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology, v. 27, p. 451–483, 2009. MÄTZ-RENSING, K.; Hartman, T.; Wendel, G. M.; Frick, J. S; Homolka, S.; Richter, E.; Munk, M. H.; Kaup, F-J.. Outbreak of Tuberculosis in a Colony of Rhesus Monkeys (Macaca mulatta) after Possible Indirect Contact with a Human TB Patient. Journal of Comparative Pathology, v. 153, n. 2–3, p. 81–91, 2015. MÄTZ-RENSING, K.; LOWENSTINE, L. J. New World and Old World monkeys. In: Terio KA, McAloose D, St. Leger J (eds) Pathology of Wildlife and Zoo Animals. Academic Press, San Diego, p. 343– 374, 2018. MANABE, Y. C.; DANNENBERG, A.M. JR.; TYAGI, S.K.; HATEM, C. L.; YODER, M.; WOOLWINE, S. C. Different strains of Mycobacterium tuberculosis cause various spectrums of disease in the rabbit model of tuberculosis. Infection and immunity, v. 71, n. 10, p. 6004- 6011, 2003. Manabe YC, Kesavan AK, Lopez-Molina J.; Hatem, C. L.; Brooks, M.; Fujiwara, R. The aerosol rabbit model of TB latency, reactivation and immune reconstitution inflammatory syndrome. Tuberculosis, v. 88, n. 3, p. 187-196, 2008. MANSFIELD, K. G.; FOX, J. G. Bacterial diseases. In: The Common Marmoset in Captivity and Biomedical Research. Academic Press, p. 265-287, 2019. MAZUREK, G. H.; VILLARINO, M. E. Guidelines for using the QuantiFERON-TB test for diagnosing latent Mycobacterium tuberculosis infection. Morbidity and mortality weekly report 52, n. RR02, 2003. MCCUNE, R. M.; FELDMANN, F. M.; MCDERMOTT, W. Microbial persistence, II: characteristics of the sterile state of tubercle bacilli. The Journal of experimental medicine, v. 123, n. 3, p. 469-486, 1966. MCCLURE, H. M. Bacterial diseases of nonhuman primates. In R. J. Montali, G. Migaki (Eds.), The Comparative Pathology of Zoo Animals. Washington, D.C: Smithsonian Institution Press, p. 197-217,.1980. MCLAUGHLIN, R. M.; MARRS, G. E. Tuberculin testing in nonhuman primates: OT vs. PPD. In R. M. Montali (Ed.), Mycobacterial infections of zoo animals. Washington, D.C: Smithsonian Institution Press, p. 123-128, 1978. MCMURRAY DN. Guinea Pig Model of Tuberculosis. Washington, DC: American Society for Microbiology, 1994. MCMURRAY DN. A nonhuman primate model for preclinical testing of new tuberculosis vaccines. Clinical Infectious Disease, v.30, n. Suppl. 3, p. S210e2, 2000. MCMURRAY DN. Disease model: pulmonary tuberculosis. Trends in Molecular Medice., v, 7., n.9, p. 135–137, 2001. 63 MEHRA, S.; ALVAREZ, X.; DIDIER, P. J.; DOYLE, L. A.; BLANCHARD, J. L.; LACKNER, A. A.; KAUSHAL, D. Granuloma correlates of protection against tuberculosis and mechanisms of immune modulation by Mycobacterium tuberculosis. Journal of Infectious Disease, v. 207, n. 7, p. 1115–1127, 2013. MONTALI, R. J.; MIKOTA, S. K.; CHENG, L. I. 2001. Mycobacterium tuberculosis in zoo and wildlife species. Scientific and Technical Review, International Office of Epizootics, v. 20, n.8, p. 291 –303, 2001. MORELAND, A. F. Tuberculosis in New World primates. Laboratory Animal Care, v. 20, n. 2, p. 262–264, 1970. MUSTAFA, T. WIKER, H. G.; MFINANGA, S. G.M.; MØRKVE, O.; SVILAND, L. Immunohistochemistry using a Mycobacterium tuberculosis complex specific antibody for improved diagnosis of tuberculous lymphadenitis. Modern Pathology, v. 19, n. 12, p. 1606– 1614, 2006. NESHANI, A.; KAKHKI, R. K.; SANKIAN, M.; ZARE, H.; CHICHAKLU, A. H.; SAYYADI, M.; GHAZVINI, K. Modified genome comparison method: A new approach for identification of specific targets in molecular diagnostic tests using Mycobacterium tuberculosis complex as an example. BMC Infectious Diseases, v. 18, n. 1, p. 1–9, 2018. NEYROLLES, O.; HERNANDEZ-PANDO, R.; PIETRI-ROUXEL, F.; FORNÈS, P.; TAILLEUX, L.; PAYÁN, J. A. B. Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS One, v.1, n. 43, 2006. OBALDÍA, N.; NUÑEZ, M.; MONTILLA, S.; OTERO, W.; MARIN, J. C. Tuberculosis (TB) outbreak in a closed Aotus monkey breeding colony: Epidemiology, diagnosis and TB screening using antibody and interferon-gamma release testing. Comparative Immunology, Microbiology and Infectious Diseases, v. 58, n. 5, p. 1–10, 2018. PAI, M.; RILEY, L. W.; COLFORD, J. M. Interferon-gamma assays in the immunodiagnosis of tuberculosis: a systematic review. The Lancet Infectious Diseases, v. 4, n. 12, p. 761-776, 2004. PARK, M.K.; MYERS, R. A.; MARZELLA, L. Oxygen tensions and infections: modulation of microbial growth, activity of antimicrobial agents, and immunologic responses. Clinical Infectious Disease, v. 14, n. 3, p. 720–740, 1992. PARSONS, S. D.; GOUS, T. A.; WARREN, R. M.; DE VILLIERS, C.; SEIER, J. V.; VAN HELDEN, P. D. Detection of Mycobacterium tuberculosis infection in chacma baboons (Papio ursinus) using the QuantiFERONTB gold (in-tube) assay. Journal of medical primatology, v. 38, n. 6, p. 411-417, 2009. PEYRON, P.; VAUBOURGEIX, J.; POQUET, Y.; LEVILLAIN, F.; BOTANCH, C.; BARDOU, F.; ALTARE, F. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrientrich reservoir for M. tuberculosis persistence. PLoS Pathog, v. 4, n. 11, e1000204, 2008. 64 PFYFFER, G. E. Mycobacterium: general characteristics, laboratory detection, and staining procedures. Manual of Clinical Microbiology, Eleventh Edition. American Society of Microbiology, p. 536–569, 2015 PIERCE, D. L.; DUKELOW, W. R. Misleading positive tuberculin reactions in a squirrel monkey colony. Laboratory. Animal Science., v. 38, n, 16, p. 729-730, 1988. RAJ, A.; SINGH, N.; GUPTA, K. B.; CHAUDHARY, D.; YADAV, A.; CHAUDHARY, A.; YADAV, A.; MEHTA, P. K. Comparative evaluation of several gene targets for designing a multiplexPCR for an early diagnosis of Extrapulmonary tuberculosis. Yonsei Medical Jornal, v. 57, n. 1, p. 88-96, 2016. REED, S. G.; COLER, R. N.; DALEMANS, W.; TAN, E. V.; CRUZ, E. C. D.; BASARABA, R. J.; LOBET, Y. 2009. Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proceedings of the National Academy of Sciences, v. 106, n. 7, p. 2301-2306, 2009. RENQUIST, D. M., & WHITNEY, R. A. Tuberculosis in nonhuman primates - an overview. In R. J. Montali (Ed.), Mycobacterial Infections in Zoo Animals. Washington, DC: Smithsonian Institution Press, p. 9-16, 1978. REZNIK GK. Comparative anatomy, physiology, and function of the upper respiratory tract. Environmental Health Perspective, v. 85, n.2, p. 171–176, 1990. RIORDAN, J. T. Rectal tuberculosis in monkeys from the use of contaminated thermometers. Journal of Infectious Diseases, v. 73, n. 2, p. 93–94, 1943. RIDLEY, D. S.; RIDLEY, M. J. Rationale for the histological spectrum of tuberculosis. A basis for classification. Pathology, v. 19, n. 9, p. 186–192, 1987 RILEY R. L. Aerial dissemination of pulmonary tuberculosis. American Review of Tuberculosis, v. 76, p. 931–941, 1957. ROCHA, V. C. M.; IKUTA, C. Y.;GOMES, M. S.; QUAGLIA, F.; MATUSHIMA, E. R.; NETO, J. S. F. Isolation of mycobacterium tuberculosis from captive ateles paniscus. Vector- Borne and Zoonotic Diseases, v. 11, n. 5, p. 593–594, 2011. RODRIGUEZ, J. G.; MEJIA, G. A.; DEL PORTILLO, P.; PATARROYO, M. E.; MURILLO, L. A. Species-specific identification of Mycobacterium bovis by PCR. Microbiology, v. 141 n. 9, p. 131-138, 1995. ROJAS-ESPINOSA O.; DANNENBERG JR, A. M.; STERNBERGER, L. A.; TSUDA, T. The role of cathepsin D in the pathogenesis of tuberculosis. A histochemical study employing unlabeled antibodies and the peroxidase-antiperoxidase complex. The American Journal of Pathology, v. 74, n. 1, p. 1, 1974. SAKAMOTO, K. The Pathology of Mycobacterium tuberculosis Infection. Veterinary Pathology, v. 49, n. 3, p. 423–439, 2012. 65 SCANGA, C. A.; FLYNN, J. L. Modeling tuberculosis in nonhuman primates. Cold Spring Harbor Perspectives in Medicine, v. 4, n. 12, p. 1–16, 2014. SCHMIDT, L. H. Some observations on the utility of simian pulmonary tuberculosis in defining the therapeutic potentialities of isoniazid. American Review of Tuberculosis, v; 74, n.23, p. 138–159, 1956 SCHMIDT, L. H. Studies on the antituberculous activity of ethambutol in monkeys. Annals of the New York Academy of Sciences, v. 135, n. 2, p. 747-758, 1966. SCHWANDER, S.; DHEDA, K. Human lung immunity against Mycobacterium tuberculosis: insights into pathogenesis and protection. American Journal of Respiratory Critical Care Medicine, v. 183, p. 696 –707, 2011. SHI, S. R.; DATAR, R.; LIU, C.; WU, L.; ZHANG, Z.; COTE, R. J.; TAYLOR, C. R. DNA extraction from archival formalin-fixed, paraffin-embedded tissues: heat-induced retrieval in alkaline solution. Histochemistry and Cell Biology, v. 122, n.3, p. 211–218, 2004. SHIPLEY, S. T.; COKSAYGAN, T.; JOHNSON, D. K.; MCLEOD, C. G.; DETOLLA, L. J. Diagnosis and prevention of dissemination of tuberculosis in a recently imported rhesus macaque (Macaca mulatta). Journal of Medical Primatology, v. 37, Suppl. 1, 20e4, 2008. SIMMONS, J. H., GIBSON, S. Bacterial and mycotic diseases of nonhuman primates. In Nonhuman primates in biomedical research. Elsevier Inc, p. 105-172, 2012. SMITH, N.H.; KREMER, K.; INWALD, J.; DALE, J.; DRISCOLL, J.R.; GORDON, S.V.; VAN SOOLINGEN, D.; HEWINSON, R.G.; SMITH, J.M. Ecotypes of the Mycobacterium tuberculosis complex. Journal of Theorical Biology, v. 239, n. 2, 2006220- 5, 2008. SOHN, H.; AERO, A. D.; MENZIES, D.; BEHR, M.; SCHWARTZMAN, K.; ALVAREZ, G. G.; DENKINGER, C. M. Xpert MTB/RIF testing in a low tuberculosis incidence, high-resource setting: limitations in accuracy and clinical impact. Clinical Infectious Disease, v. 58, n. 7, p. 970–976, 2014. TELENTI, A.; MARCHESI, F.; BALZ, M.; BALLY, F.; BOTTGER, E. C.; BODMER, T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. Journal of Clinical Microbiology, v. 31, n.2, p. 175–178, 1993. TRIBE, G. W.; WELBURN, A. E. Value of combining the erythrocyte sedimentation rate test with tuberculin testing in the control of tuberculosis in baboons. Laboratory Animals, v. 10, n 19, p. 39-46, 1976. ULRICHS, T.; KAUFMANN, S. H. New insights into the function of granulomas in human tuberculosis. Journal of Pathology, v. 208, n.4, p. 261–269, 2006 VIA, L. E.; LIN, P. L.; RAY, S. M.; CARRILLO, J.; ALLEN, S. S.; EUM, S. Y.; BARRY, C. E. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infection and Immunity, v.76, n.6, p. 2333–2340, 2008. 66 VIA, L. E.; WEINER, D. M.; SCHIMEL, D.; LIN, P. L.; DAYAO, E.; TANKERSLEY, S. L.; CAI, Y.; COLEMAN, M. T.; TOMKO, J.; PARIPATI, P.; ORANDLE, M.; KASTENMAYER, R. J.; TARTAKOVSKY, M.; ROSENTHAL, A.; PORTEVIN, D.; EUM, S. Y.; LAHOUAR, S.; GAGNEUX, S.; YOUNG, D. B.; FLYNN, J. L.; BARRY, C. E. Differential virulence and disease progression following mycobacterium tuberculosis complex infection of the common marmoset (Callithrix jacchus). Infection and Immunity, v. 81, n. 8, p. 2909–2919, 2013. WALSH, G. P.; TAN, E. V; CRUZ, E. C. D.; ABALOS, R. M.; VILLAHERMOSA, L. G.; YOUNG, L. J.; HORWITZ, M. A. The Philippine cynomolgus monkey (Macaca fasicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease. Nature Medicine, v. 2, n. 4, p. 430-436, 1996. WARD, G. S.; ELWELL, M. R.;; TINGPALAPONG, M.; POMSDHIT, J. Use of streptomycin and isoniazid during a tuberculosis epizootic in a rhesus and cynomolgus breeding colony. Laboratory. Animal. Science, v. 35, n. 13, p. 395-399, 1985. WARIT, S.; BILLAMAS, P.; MAKHAO, N.; JAITRONG, S.; JUTHAYOTHIN, T.; YINDEEYOUNGYEON, W.; DOKLADDA, K.; SMITTIPAT, N.; KEMTHONG, T.; MEESAWAT, S.; KONGSOMBAT, N.; KRAITAT, C.; PRAMMANANAN, T.; PALAGA, T.; CHAIPRASERT, A.; MALAIVIJITNOND, S. Detection of tuberculosis in cynomolgus macaques (Macaca fascicularis) using a supplementary Monkey Interferon Gamma Releasing Assay (mIGRA). Scientific Reports, v. 10, n. 1, p. 1–11, 2020. WEISS, C.; TABACHNICK, J.; COHEN, H. P. Mechanism of softening of tubercles. III. Hydrolysis of protein and nucleic acid during anaerobic autolysis of normal and tuberculous lung tissue in vitro. AMA Archives of Pathology, v.57, n. 3, p. 179–193, 1954. WHO. Treatment of tuberculosis guidelines, 4th ed. World Health Organization, Geneva, Switzerland. 2010. WHO. Consensus meeting report: development of a target product profile (TPP) and a framework for evaluation for a test for predicting progression from tuberculosis infection to active disease. Geneva, Switzerland, 2017. WHO. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. World Health Organization, Geneva, Switzerland, 2018. WHO, WORLD HEALTH ORGANIZATION. Global Tuberculosis Report. Executive Summary, 2019 WHO. Tuberculosis: Key facts. Geneva, Switzerland; 2020a. WHO. Global Tuberculosis report. Geneva, Switzerland; 2020b WOLF, R. H.; GIBSON, S. V.; WATSON, E. A.; BASKIN, G. B. Multidrug chemotherapy of tuberculosis in rhesus monkeys. Laboratory Animal Science, v. 38, n. 9, p. 25-33, 1988.pt_BR
dc.subject.cnpqMedicina Veterináriapt_BR
Appears in Collections:Mestrado em Medicina Veterinária (Patologia e Ciências Clínicas)

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Asheley Henrique Barbosa Pereira.pdf2.39 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.