Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/21834Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Correia, Tamíres Partélli | - |
| dc.date.accessioned | 2025-05-20T16:01:51Z | - |
| dc.date.available | 2025-05-20T16:01:51Z | - |
| dc.date.issued | 2020 | - |
| dc.identifier.citation | CORREIA, Tamires Partélli. Tendência temporal e regime hidrotérmico da camada ativa do permafrost na Antártica, e sua relação com os eventos climáticos de grande escala. 2020. 164 f. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/21834 | - |
| dc.description.abstract | O permafrost, juntamente com a camada ativa, são um dos componentes mais importantes da criosfera. Neste contexto, o objetivo geral deste estudo, foi analisar a tendência temporal de seis sítios de monitoramento hidrotermal localizados na Antártica Marítima e Peninsular. Além de avaliar minuciosamente, o regime hidrotérmico dos solos desses sítios e de verificar as correlações, entre eventos climáticos de grande escala e as temperaturas do solo. Para tendência temporal, utilizou-se o método de Mann-Kendall, mas com abordagens diferentes em cada capítulo. A espessura da camada ativa (ALT), foi estimada de acordo com a temperatura máxima mensal ao atingir 0 °C. O ENSO (El Niño - Oscilação Sul) e AAO (Índice de Oscilação Antártica), foram escolhidos para gerar as correlações (Spearman), entre os eventos climáticos de grande escala e o regime térmico do solo. No capítulo 1, foi possível utilizar dados de neve e precipitação pluvial, para subsidiar hipóteses sobre o regime hídrico do solo. A dinâmica da camada ativa e o regime térmico, foram influenciados pelos efeitos locais de cada sítio, como em Deception, com bastante influência das atividades geotérmicas. Destaca- se o estado isotérmico, como processo marcante, com sentido crescente em profundidade nos sítios de Fildes, Low Head, Deception e Hope Bay, no verão, outono e inverno. De forma geral, os seis sítios apresentaram tendências nas diferentes escalas analisadas. A espessura média da camada ativa, foi de 92,6 cm (Fildes), 115,6 cm (Low Head), 88,3 cm (Deception), 142,7 cm (Hope Bay), e 94,2 (Seymour). A umidade e a textura do solo, também exerceram controle sobre os períodos de congelamento e descongelamento, na intensificação do efeito de cortina zero e na transmissão de energia no perfil do solo. As séries temporais, foram bem correlacionadas com o ENSO e AAO. Com maior intensidade, pelo forte El Niño (2015/2016), e La Niña de classe moderada em 2011, com ocorrência de invernos rigorosos e verões muito quentes, com efeito também no ponto de mudança brusca da reta de tendência. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | temperatura do solo | pt_BR |
| dc.subject | temperatura do ar | pt_BR |
| dc.subject | tendência temporal | pt_BR |
| dc.subject | umidade do solo | pt_BR |
| dc.subject | permafrost | pt_BR |
| dc.subject | camada ativa | pt_BR |
| dc.subject | modos climáticos | pt_BR |
| dc.subject | soil temperature | pt_BR |
| dc.subject | air temperature | pt_BR |
| dc.subject | temporal trend | pt_BR |
| dc.subject | soil moisture | pt_BR |
| dc.subject | permafrost | pt_BR |
| dc.subject | active layer | pt_BR |
| dc.subject | climatic modes | pt_BR |
| dc.title | Tendência temporal e regime hidrotérmico da camada ativa do permafrost na Antártica, e sua relação com os eventos climáticos de grande escala | pt_BR |
| dc.title.alternative | Temporal trend and hydrothermal regime of the active layer of permafrost in Antarctica, and its relationship with large scale climatic events | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | Permafrost, together with the active layer, are one of the most important components of the cryosphere. In this context, the general objective of this study was to analyze the temporal trend of six hydrothermal monitoring sites located in the Antarctic Maritime and Peninsular. In addition to thoroughly assessing the hydrothermal regime of the soils in these sites and verifying the correlations between large scale climatic events and soil temperatures. For temporal trends, the Mann-Kendall method was used, but with different approaches in each chapter. The Active Layer Thickness (ALT) was estimated according to the maximum monthly temperature when reaching 0 ° C. ENSO (El Niño - South Oscillation) and AAO (Antarctic Oscillation Index) were chosen to generate the correlations (Spearman), between large scale climatic events and the thermal regime of the soil. In chapter 1, it was possible to use snow and rainfall data to support hypotheses about the soil water regime. The dynamics of the active layer and the thermal regime were influenced by the local effects of each site, as in Deception, with a lot of influence from geothermal activities. The isothermal state stands out as a remarkable process, with a growing sense of depth at the sites of Fildes, Low Head, Deception and Hope Bay, in summer, autumn and winter. In general, the six sites showed trends at the different scales analyzed. The average thickness of the active layer was 92.6 cm (Fildes), 115.6 cm (Low Head), 88.3 cm (Deception), 142.7 cm (Hope Bay), and 94.2 (Seymour). The moisture and texture of the soil also exercised control over the periods of freezing and thawing, in intensifying the effect zero curtain and in the transmission of energy in the soil profile. The time series, were well correlated with ENSO and AAO. With greater intensity, by the strong El Niño (2015/2016), and La Niña of moderate class in 2011, with the occurrence of harsh winters and very hot summers, with effect also at the point of abrupt change of the trend line. | en |
| dc.contributor.advisor1 | Francelino, Marcio Rocha | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0001-8837-1372 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1335748426615308 | pt_BR |
| dc.contributor.advisor-co1 | Veloso, Gustavo Vieira | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0002-9451-2714 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/5446388671333942 | pt_BR |
| dc.contributor.advisor-co2 | Michel, Roberto Ferreira Machado | - |
| dc.contributor.advisor-co2ID | https://orcid.org/0000-0001-5951-4610 | pt_BR |
| dc.contributor.advisor-co2Lattes | http://lattes.cnpq.br/9952967245812027 | pt_BR |
| dc.contributor.referee1 | Francelino, Marcio Rocha | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0001-8837-1372 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/1335748426615308 | pt_BR |
| dc.contributor.referee2 | Schaefer, Carlos Ernesto Gonçalves Reynaud | - |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/0904177542323793 | pt_BR |
| dc.contributor.referee3 | Fernandes Filho, Elpidio Inacio | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0002-9484-1411 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/9848935150180973 | pt_BR |
| dc.contributor.referee4 | Justino, Flávio Barbosa | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0003-0929-1388 | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/3675336131283739 | pt_BR |
| dc.contributor.referee5 | Lyra, Gustavo Bastos | - |
| dc.contributor.referee5ID | https://orcid.org/0000-0002-9882-7000 | pt_BR |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/2677800541601144 | pt_BR |
| dc.creator.ID | https://orcid.org/0000-0002-1303-8273 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/7902863199631787 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Florestas | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Ciências Ambientais e Florestais | pt_BR |
| dc.relation.references | ALMEIDA, Ivan C. C. et al. Active layer thermal regime at different vegetation covers at Lions Rump, King George Island, Maritime Antarctica. Geomorphology, [S. l.], 2014. Disponível em: https://doi.org/10.1016/j.geomorph.2014.03.048 ALMEIDA, Ivan C. C. et al. Long term active layer monitoring at a warm-based glacier front from maritime Antarctica. Catena, [S. l.], v. 149, p. 572–581, 2017. Disponível em: https://doi.org/10.1016/j.catena.2016.07.031 ALMEIDA, Ivan Carlos Carreiro. Solos de Lions Rump, Antártica Marítima: Processos de Formação, Classificação, Mapeamento e monitoramento da camada ativa. 2012. - Universidade Federal de Viçosa, [s. l.], 2012. ANDREOLI, Rita Valéria et al. The influence of different El Niño types on the South American rainfall. International Journal of Climatology, [S. l.], 2017. Disponível em: https://doi.org/10.1002/joc.4783 ARAGHI, Alireza; MOUSAVI-BAYGI, Mohammad; ADAMOWSKI, Jan. Detecting soil temperature trends in Northeast Iran from 1993 to 2016. Soil and Tillage Research, [S. l.], v. 174, p. 177–192, 2017. Disponível em: https://doi.org/10.1016/j.still.2017.07.010 BAI, Yanying; SCOTT, Thomas A.; MIN, Qingwen. Climate change implications of soil temperature in the Mojave Desert, USA. Frontiers of Earth Science, [S. l.], v. 8, n. 2, p. 302–308, 2014. Disponível em: https://doi.org/10.1007/s11707-013-0398-3 BBC. China country profile - BBC News. [S. l.: s. n.] BELTRAMI, Hugo; KELLMAN, Lisa. An examination of short- and long-term air- ground temperature coupling. Global and Planetary Change, [S. l.], v. 38, n. 3–4, p. 291–303, 2003. Disponível em: https://doi.org/10.1016/S0921-8181(03)00112-7 BENDIA, Amanda G. et al. Surviving in hot and cold: psychrophiles and thermophiles from Deception Island volcano, Antarctica. Extremophiles, [S. l.], 2018. Disponível em: https://doi.org/10.1007/s00792-018-1048-1 BISKABORN, Boris K. et al. Permafrost is warming at a global scale. Nature Communications, [S. l.], 2019. Disponível em: https://doi.org/10.1038/s41467-018- 08240-4 BOCKHEIM, J. et al. Climate warming and permafrost dynamics in the Antarctic Peninsula region. Global and Planetary Change, [S. l.], 2013. Disponível em: https://doi.org/10.1016/j.gloplacha.2012.10.018 BOCKHEIM, J. G. Global distribution of cryosols with mountain permafrost: An overview. Permafrost and Periglacial Processes, [S. l.], 2015. Disponível em: https://doi.org/10.1002/ppp.1830 BOIASKI, Nathalie; FERRAZ, Simone Erotildes Teleginski; TATSCH, Jônatan. PADRÃO ESPACIAL DA OSCILAÇÃO ANTÁRTICA NO MODELO HADGEM2- ES. Ciência e Natura, [S. l.], 2013. Disponível em: https://doi.org/10.5902/2179460x11665 BOIASKI, Nathalie Tissot; FERRAZ, Simone Erotildes Teleginski; TATSCH, Jonatan Dupont. VARIABILIDADE INTRASSAZONAL EXTREMA DA TEMPERATURA DO AR À SUPERFÍCIE NA PENÍNSULA ANTÁRTICA. Ciência e Natura, [S. l.], 2014. Disponível em: https://doi.org/10.5902/2179460x13880 BRACEGIRDLE, Thomas J. et al. Assessment of surface winds over the atlantic, indian, and pacific ocean sectors of the southern ocean in cmip5 models: Historical bias, forcing response, and state dependence. Journal of Geophysical Research Atmospheres, [S. l.], v. 118, n. 2, p. 547–562, 2013. Disponível em: https://doi.org/10.1002/jgrd.50153 60 BRUNNA STEFANNY SANGEL DE, Oliveira; ALAN CAVALCANTI DA, Cunha. Correlação entre qualidade da água e variabilidade da precipitação no sul do Estado do Amapá. Revista Ambiente & Água, [S. l.], p. 261–275, 2014. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1980- 993X2014000200008&lang=pt BURN, C. R. The active layer: Two contrasting definitions. Permafrost and Periglacial Processes, [S. l.], 1998. Disponível em: https://doi.org/10.1002/(SICI)1099-1530(199810/12)9:4<411::AID-PPP292>3.0.CO;2- 6 CANNONE, Nicoletta; GUGLIELMIN, Mauro. Influence of vegetation on the ground thermal regime in continental Antarctica. Geoderma, [S. l.], 2009. Disponível em: https://doi.org/10.1016/j.geoderma.2009.04.007 CARLETON, Andrew M. Sea Ice–Atmosphere Signal of the Southern Oscillation in the Weddell Sea, Antarctica. Journal of Climate, [S. l.], v. 1, n. 4, p. 379–388, 1988. Disponível em: https://doi.org/10.1175/1520-0442(1988)001<0379:SISOTS>2.0.CO;2 CARSON, M. A. Soil moisture. In: Introduction to Physical Hydrology. [S. l.: s. n.]. E-book. Disponível em: https://doi.org/10.4324/9780429273339-8 CHAVES, D. A. et al. Active layer and permafrost thermal regime in a patterned ground soil in Maritime Antarctica, and relationship with climate variability models. Science of the Total Environment, [S. l.], v. 584–585, p. 572–585, 2017. Disponível em: https://doi.org/10.1016/j.scitotenv.2017.01.077 CHEN, Shengyun et al. Soil thermal regime alteration under experimental warming in permafrost regions of the central Tibetan Plateau. Geoderma, [S. l.], 2020. Disponível em: https://doi.org/10.1016/j.geoderma.2020.114397 CHRISTIE, Duncan A. et al. El Niño-Southern Oscillation signal in the world’s highest-elevation tree-ring chronologies from the Altiplano, Central Andes. Palaeogeography, Palaeoclimatology, Palaeoecology, [S. l.], v. 281, n. 3–4, p. 309– 319, 2009. Disponível em: https://doi.org/10.1016/j.palaeo.2007.11.013 CLEM, Kyle R. et al. The relative influence of ENSO and SAM on antarctic Peninsula climate. Journal of Geophysical Research, [S. l.], 2016. Disponível em: https://doi.org/10.1002/2016JD025305 COLOMBO, Nicola et al. Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/j.gloplacha.2017.11.017 COOK, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, [S. l.], 2016. Disponível em: https://doi.org/10.1126/science.aae0017 COOK, A. J.; VAUGHAN, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. [S. l.: s. n.] Disponível em: https://doi.org/10.5194/tc-4-77-2010 DAHER, Mayara et al. Semi-arid soils from a topolithosequence at James Ross Island, Weddell Sea region, Antarctica: Chemistry, mineralogy, genesis and classification. Geomorphology, [S. l.], 2019. Disponível em: https://doi.org/10.1016/j.geomorph.2018.11.003 DE PABLO, M. A. et al. Thaw depth spatial and temporal variability at the Limnopolar Lake CALM-S site, Byers Peninsula, Livingston Island, Antarctica. Science of the Total Environment, [S. l.], 2018. Disponível em: https://doi.org/10.1016/j.scitotenv.2017.09.284 DE PABLO, M. A.; RAMOS, M.; MOLINA, A. Snow cover evolution, on 2009-2014, at the Limnopolar Lake CALM-S site on Byers Peninsula, Livingston Island, Antarctica. Catena, [S. l.], 2017. Disponível em: 61 https://doi.org/10.1016/j.catena.2016.06.002 DOBINSKI, Wojciech. Permafrost. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/j.earscirev.2011.06.007 DOBIŃSKI, Wojciech. Permafrost active layer. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/j.earscirev.2020.103301 DU, Yizhen et al. Evaluation of 11 soil thermal conductivity schemes for the permafrost region of the central Qinghai-Tibet Plateau. Catena, [S. l.], 2020. Disponível em: https://doi.org/10.1016/j.catena.2020.104608 ERMOLIN, Evgeniy; DE ANGELIS, Hernán; SKVARCA, Pedro. Mapping of permafrost on Vega Island, Antarctic Peninsula, using satellite images and aerial photography. Annals of Glaciology, [S. l.], 2002. Disponível em: https://doi.org/10.3189/172756402781817824 EVERETT, K. R. Glossary of Permafrost and Related Ground-Ice Terms. Arctic and Alpine Research, [S. l.], 1989. Disponível em: https://doi.org/10.2307/1551636 FERNANDINO, Gerson; ELLIFF, Carla I.; SILVA, Iracema R. Ecosystem-based management of coastal zones in face of climate change impacts: Challenges and inequalities. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/j.jenvman.2018.03.034 GAO, Zeyong et al. Soil water dynamics in the active layers under different land-cover types in the permafrost regions of the Qinghai–Tibet Plateau, China. Geoderma, [S. l.], 2020. Disponível em: https://doi.org/10.1016/j.geoderma.2020.114176 GEIGER, Rudolf. Classificação climática de Köppen- Geiger. Creative Commons Attribution-Share Alike 3.0 Unported, [S. l.], 1936. GHARINEIAT, Zahra; DENG, Xiaoli. Description and assessment of regional sea-level trends and variability from altimetry and tide gauges at the northern Australian coast. Advances in Space Research, [s. l.], 2018 Disponível em: https://doi.org/10.1016/j.asr.2018.02.038 GJORUP, Davi Feital et al. Sulfurization, acid-sulfate soils and active layer monitoring at the semiarid Seymour Island, Antarctica. Geoderma Regional, [S. l.], 2020. Disponível em: https://doi.org/10.1016/j.geodrs.2020.e00305 GLAZER, Michał et al. Spatial distribution and controls of permafrost development in non-glacial Arctic catchment over the Holocene, Fuglebekken, SW Spitsbergen. Geomorphology, [S. l.], 2020. Disponível em: https://doi.org/10.1016/j.geomorph.2020.107128 GOVIL, Pawan et al. Melt water flux and climate change record of last 18.5 ka from Schirmacher Oasis, East Antarctica. Polar Science, [S. l.], 2018. Disponível em: https://doi.org/10.1016/J.POLAR.2018.05.001. Acesso em: 20 maio. 2018. GOYANES, G. et al. Local influences of geothermal anomalies on permafrost distribution in an active volcanic island (Deception Island, Antarctica). Geomorphology, [S. l.], 2014. Disponível em: https://doi.org/10.1016/j.geomorph.2014.04.010 GUGLIELMIN, M.; DRAMIS, F. Permafrost as a climatic indicator in northern Victoria Land, Antarctica. In: 1999, Annals of Glaciology. [S. l.: s. n.] Disponível em: https://doi.org/10.3189/172756499781821111 GUGLIELMIN, Mauro. Ground surface temperature (GST), active layer and permafrost monitoring in continental Antarctica. Permafrost and Periglacial Processes, [S. l.], 2006. Disponível em: https://doi.org/10.1002/ppp.553 GUGLIELMIN, Mauro. Advances in permafrost and periglacial research in Antarctica: A review. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/j.geomorph.2011.12.008 62 GUGLIELMIN, Mauro; CANNONE, Nicoletta. A permafrost warming in a cooling Antarctica? Climatic Change, [S. l.], 2012. Disponível em: https://doi.org/10.1007/s10584-011-0137-2 GUGLIELMIN, Mauro; DALLE FRATTE, Michele; CANNONE, Nicoletta. Permafrost warming and vegetation changes in continental Antarctica. Environmental Research Letters, [S. l.], 2014. Disponível em: https://doi.org/10.1088/1748- 9326/9/4/045001 GUGLIELMIN, Mauro; ELLIS EVANS, Cynan J.; CANNONE, Nicoletta. Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctica). Geoderma, [S. l.], v. 144, n. 1–2, p. 73–85, 2008. Disponível em: https://doi.org/10.1016/j.geoderma.2007.10.010 HAMED, Khaled H.; RAMACHANDRA RAO, A. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, [S. l.], v. 204, n. 1–4, p. 182–196, 1998. Disponível em: https://doi.org/10.1016/S0022-1694(97)00125-X HINKEL, K. M. et al. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993-1999. In: 2001, Global and Planetary Change. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/S0921-8181(01)00096-0 HIRSCH, Robert M.; SLACK, James R.; SMITH, Richard A. Techniques of trend analysis for monthly water quality data. Water Resources Research, [S. l.], v. 18, n. 1, p. 107–121, 1982. Disponível em: https://doi.org/10.1029/WR018i001p00107 HOLLAND, Paul R.; KWOK, Ron. Wind-driven trends in Antarctic sea-ice drift. Nature Geoscience, [S. l.], v. 5, n. 12, p. 872–875, 2012. Disponível em: https://doi.org/10.1038/ngeo1627 HRBÁČEK, Filip et al. Active layer monitoring at CALM-S site near J.G.Mendel Station, James Ross Island, eastern Antarctic Peninsula. Science of the Total Environment, [S. l.], 2017. Disponível em: https://doi.org/10.1016/j.scitotenv.2017.05.266 HRBÁČEK, Filip et al. Active layer monitoring in Antarctica: an overview of results from 2006 to 2015. Polar Geography, [S. l.], 2018. Disponível em: https://doi.org/10.1080/1088937X.2017.1420105 HRBÁČEK, Filip et al. Modelling ground thermal regime in bordering (dis)continuous permafrost environments. Environmental Research, [S. l.], 2020 a. Disponível em: https://doi.org/10.1016/j.envres.2019.108901 HRBÁČEK, Filip et al. Effect of climate and moss vegetation on ground surface temperature and the active layer among different biogeographical regions in Antarctica. Catena, [S. l.], 2020 b. Disponível em: https://doi.org/10.1016/j.catena.2020.104562 HRBÁČEK, Filip; NÝVLT, Daniel; LÁSKA, Kamil. Active layer thermal dynamics at two lithologically different sites on James Ross Island, Eastern Antarctic Peninsula. Catena, [S. l.], 2017. Disponível em: https://doi.org/10.1016/j.catena.2016.06.020 HRBÁČEK, Filip; UXA, Tomáš. The evolution of a near-surface ground thermal regime and modeled active-layer thickness on James Ross Island, Eastern Antarctic Peninsula, in 2006–2016. Permafrost and Periglacial Processes, [S. l.], 2020. Disponível em: https://doi.org/10.1002/ppp.2018 HUGHES, Terry P. et al. Global warming and recurrent mass bleaching of corals. Nature, [S. l.], v. 543, n. 7645, p. 373–377, 2017. Disponível em: https://doi.org/10.1038/nature21707 IBÁNEZ, J. M. et al. The 1998-1999 seismic series at Deception Island volcano, Antarctica. Journal of Volcanology and Geothermal Research, [S. l.], 2003. Disponível em: https://doi.org/10.1016/S0377-0273(03)00247-6 IPCC. Summary for Policymakers. Global Warming of 1.5°C. An IPCC Special 63 Report on the impacts of global warming of 1.5 oC above pre-industrial levels. [S. l.: s. n.]. E-book. Disponível em: https://doi.org/10.1017/CBO9781107415324 IPCC (INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE). Special Report: The Ocean and Cryosphere in a Changing Climate (final draft). IPCC Summary for Policymalers, [S. l.], 2019. Disponível em: https://doi.org/https://www.ipcc.ch/report/srocc/ J., ROGELJ, D. SHINDELL, K. JIANG, S. FIFITA, P. FORSTER, V. GINZBURG, C. HANDA, H. KHESHGI, S. KOBAYASHI, E. KRIEGLER, L. MUNDACA, R. SÉFÉRIAN, and M. V. Vilariño. IPCC special report Global Warming of 1.5 oC. IPCC special report Global Warming of 1.5 oC, [S. l.], 2018. JIANG, Yueyang et al. Importance of soil thermal regime in terrestrial ecosystem carbon dynamics in the circumpolar north. Global and Planetary Change, [S. l.], v. 142, p. 28–40, 2016. Disponível em: https://doi.org/10.1016/j.gloplacha.2016.04.011 KAHIMBA, F. C.; SRI RANJAN, R.; KRISHNAPILLAI, M. Impact of cable lengths on the accuracy of dielectric constant measurements by time domain reflectometry. Canadian Biosystems Engineering / Le Genie des biosystems au Canada, [S. l.], 2007. KENDALL, Maurice G. Rank Correlation Methods. London Griffin, [S. l.], 1975. KING, J. C.; TURNER, J. Antarctic Meteorology and Climatology. [S. l.: s. n.]. E- book. Disponível em: https://doi.org/10.1017/cbo9780511524967 KOSTOV, Yavor et al. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Climate Dynamics, [S. l.], 2017. Disponível em: https://doi.org/10.1007/s00382-016-3162-z L’HEUREUX, Michelle L. et al. Strength outlooks for the El Niño-Southern Oscillation. Weather and Forecasting, [S. l.], 2019. Disponível em: https://doi.org/10.1175/WAF-D-18-0126.1 LARIOS, A. D. et al. Analysis of atmospheric ammonia concentration from four sites in Quebec City region over 2010–2013. Atmospheric Pollution Research, [S. l.], v. 9, n. 3, p. 476–482, 2018. Disponível em: https://doi.org/10.1016/j.apr.2017.11.001 LI, Ren et al. Soil thermal conductivity and its influencing factors at the Tanggula permafrost region on the Qinghai–Tibet Plateau. Agricultural and Forest Meteorology, [S. l.], 2019. Disponível em: https://doi.org/10.1016/j.agrformet.2018.10.011 LORREY, Andrew M.; FAUCHEREAU, Nicolas C. Southwest Pacific atmospheric weather regimes: linkages to ENSO and extra-tropical teleconnections. International Journal of Climatology, [S. l.], 2018. Disponível em: https://doi.org/10.1002/joc.5304 LUO, Dongliang et al. Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau. Geoderma, [S. l.], v. 312, p. 74–85, 2018. Disponível em: https://doi.org/10.1016/j.geoderma.2017.09.037 MANN, Henry B. Nonparametric Tests Against Trend. Econometrica, [S. l.], v. 13, n. 3, p. 245, 1945. Disponível em: https://doi.org/10.2307/1907187 MARSHALL, Gareth J. et al. Analysis of a regional change in the sign of the SAM- temperature relationship in Antarctica. Climate Dynamics, [S. l.], 2011. Disponível em: https://doi.org/10.1007/s00382-009-0682-9 MARTINSON, D. G.; IANNUZZI, R. A. Spatial / temporal patterns in Weddell gyre characteristics and their relationship to global climate. Journal of Geophysical Research, [S. l.], v. 108, n. c4, p. 8083, 2003. Disponível em: https://doi.org/10.1029/2000JC000538 MAYEWSKI, P. A. et al. Ice core and climate reanalysis analogs to predict Antarctic 64 and Southern Hemisphere climate changes. Quaternary Science Reviews, [S. l.], v. 155, p. 50–66, 2017. Disponível em: https://doi.org/10.1016/j.quascirev.2016.11.017 MCGREGOR, S. et al. Inferred changes in El Niño-Southern Oscillation variance over the past six centuries. Climate of the Past, [S. l.], 2013. Disponível em: https://doi.org/10.5194/cp-9-2269-2013 MICHEL, R. F. M. et al. Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica. Solid Earth, [S. l.], v. 5, n. 2, p. 1361–1374, 2014 a. Disponível em: https://doi.org/10.5194/se-5-1361-2014 MICHEL, Roberto F. M. et al. Active layer temperature in two Cryosols from King George Island, Maritime Antarctica. Geomorphology, [S. l.], v. 155–156, p. 12–19, 2012. Disponível em: https://doi.org/10.1016/j.geomorph.2011.12.013 MICHEL, Roberto F. M. et al. Soils and landforms from Fildes Peninsula and Ardley Island, Maritime Antarctica. Geomorphology, [S. l.], v. 225, n. C, p. 76–86, 2014 b. Disponível em: https://doi.org/10.1016/j.geomorph.2014.03.041 MOLIN, José P.; RABELLO, Ladislau M. Estudos sobre a mensuração da condutividade elétrica do solo. Engenharia Agricola, [S. l.], 2011. Disponível em: https://doi.org/10.1590/S0100-69162011000100009 NASANBAT, Elbegjargal et al. Frequency analysis of MODIS NDVI time series for determining hotspot of land degradation in Mongolia. In: 2018, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. [S. l.: s. n.] p. 1299–1304. Disponível em: https://doi.org/10.5194/isprs-archives-XLII-3-1299-2018 NULL, Jan. El Niño and La Niña Years and Intensities. [s. l.], 2018. O’BRIEN, Peter L. et al. Thermal remediation alters soil properties – a review. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/j.jenvman.2017.11.052 Observations: Cryosphere. In: Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [S. l.: s. n.]. E-book. Disponível em: https://doi.org/10.1017/CBO9781107415324.012 OLIVA, M. et al. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Science of the Total Environment, [S. l.], 2017 a. Disponível em: https://doi.org/10.1016/j.scitotenv.2016.12.030 OLIVA, M. et al. Permafrost degradation on a warmer Earth: Challenges and perspectives This review comes from a themed issue on Sustainable Soil Management. Current Opinion in Environmental Science & Health, [S. l.], 2018. Disponível em: https://doi.org/10.1016/j.coesh.2018.03.007 OLIVA, M.; FRITZ, M. Permafrost degradation on a warmer Earth: Challenges and perspectives. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/j.coesh.2018.03.007 OLIVA, Marc et al. Active layer dynamics in three topographically distinct lake catchments in Byers Peninsula (Livingston Island, Antarctica). Catena, [S. l.], 2017 b. Disponível em: https://doi.org/10.1016/j.catena.2016.07.011 OLIVEIRA, Leidjane M. M. de et al. Evapotranspiração real em bacia hidrográfica do Nordeste brasileiro por meio do SEBAL e produtos MODIS. Revista Brasileira de Engenharia Agrícola e Ambiental, [S. l.], v. 18, n. 10, p. 1039–1046, 2014. Disponível em: https://doi.org/10.1590/1807-1929/agriambi.v18n10p1039-1046 PANWAR, M.; AGARWAL, A.; DEVADAS, V. Analyzing land surface temperature trends using non-parametric approach: A case of Delhi, India. Urban Climate, [S. l.], v. 24, 2018. Disponível em: https://doi.org/10.1016/j.uclim.2018.01.003 PATTON, Annette I.; RATHBURN, Sara L.; CAPPS, Denny M. Landslide response 65 to climate change in permafrost regions. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/j.geomorph.2019.04.029 PEDRO, J. B. et al. Southern Ocean deep convection as a driver of Antarctic warming events. Geophysical Research Letters, [S. l.], v. 43, n. 5, p. 2192–2199, 2016. Disponível em: https://doi.org/10.1002/2016GL067861 PEREIRA, Thiago Torres C. et al. Genesis, mineralogy and ecological significance of ornithogenic soils from a semi-desert polar landscape at Hope Bay, Antarctic Peninsula. Geoderma, [S. l.], v. 209–210, p. 98–109, 2013. Disponível em: https://doi.org/10.1016/j.geoderma.2013.06.012 PETTITT, A. N. A Non-Parametric Approach to the Change-Point Problem. Applied Statistics, [S. l.], v. 28, n. 2, p. 126, 1979. Disponível em: https://doi.org/10.2307/2346729 PINGALE, Santosh M. et al. Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban cetnters of the arid and semi-arid state of Rajasthan, India. Atmospheric Research, [S. l.], v. 138, p. 73–90, 2014. Disponível em: https://doi.org/10.1016/j.atmosres.2013.10.024 POGLIOTTI, P. et al. Warming permafrost and active layer variability at Cime Bianche, Western European Alps. Cryosphere, [S. l.], 2015. Disponível em: https://doi.org/10.5194/tc-9-647-2015 POLVANI, L. M. et al. Stratospheric Ozone Depletion: The Main Driver of Twentieth- Century Atmospheric Circulation Changes in the Southern Hemisphere. Journal of Climate, [S. l.], v. 24, n. 3, p. 795–812, 2011. Disponível em: https://doi.org/Doi 10.1175/2010jcli3772.1 PONCET, S.; PONCET, J. Censuses of penguin populations of the Antarctic Peninsula, 1983- 87. British Antarctic Survey Bulletin, [S. l.], 1987. Disponível em: https://doi.org/10.1016/0198-0254(88)92649-0 PÖRTNER, H. O. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. [S. l.: s. n.]. E-book. POTAPOWICZ, Joanna et al. The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost: Part I. Case study of Antarctica. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/j.scitotenv.2018.09.168 RAMOS, M. et al. Temperature gradient distribution in permafrost active layer, using a prototype of the ground temperature sensor (REMS-MSL) on deception island (Antarctica). Cold Regions Science and Technology, [S. l.], 2012. Disponível em: https://doi.org/10.1016/j.coldregions.2011.10.012 RAMOS, Miguel et al. Drilling and installation of boreholes for permafrost thermal monitoring on Livingston Island in the maritime Antarctic. Permafrost and Periglacial Processes, [S. l.], 2009. Disponível em: https://doi.org/10.1002/ppp.635 RASMUSSEN, Laura H. et al. Modelling present and future permafrost thermal regimes in Northeast Greenland. Cold Regions Science and Technology, [S. l.], v. 146, p. 199–213, 2018. Disponível em: https://doi.org/10.1016/j.coldregions.2017.10.011 RESCK, Bruno de Carvalho. Qu{\’\i}mica e mineralogia de solos vulcânicos das Ilhas Deception e Penguin, Antártica Mar{\’\i}tima. 2011. - Universidade Federal de Viçosa, [s. l.], 2011. RETAMALES-MUÑOZ, G.; DURÁN-ALARCÓN, C.; MATTAR, C. Recent land surface temperature patterns in Antarctica using satellite and reanalysis data. Journal of South American Earth Sciences, [S. l.], 2019. Disponível em: https://doi.org/10.1016/j.jsames.2019.102304 66 ROY, Indrani; TEDESCHI, Renata G.; COLLINS, Matthew. ENSO teleconnections to the Indian summer monsoon under changing climate. International Journal of Climatology, [S. l.], 2019. Disponível em: https://doi.org/10.1002/joc.5999 SANTOSO, Agus; MCPHADEN, Michael J.; CAI, Wenju. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño. [S. l.: s. n.] Disponível em: https://doi.org/10.1002/2017RG000560 SCHAEFER, Carlos E. G. R. et al. Soils of the Weddell Sea Sector, Antarctica. In: [S. l.: s. n.]. E-book. Disponível em: https://doi.org/10.1007/978-3-319-05497-1_14 SCHAEFER, Carlos E. G. R. et al. Penguin activity modify the thermal regime of active layer in Antarctica: A case study from Hope Bay. Catena, [S. l.], 2017. Disponível em: https://doi.org/10.1016/j.catena.2016.07.021 SEMEDO, Alvaro et al. Projection of global wave climate change toward the end of the twenty-first century. Journal of Climate, [S. l.], v. 26, n. 21, p. 8269–8288, 2013. Disponível em: https://doi.org/10.1175/JCLI-D-12-00658.1 SEN, Pranab Kumar. Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, [S. l.], v. 63, n. 324, p. 1379–1389, 1968. Disponível em: https://doi.org/10.1080/01621459.1968.10480934 SIMAS, Felipe N. B. et al. Soils of the South Orkney and South Shetland Islands, Antarctica. In: [S. l.: s. n.]. E-book. Disponível em: https://doi.org/10.1007/978-3-319- 05497-1_13 SIMPKINS, Graham R. et al. Seasonal relationships between large-scale climate variability and antarctic sea ice concentration. Journal of Climate, [S. l.], 2012. Disponível em: https://doi.org/10.1175/JCLI-D-11-00367.1 SIMPKINS, Graham R.; PEINGS, Yannick; MAGNUSDOTTIR, Gudrun. Pacific influences on tropical Atlantic teleconnections to the southern hemisphere high latitudes. Journal of Climate, [S. l.], 2016. Disponível em: https://doi.org/10.1175/JCLI-D-15-0645.1 SKVARCA, Pedro; DE ANGELIS, Hernán; ERMOLIN, Evgeniy. Mass balance of “Glaciar Bahía del Diablo”, Vega Island, Antarctic Peninsula. Annals of Glaciology, [S. l.], 2004. Disponível em: https://doi.org/10.3189/172756404781814672 SOIL SURVEY STAFF. Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States. [s. l.], 2018. SOLOMINA, Olga N. et al. Glacier fluctuations during the past 2000 years. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/j.quascirev.2016.04.008 SOUZA, Katia Karoline Delpupo et al. Soil formation in Seymour Island, Weddell Sea, Antarctica. Geomorphology, [S. l.], 2014. Disponível em: https://doi.org/10.1016/j.geomorph.2014.03.047 STAMMERJOHN, S. E. et al. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research, [S. l.], 2008. Disponível em: https://doi.org/10.1029/2007jc004269 TEDESCHI, Renata G.; COLLINS, Matthew. The influence of ENSO on South American precipitation: simulation and projection in CMIP5 models. International Journal of Climatology, [S. l.], 2017. Disponível em: https://doi.org/10.1002/joc.4919 TEDESCHI, Renata G.; GRIMM, Alice M.; CAVALCANTI, Iracema F. A. Influence of Central and East ENSO on precipitation and its extreme events in South America during austral autumn and winter. International Journal of Climatology, [S. l.], 2016. Disponível em: https://doi.org/10.1002/joc.4670 TEDROW, J. C. F. Polar Desert Soils. Soil Science Society of America Journal, [S. l.], 1966. Disponível em: https://doi.org/10.2136/sssaj1966.03615995003000030024x 67 TEDROW, J. C. F. Polar Soils. In: Encyclopedia of Soils in the Environment. [S. l.: s. n.]. E-book. Disponível em: https://doi.org/10.1016/B0-12-348530-4/00010-2 The frozen earth. Fundamentals of geocryology. Peter J. Williams and Michael W. Smith (1989). Publisher Cambridge University Press, Cambridge, (hardback). ISBN 0 521 36534 1. 306 pp. Permafrost and Periglacial Processes, [S. l.], 1993. Disponível em: https://doi.org/10.1002/ppp.3430040221 THOMAS, E. R. et al. Twentieth century increase in snowfall in coastal West Antarctica. Geophysical Research Letters, [S. l.], v. 42, n. 21, p. 9387–9393, 2015. Disponível em: https://doi.org/10.1002/2015GL065750 THOMAZINI, A. et al. Geospatial variability of soil CO2-C exchange in the main terrestrial ecosystems of Keller Peninsula, Maritime Antarctica. Science of the Total Environment, [S. l.], v. 562, p. 802–811, 2016. Disponível em: https://doi.org/10.1016/j.scitotenv.2016.04.043 TURNER, John. The El Niño-Southern Oscillation and Antarctica. International Journal of Climatology, [S. l.], v. 24, n. 1, p. 1–31, 2004. Disponível em: https://doi.org/10.1002/joc.965 TURNER, John et al. Antarctic climate change and the environment: An update. Polar Record, [S. l.], 2014. Disponível em: https://doi.org/10.1017/S0032247413000296 TURNER, John et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, [S. l.], 2016. Disponível em: https://doi.org/10.1038/nature18645 TURNER, John et al. Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophysical Research Letters, [S. l.], 2017. Disponível em: https://doi.org/10.1002/2017GL073656 TURNER, John; OVERLAND, James E.; WALSH, John E. An Arctic and Antarctic perspective on recent climate change. International Journal of Climatology, [S. l.], 2007. Disponível em: https://doi.org/10.1002/joc.1406 UXA, Tomáš; KŘÍŽEK, Marek; HRBÁČEK, Filip. PERICLIMv1.0: A model deriving palaeo-air temperatures from thaw depth in past permafrost regions. Geoscientific Model Development Discussions, [S. l.], 2020. Disponível em: https://doi.org/10.5194/gmd-2020-5 VAN GESTEL, Natasja et al. Long-term warming research in high-latitude ecosystems: Responses from polar ecosystems and implications for future climate. In: Ecosystem Consequences of Soil Warming: Microbes, Vegetation, Fauna and Soil Biogeochemistry. [S. l.: s. n.]. E-book. Disponível em: https://doi.org/10.1016/B978-0- 12-813493-1.00016-8 VIEIRA, Gonçalo et al. Thermal state of permafrost and active-layer monitoring in the antarctic: Advances during the international polar year 2007-2009. Permafrost and Periglacial Processes, [S. l.], 2010. Disponível em: https://doi.org/10.1002/ppp.685 WALKER, C. C.; GARDNER, A. S. Rapid drawdown of Antarctica’s Wordie Ice Shelf glaciers in response to ENSO/Southern Annular Mode-driven warming in the Southern Ocean. Earth and Planetary Science Letters, [S. l.], 2017. Disponível em: https://doi.org/10.1016/j.epsl.2017.08.005 WANG, Chunzai et al. El Niño and Southern Oscillation (ENSO): A Review. In: [S. l.: s. n.]. E-book. Disponível em: https://doi.org/10.1007/978-94-017-7499-4_4 WANG, Qingzhi et al. The influence of pavement type on the thermal stability of block-stone embankments in the warm permafrost region. Transportation Geotechnics, [S. l.], 2020. Disponível em: https://doi.org/10.1016/j.trgeo.2020.100334 WASHBURN, A. L. Geocryology: a survey of periglacial processes and environments. Geocryology: a survey of periglacial processes and environments, [S. l.], 1979. 68 Disponível em: https://doi.org/10.1111/j.1745-7939.1981.tb00945.x WELHOUSE, Lee J. et al. Composite analysis of the effects of ENSO events on Antarctica. Journal of Climate, [S. l.], 2016. Disponível em: https://doi.org/10.1175/JCLI-D-15-0108.1 WILHELM, Kelly R.; BOCKHEIM, James G. Climatic controls on active layer dynamics: Amsler Island, Antarctica. Antarctic Science, [S. l.], 2017. Disponível em: https://doi.org/10.1017/S0954102016000511 YANG, Shuhua et al. Evaluation of reanalysis soil temperature and soil moisture products in permafrost regions on the Qinghai-Tibetan Plateau. Geoderma, [S. l.], 2020. Disponível em: https://doi.org/10.1016/j.geoderma.2020.114583 YENER, Deniz; OZGENER, Onder; OZGENER, Leyla. Prediction of soil temperatures for shallow geothermal applications in Turkey. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/j.rser.2016.11.065 YU, Jin Yi; KIM, Seon Tae. Identifying the types of major El Niño events since 1870. International Journal of Climatology, [S. l.], 2013. Disponível em: https://doi.org/10.1002/joc.3575 YUAN, Xiaojun. ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarctic Science, [S. l.], v. 16, n. 4, p. 415–425, 2004. Disponível em: https://doi.org/10.1017/S0954102004002238 YUAN, Xiaojun; MARTINSON, Douglas G. Antarctic sea ice extent variability and its global connectivity. Journal of Climate, [S. l.], v. 13, n. 10, p. 1697–1717, 2000. Disponível em: https://doi.org/10.1175/1520-0442(2000)013<1697:ASIEVA>2.0.CO;2 YUE, Sheng; WANG, Chun Yuan. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, [S. l.], v. 18, n. 3, p. 201–218, 2004. Disponível em: https://doi.org/10.1023/B:WARM.0000043140.61082.60 | pt_BR |
| dc.subject.cnpq | Recursos Florestais e Engenharia Florestal | pt_BR |
| Appears in Collections: | Doutorado em Ciências Ambientais e Florestais | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2020 - Tamires Partelli Correia.pdf | 8.52 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
