Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/22160Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Santos, Andre Leonardo dos | - |
| dc.date.accessioned | 2025-06-09T16:12:45Z | - |
| dc.date.available | 2025-06-09T16:12:45Z | - |
| dc.date.issued | 2024-12-20 | - |
| dc.identifier.citation | SANTOS, André Leonardo dos. Estudo das propriedades físicas e tecnológicas de farelos de Sorgo (Sorghum bicolor (L.) Moench) e Milheto pérola (Pennisetum glaucum (L.) R. Br.) e uso da extrusão termoplástica como pré-tratamento para extração supercrítica de compostos bioativos. 2024. 110 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2024. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/22160 | - |
| dc.description.abstract | Os compostos bioativos são encontrados em cereais e têm despertado o interesse das indústrias de alimentos e farmacêuticas. Esses compostos em sua maioria estão presentes nos grãos integrais e, em maior número, na fração do farelo (pericarpo). A espécie de milheto mais cultivada no mundo é a Pennisetum glaucum (L.) R. Br., sendo o sexto cereal mais produzido. Os grãos de milheto têm excelente qualidade nutricional e são comparáveis ou superiores à alguns cereais frequentemente consumidos, como arroz e trigo. O Sorgo (Sorghum bicolor (L.) Moench) está entre os cinco cereais mais importante do mundo, sendo uma fonte de compostos fitoquímicos, como fenóis, antocianinas, taninos e flavonoides. A extração desses compostos deve ser feita com o máximo de eficiência, sendo necessárias técnicas avançadas de pré- tratamento e extração, preferencialmente tecnologias verdes. A extrusão termoplástica (ET) é um processo versátil utilizado como pré-tratamento para liberação de compostos de interesse. Já a extração com fluido supercrítico (EFS) é utilizada para extração de composto bioativos de diferentes fontes. A literatura não reporta estudos em que a extrusão termoplástica seja utilizada como pré-tratamento para EFS em farelos de sorgo e milheto pérola. Essas duas técnicas foram utilizadas nesse estudo com objetivo de avaliar o processo de pré-tratamento e a extração supercrítica na obtenção de compostos bioativos a partir dos farelos de milheto pérola e sorgo para que as frações obtidas sejam concentradas em compostos bioativos de interesse. O brunimento influenciou o teor de amido e apresentou as maiores porcentagens de farelo (15,5%) e de taxa de extração (30,7%). A maior viscosidade final foi em farelo de milheto 82,9 cP. A recuperação do farelo foi positivamente correlacionada com o amido total (0,96). A análise de componentes principais (ACP) mostrou que osfarelos foram associados a amido total. A análise HCPC formou dois grupos principais: MB25 e MB05-MB10 como cluster 1, e SB10 e SB05- SB07 como cluster 2. O maior teor de compostos fenólicos totais (TPC) foi de 1240,94 μg GAE / 100 g em farelo de milheto perola extrudado (MEB), e a maior capacidade antioxidante (AC) foi de 55,51 μmol TE / g em farelo de sorgo extrudado (SEB). A correlação de Pearson indicou fortes relações positivas entre TPC, AC-ABTS e SV. As amostras extrudadas apresentaram maior homogeneidade e densidade aparente (29,72%). A análise colorimétrica revelou um ΔE* de 8,49 para EMB e 9,78 para ESB. SFE mostrou que a maior concentração de TPC foi de 21,34 mg GAE/g de extrato, obtido a 40 °C 10 MPa e 15% de cossolvente. EMB apresentou o maior AC, em ABTS foi de 4,47 μM TE/g de extrato e em FRAP foi de 157,92 μM TE/g de extrato, obtido a 50 °C, 10 MPa e 15% de cossolvente e 50 °C, 20 MPa e 0,5% de cossolvente, respectivamente. As variáveis temperatura (T), pressão (P) e porcentagem de cossolvente (C%) influenciaram diretamente o TPC e a atividade antioxidante (CA-ABTS/FRAP). No estudo cinético, o maior rendimento foi de 20 % para ESB, e a fração de extrato recuperada na etapa de CER foi maior em MB (79,71%), com maior recuperação total na amostra extrudada. Extratos de farelo de sorgo e milheto pérola, ricos em compostos bioativos, apresentaram rendimentos comparáveis ou superiores aos de outros cereais, destacando as tecnologias TE e SFE como alternativas sustentáveis e eficazes para extração de bioativos. | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Extrusão termoplástica | pt_BR |
| dc.subject | fluido supercrítico | pt_BR |
| dc.subject | cereal | pt_BR |
| dc.subject | extração | pt_BR |
| dc.subject | compostos bioativos | pt_BR |
| dc.subject | Thermoplastic extrusion | pt_BR |
| dc.subject | supercritical fluid | pt_BR |
| dc.subject | extraction | pt_BR |
| dc.subject | bioactive compounds | pt_BR |
| dc.title | Estudo das Propriedades Físicas e Tecnológicas de Farelos de Sorgo (Sorghum bicolor (L.) Moench) e Milheto Pérola (Pennisetum glaucum (L.) R. Br.) e Uso da Extrusão Termoplástica Como Pré-Tratamento Para Extração Supercrítica de Compostos Bioativos | pt_BR |
| dc.title.alternative | Estudo das Propriedades Físicas e Tecnológicas de Farelos de Sorgo (Sorghum bicolor (L.) Moench) e Milheto Pérola (Pennisetum glaucum (L.) R. Br.) e Uso da Extrusão Termoplástica Como Pré-Tratamento Para Extração Supercrítica de Compostos Bioativos | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | The bioactive compounds found in cereal have attracted the interest of the food and pharmaceutical industries. These compounds are mostly present in whole grains and, particularly, in the bran fraction (pericarp). Pearl millet and sorghum are grains with bioactive potential. The most cultivated species of millet in the world is Pennisetum glaucum (L.) R. Br., being the sixth most produced cereal. Millet grains have excellent nutritional quality and are comparable or superior to some frequently consumed cereals, such as rice and wheat. Sorghum (Sorghum bicolor (L.) Moench) is among the five most important cereals in the world, being a source of phytochemical compounds, such as phenols, anthocyanins, tannins, flavonoids and antioxidants. The extraction of these compounds must be done with maximum efficiency, requiring advanced pretreatment and extraction techniques, preferably using green solvents. Thermoplastic extrusion (TE) is a versatile process used as pretreatment for the release of compounds of interest. Supercritical fluid extraction (SFE) is used to extract bioactive compounds from different sources. The literature does not report studies in which thermoplastic extrusion is used as pretreatment for SFE in sorghum and pearl millet brans. These two techniques were used in this study to evaluate the pretreatment process and supercritical extraction in obtaining bioactive compounds from pearl millet and sorghum brans so that the obtained fractions are concentrated in bioactive compounds of interest. The pearl millet grains debranning for 25 minutes showed the highest bran percentages (15.5%) and (30.7%). The branning time influenced the starch content. The highest final viscosity was millet bran (MB) 80.0 cP. Bran recovery was positively correlated with total starch (0.96). Principal component analysis (PCA) showed that MB25 was associated with total starch. HCPC analysis formed two main groups: MB25 and MB05-MB10 as cluster 1, and SB10 and SB05-SB07 as cluster 2. The highest total phenolic compounds (TPC) content was 1240.94 μg GAE / 100 g in extruded pearl millet bran (MEB), and the highest antioxidant capacity (AC) was 55.51 μmol TE / g in extruded sorghum bran (SEB). Pearson correlation indicated strong positive relationships between TPC, AC-ABTS and SV. The extruded samples showed higher homogeneity and apparent density (29.72 % ), but lower porosity. Colorimetric analysis revealed a ΔE* of 8.49 for EMB and 9.78 for ESB. SFE showed that the highest TPC concentration was 21.34 mg GAE / g extract, obtained at 40 °C 10 MPa and 15% co-solvent. EMB showed the highest AC, in ABTS it was 4.47 μM TE / g of extract and in FRAP it was 157.92 μM TE / g of extract, obtained at 50 °C, 10 MPa and 15% co-solvent and 50 °C, 20 MPa and 0.5% co-solvent, respectively. The variables temperature (T), pressure (P) and percentage of co-solvent (C%) directly influenced the TPC and antioxidant activity (CA-ABTS/FRAP). In the kinetic study, the highest yield was 20 % for ESB, and the fraction of extract recovered in the CER step was higher in MB (79.71 %), with higher total recovery in the extruded sample. Extracts of sorghum and millet bran, rich in bioactive compounds, showed yields comparable to or higher than those of other cereals, highlighting TE and SFE technologies as sustainable and effective alternatives for bioactive extraction. | en |
| dc.contributor.advisor1 | Carvalho, Carlos Wanderlei Piler de | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-7602-264X | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/3532473530387852 | pt_BR |
| dc.contributor.advisor-co1 | Fasolin, Luiz Henrique | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0002-2398-0940 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/7921868610724654 | pt_BR |
| dc.contributor.referee1 | Carvalho, Carlos Wanderlei Piler de | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-7602-264X | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/3532473530387852 | pt_BR |
| dc.contributor.referee2 | Ascheri, Jose | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0001-7449-8815 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/1891994321882753 | pt_BR |
| dc.contributor.referee3 | Clímaco, Gabrielli Nunes | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0002-6113-1616 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/8787435220285629 | pt_BR |
| dc.contributor.referee4 | Silva, Otniel Freitas | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0002-7658-8010 | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/4067206563384738 | pt_BR |
| dc.contributor.referee5 | Oliveira, Maria Eugenia Araujo Silva | - |
| dc.contributor.referee5ID | https://orcid.org/0000-0002-3725-048X | pt_BR |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/8444740076133825 | pt_BR |
| dc.creator.ID | https://orcid.org/0000-0001-7795-2825 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/2466938040003278 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Tecnologia | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Administração | pt_BR |
| dc.relation.references | ABDELHALIM, T. S.; ABDELHALIM, N. S.; KAMAL, N. M.; MOHAMED, E. E.; HASSAN, A. B. Exploiting the potential of Sudanese sorghum landraces in biofortification: Physicochemical quality of the grain of sorghum (Sorghum bicolor L. Moench) landraces. Food Chemistry, v. 337, p. 127604, 2021. Disponível em: https://doi.org/10.1016/j.foodchem.2020.127604. Acesso em: 21 dez. 2020. AFRIN, S.; SIDHU, S. In vitro study to evaluate anti-inflammatory properties of sorghum extract supplemented bread. Future Foods, v. 4, p. 100039, 2021. Disponível em: https://doi.org/10.1016/J.FUFO.2021.100039. Acesso em: 3 dez. 2021. AGIL, R.; HOSSEINIAN, F. Determination of water-extractable polysaccharides in triticale bran. Journal of Food Composition and Analysis, v. 34, n. 1, p. 12–17, 2014. Disponível em: https://doi.org/10.1016/J.JFCA.2014.02.004. Acesso em: 7 dez. 2021. AGRAWAL, H.; JOSHI, R.; GUPTA, M. Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chemistry, v. 204, p. 365–372, 2016. Disponível em: https://doi.org/10.1016/j.foodchem.2016.02.127. Acesso em: 8 dez. 2020. AILI, Q.; CUI, D.; LI, Y.; ZHIGE, W.; YONGPING, W.; MINFEN, Y.; DONGBIN, L.; XIAO, R.; QIANG, W. Composing functional food from agro-forest wastes: Selectively extracting bioactive compounds using supercritical fluid extraction. Food Chemistry, v. 455, p. 139848, 2024. Disponível em: https://doi.org/10.1016/j.foodchem.2024.139848 ANUKIRUTHIKA, T.; DUTTA, S.; MOSES, J. A.; ANANDHARAMAKRISHNAN, C. Modern Applications of Supercritical Fluids Extraction in Food Toxicology. In: Reference Module in Food Science. [S. l.]: Elsevier, 2019. p. 640–659. Disponível em: https://doi.org/10.1016/b978-0-08-100596-5.22939-9. Acesso em: 16 set. 2020. AQUINO-BOLAÑOS, E. N.; GARZÓN-GARCÍA, A. K.; ALBA-JIMÉNEZ, J. E.; CHÁVEZ- SERVIA, J. L.; VERA-GUZMÁN, A. M.; CARRILLO-RODRÍGUEZ, J. C.; SANTOS- BASURTO, M. A. Physicochemical Characterization and Functional Potential of Phaseolus vulgaris L. and Phaseolus coccineus L. Landrace Green Beans. Agronomy 2021, Vol. 11, Page 803, v. 11, n. 4, p. 803, 2021. Disponível em: https://doi.org/10.3390/AGRONOMY11040803. Acesso em: 10 ago. 2021. AROUNA, N.; GABRIELE, M.; PUCCI, L. The Impact of Germination on Sorghum Nutraceutical Properties. Foods, v. 9, n. 9, p. 1218, 2020. Disponível em: https://doi.org/10.3390/foods9091218. Acesso em: 7 dez. 2020. AWIKA, J. M.; MCDONOUGH, C. M.; ROONEY, L. W. Decorticating Sorghum To Concentrate Healthy Phytochemicals. Journal of Agricultural and Food Chemistry, v. 53, n. 16, p. 6230–6234, 2005. Disponível em: https://doi.org/10.1021/JF0510384. Acesso em: 5 dez. 2021. BELLO, U.; AMRAN, N. A.; SAMSURI, S.; RUSLAN, M. S. H. Kinetics, thermodynamic studies, and parametric effects of supercritical CO2 extraction of banana peel wastes. Sustainable Chemistry and Pharmacy, v. 31, p. 100912, 2023. Disponível em: https://doi.org/10.1016/j.scp.2022.100912 BOLLAM, S.; PUJARULA, V.; SRIVASTAVA, R. K.; GUPTA, R. Genomic Approaches to Enhance Stress Tolerance for Productivity Improvements in Pearl Millet. In: Biotechnologies of Crop Improvement, Volume 3. [S. l.]: Springer International Publishing, 2018. p. 239– 264. E-book. Disponível em: https://doi.org/10.1007/978-3-319-94746-4_11. Acesso em: 8 dez. 2020. CAMELO-MÉNDEZ, G. A.; TOVAR, J.; BELLO-PÉREZ, L. A. Influence of blue maize flour on gluten-free pasta quality and antioxidant retention characteristics. Journal of Food Science and Technology, v. 55, n. 7, p. 2739–2748, 2018. Disponível em: https://doi.org/10.1007/s13197-018-3196-9. Acesso em: 3 fev. 2021. CAMPELO, F. A.; HENRIQUES, G. S.; LUCIA, M.; SIMEONE, F.; QUEIROZ, V. A. V; SILVA, M. R.; AUGUSTI, R.; MELO, J. O. F.; LACERDA, I. C. A.; ARAÚJO, R. L. B. Study of Thermoplastic Extrusion and Its Impact on the Chemical and Nutritional Characteristics and Two Sorghum Genotypes SC 319 and BRS 332. Article J. Braz. Chem. Soc, v. 31, n. 4, p. 788–802, 2020. Disponível em: https://doi.org/10.21577/0103-5053.20190243. Acesso em: 15 fev. 2021. CANABARRO, N. I.; VEGGI, P. C.; VARDANEGA, R.; MAZUTTI, M. A.; FERREIRA, M. do C. Techno-economic evaluation and mathematical modeling of supercritical CO2 extraction from Eugenia uniflora L. leaves. Journal of Applied Research on Medicinal and Aromatic Plants, v. 18, p. 100261, 2020. Disponível em: https://doi.org/10.1016/j.jarmap.2020.100261. Acesso em: 16 set. 2020. CARBAS, B.; MACHADO, N.; OPPOLZER, D.; FERREIRA, L.; QUEIROZ, M.; BRITES, C.; ROSA, E. A.; BARROS, A. I. Nutrients, Antinutrients, Phenolic Composition, and Antioxidant Activity of Common Bean Cultivars and their Potential for Food Applications. Antioxidants 2020, Vol. 9, Page 186, v. 9, n. 2, p. 186, 2020. Disponível em: https://doi.org/10.3390/ANTIOX9020186. Acesso em: 8 ago. 2021. CONAB. Sorgo julho de 2018. [S. l.: s. n.]. CVJETKO BUBALO, M.; VIDOVIĆ, S.; RADOJČIĆ REDOVNIKOVIĆ, I.; JOKIĆ, S. New perspective in extraction of plant biologically active compounds by green solvents. Food and Bioproducts Processing, v. 109, p. 52–73, 2018. Disponível em: https://doi.org/10.1016/j.fbp.2018.03.001 DA SILVA, R. P. F. F.; ROCHA-SANTOS, T. A. P.; DUARTE, A. C. Supercritical fluid extraction of bioactive compounds. TrAC Trends in Analytical Chemistry, v. 76, p. 40–51, 2016. Disponível em: https://doi.org/10.1016/j.trac.2015.11.013 DE MELO, M. M. R.; SILVESTRE, A. J. D.; SILVA, C. M. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. [S. l.]: Elsevier, 2014. Disponível em: https://doi.org/10.1016/j.supflu.2014.04.007. Acesso em: 14 set. 2020. DE MORAIS CARDOSO, L.; PINHEIRO, S. S.; MARTINO, H. S. D.; PINHEIRO- SANT’ANA, H. M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Critical Reviews in Food Science and Nutrition, v. 57, n. 2, p. 372–390, 2017. Disponível em: https://doi.org/10.1080/10408398.2014.887057. Acesso em: 7 dez. 2020. DIAS-MARTINS, A. M.; CAPPATO, L. P.; DA COSTA MATTOS, M.; RODRIGUES, F. N.; PACHECO, S.; CARVALHO, C. W. P. Impacts of ohmic heating on decorticated and whole pearl millet grains compared to open-pan cooking. Journal of Cereal Science, v. 85, p. 120– 129, 2019. Disponível em: https://doi.org/10.1016/j.jcs.2018.11.007. Acesso em: 21 dez. 2020. DIAS-MARTINS, A. M.; PESSANHA, K. L. F.; PACHECO, S.; RODRIGUES, J. A. S.; CARVALHO, C. W. P. Potential use of pearl millet (Pennisetum glaucum (L.) R. Br.) in Brazil: Food security, processing, health benefits and nutritional products. [S. l.]: Elsevier Ltd, 2018. Disponível em: https://doi.org/10.1016/j.foodres.2018.04.023. Acesso em: 28 out. 2020. DIAS-MARTINS, A. M.; TROMBETE, F. M.; CAPPATO, L. P.; CHÁVEZ, D. W. H.; SANTOS, M. B.; CARVALHO, C. W. P. Processing, composition, and technological properties of decorticated, sprouted, and extruded pearl millet (Pennisetum glaucum (L.) R. Br.) flours. Journal of Food Process Engineering, v. 47, n. 2, 2024. Disponível em: https://doi.org/10.1111/JFPE.14561. Acesso em: 3 abr. 2024. DO NASCIMENTO, R. R.; EDVAN, R. L.; PEREIRA FILHO, J. M.; RODRIGUES, J. A. S.; DE ARAÚJO, M. J.; DA SILVA, A. L.; DOS SANTOS NASCIMENTO, K.; SANTOS, C. O. Identification of sorghum hybrids for silage production in the semiarid (BSh) region of northeastern Brazil. Semina:Ciencias Agrarias, v. 41, n. 6, p. 2803–2814, 2020. Disponível em: https://doi.org/10.5433/1679-0359.2020v41n6p2803. Acesso em: 25 jan. 2021. DUARTE, J. de O. D.; MIRANDA, R. A. de. Cultivo do Sorgo. [s. l.], 2015. Disponível em: https://www.spo.cnptia.embrapa.br/conteudo?p_p_id=conteudoportlet_WAR_sistemasdeprod ucaolf6_1ga1ceportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id= column-1&p_p_col_count=1&p_r_p_-76293187_sistemaProducaoId=8301&p_r_p_- 996514994_topicoId=9213. Acesso em: 25 jan. 2021. DYKES, L.; PETERSON, G. C.; ROONEY, W. L.; ROONEY, L. W. Flavonoid composition of lemon-yellow sorghum genotypes. Food Chemistry, v. 128, n. 1, p. 173–179, 2011. Disponível em: https://doi.org/10.1016/j.foodchem.2011.03.020. Acesso em: 7 dez. 2020. EL KOURCHI, C.; BELHOUSSAINE, O.; ELHRECH, H.; HARHAR, H.; ULLAH, R.; BARI, A.; MAGGI, F.; CAPRIOLI, G.; BOUYAHYA, A.; TABYAOUI, M. Antidiabetic, antioxidant, and phytochemical profile of Pennisetum glaucum cultivated in central-southern Morocco and imported from India. Journal of Agriculture and Food Research, v. 16, p. 101197, 2024. Disponível em: https://doi.org/10.1016/j.jafr.2024.101197 FAOSTAT. . [s. l.], 2023. Disponível em: http://www.fao.org/faostat/en/#data/QC/visualize. Acesso em: 7 ago. 2023. FRATERRIGO GAROFALO, S.; TOMMASI, T.; FINO, D. A short review of green extraction technologies for rice bran oil. [S. l.]: Springer, 2020. Disponível em: https://doi.org/10.1007/s13399-020-00846-3. Acesso em: 19 set. 2020. GOPIRAJAH, R.; SINGHA, P.; JAVAD, S.; RIZVI, S. S. H. Emulsifying properties of milk protein concentrate functionalized by supercritical fluid extrusion. Journal of Food Processing and Preservation, v. 44, n. 10, p. e14754, 2020. Disponível em: https://doi.org/10.1111/jfpp.14754. Acesso em: 3 fev. 2021. HAMA, F.; ICARD-VERNIÈRE, C.; GUYOT, J.-P.; PICQ, C.; DIAWARA, B.; MOUQUET- RIVIER, C. Changes in micro- and macronutrient composition of pearl millet and white sorghum during in field versus laboratory decortication. Journal of Cereal Science, v. 54, n. 3, p. 425–433, 2011. Disponível em: https://doi.org/10.1016/j.jcs.2011.08.007 HENSE, H.; ANGELA, M.; MEIRELES, A.; JESUS, S. P.; CALHEIROS, M. N. A Simplified Model to Describe the Kinetic Behavior of Supercritical Fluid Extraction from a Rice Bran Oil Byproduct Prospecting and evaluation of the biological and functional potential of the Cerrado fruit araticum (Annona crassiflora Mart.) View project Emerging Technologies for Dairy Product Development View project A Simplified Model to Describe the Kinetic Behavior of Supercritical Fluid Extraction from a Rice Bran Oil Byproduct. Food and Public Health, v. 2013, n. 4, p. 215–222, 2013. Disponível em: https://doi.org/10.5923/j.fph.20130304.05. Acesso em: 15 set. 2020. HERRERO, M.; IBAÑEZ, E. Green extraction processes, biorefineries and sustainability: Recovery of high added-value products from natural sources. Journal of Supercritical Fluids, v. 134, p. 252–259, 2018. Disponível em: https://doi.org/10.1016/j.supflu.2017.12.002. Acesso em: 18 set. 2020. HOLLON, J.; PUPPA, E.; GREENWALD, B.; GOLDBERG, E.; GUERRERIO, A.; FASANO, A. Effect of Gliadin on Permeability of Intestinal Biopsy Explants from Celiac Disease Patients and Patients with Non-Celiac Gluten Sensitivity. Nutrients, v. 7, n. 3, p. 1565–1576, 2015. Disponível em: https://doi.org/10.3390/nu7031565. Acesso em: 8 dez. 2020. JAFARIAN ASL, P.; NIAZMAND, R.; JAHANI, M. Theoretical and experimental assessment of supercritical CO2 in the extraction of phytosterols from rapeseed oil deodorizer distillates. Journal of Food Engineering, v. 269, p. 109748, 2020. Disponível em: https://doi.org/10.1016/j.jfoodeng.2019.109748. Acesso em: 9 set. 2020. KARUNANITHY, C.; MUTHUKUMARAPPAN, K. Effect of extruder parameters and moisture content of switchgrass, prairie cord grass on sugar recovery from enzymatic hydrolysis. Applied Biochemistry and Biotechnology, v. 162, n. 6, p. 1785–1803, 2010. Disponível em: https://doi.org/10.1007/s12010-010-8959-3. Acesso em: 31 jan. 2021. KNEZ, Ž.; PANTIĆ, M.; CÖR, D.; NOVAK, Z.; KNEZ HRNČIČ, M. Are supercritical fluids solvents for the future?. [S. l.]: Elsevier B.V., 2019. Disponível em: https://doi.org/10.1016/j.cep.2019.107532. Acesso em: 9 set. 2020. KOTÍKOVÁ, Z.; ŠULC, M.; LACHMAN, J.; PIVEC, V.; ORSÁK, M.; HAMOUZ, K. Carotenoid profile and retention in yellow-, purple- and red-fleshed potatoes after thermal processing. Food Chemistry, v. 197, p. 992–1001, 2016. Disponível em: https://doi.org/10.1016/j.foodchem.2015.11.072. Acesso em: 29 set. 2020. L. ZABOT, G.; N. MORAES, M.; ANGELA A. MEIRELES, M. Supercritical Technology Applied to the Production of Bioactive Compounds: Research Studies Conducted at LASEFI from 2009 to 2013. Food and Public Health, v. 4, n. 2, p. 36–48, 2014. Disponível em: https://doi.org/10.5923/j.fph.20140402.04. Acesso em: 29 jun. 2021. LEMLIOGLU-AUSTIN, D. Sorghum: obliging alternative and ancient grain. Cereal Foods World, v. 59, p. 12–20, 2014. Disponível em: https://doi.org/10.1094/CFW-59-1-0012. Acesso em: 5 nov. 2020. LI, X.; ZHANG, L.; QI, J.; CHEN, S. The effect of extrusion pretreatment ultrasound‐assisted extraction on chlorogenic acid from sweet potato stems and leaves. Journal of Food Processing and Preservation, v. 44, n. 12, p. e14908, 2020 a. Disponível em: https://doi.org/10.1111/jfpp.14908. Acesso em: 31 jan. 2021. LI, Y.; LV, J.; WANG, L.; ZHU, Y.; SHEN, R. Effects of Millet Bran Dietary Fiber and Millet Flour on Dough Development, Steamed Bread Quality, and Digestion In Vitro. Applied Sciences, v. 10, n. 3, p. 912, 2020 b. Disponível em: https://doi.org/10.3390/app10030912. Acesso em: 19 dez. 2020. LIU, C.; ZHANG, Y.; LIU, W.; WAN, J.; WANG, W.; WU, L.; ZUO, N.; ZHOU, Y.; YIN, Z. Preparation, physicochemical and texture properties of texturized rice produce by Improved Extrusion Cooking Technology. Journal of Cereal Science, v. 54, n. 3, p. 473–480, 2011. Disponível em: https://doi.org/10.1016/j.jcs.2011.09.001. Acesso em: 31 jan. 2021. LOHANI, U. C.; MUTHUKUMARAPPAN, K. Process optimization for antioxidant enriched sorghum flour and apple pomace based extrudates using liquid CO2 assisted extrusion. LWT, v. 86, p. 544–554, 2017. Disponível em: https://doi.org/10.1016/j.lwt.2017.08.034 MANJARE, S. D.; DHINGRA, K. Supercritical fluids in separation and purification: A review. Materials Science for Energy Technologies, v. 2, n. 3, p. 463–484, 2019. Disponível em: https://doi.org/10.1016/j.mset.2019.04.005. Acesso em: 9 set. 2020. MAWOUMA, S.; CONDURACHE, N. N.; TURTURICĂ, M.; CONSTANTIN, O. E.; CROITORU, C.; RAPEANU, G. Chemical Composition and Antioxidant Profile of Sorghum (Sorghumbicolor (L.) Moench) and Pearl Millet (Pennisetumglaucum (L.) R.Br.) Grains Cultivated in the Far-North Region of Cameroon. Foods, v. 11, n. 14, p. 2026, 2022. Disponível em: https://doi.org/10.3390/foods11142026 MENDIOLA, J. A.; HERRERO, M.; CASTRO-PUYANA, M.; IBÁÑEZ, E. Supercritical Fluid Extraction MIRACLES-Multi-product biorefinery of algae: from carbon dioxide and light energy to high-value specialties (EU FP7 project) View project. v. 1, p. 1–17, 2014. Disponível em: https://doi.org/10.1016/B978-0-12-409547-2.10753-X. Acesso em: 15 set. 2020. MINOZZO, M.; POPIOLSKI, A.; DAL PRÁ, V.; TREICHEL, H.; CANSIAN, R. L.; VLADIMIR OLIVEIRA, J.; MOSSI, A. J.; MAZUTTI, M. A. Modeling of the overal kinetic extraction from maytenus aquifolia using compressed CO2. Brazilian Journal of Chemical Engineering, v. 29, n. 4, p. 835–843, 2012. Disponível em: https://doi.org/10.1590/S0104- 66322012000400014. Acesso em: 15 set. 2020. MUTSHINYANI, M.; MASHAU, M. E.; JIDEANI, A. I. O. Bioactive compounds, antioxidant activity and consumer acceptability of porridges of finger millet (Eleusine coracana) flours: effects of spontaneous fermentation. International Journal of Food Properties, v. 23, n. 1, p. 1692–1710, 2020. Disponível em: https://doi.org/10.1080/10942912.2020.1825485. Acesso em: 19 dez. 2020. NIRO, S.; D’AGOSTINO, A.; FRATIANNI, A.; CINQUANTA, L.; PANFILI, G. Gluten-Free Alternative Grains: Nutritional Evaluation and Bioactive Compounds. Foods, v. 8, n. 6, p. 208, 2019. Disponível em: https://doi.org/10.3390/foods8060208. Acesso em: 8 dez. 2020. NOGALA-KAŁUCKA, M.; KAWKA, A.; DWIECKI, K.; SIGER, A. Evaluation of bioactive compounds in cereals. Study of wheat, barley, oat and selected grain products [pdf]. Acta Scientiarum Polonorum Technologia Alimentaria, v. 19, n. 4, p. 405–423, 2020. Disponível em: https://doi.org/10.17306/j.afs.2020.0858. Acesso em: 8 dez. 2020. OBADINA, A. O.; ISHOLA, I. O.; ADEKOYA, I. O.; SOARES, A. G.; DE CARVALHO, C. W. P.; BARBOZA, H. T. Nutritional and physico-chemical properties of flour from native and roasted whole grain pearl millet (Pennisetum glaucum [L.]R. Br.). Journal of Cereal Science, v. 70, p. 247–252, 2016. Disponível em: https://doi.org/10.1016/j.jcs.2016.06.005. Acesso em: 3 jan. 2021. OFOSU, F. K.; CHELLIAH, R.; DALIRI, E. B. M.; SARAVANAKUMAR, K.; WANG, M. H.; OH, D. H. Antibacterial activities of volatile compounds in cereals and cereal by-products. Journal of Food Processing and Preservation, v. 45, n. 2, p. e15081, 2021. Disponível em: https://doi.org/10.1111/JFPP.15081. Acesso em: 7 dez. 2021. ORTIZ-CRUZ, R. A.; RAMÍREZ-WONG, B.; LEDESMA-OSUNA, A. I.; TORRES- CHÁVEZ, P. I.; SÁNCHEZ-MACHADO, D. I.; MONTAÑO-LEYVA, B.; LÓPEZ- CERVANTES, J.; GUTIÉRREZ-DORADO, R. Effect of Extrusion Processing Conditions on the Phenolic Compound Content and Antioxidant Capacity of Sorghum (Sorghum bicolor (L.) Moench) Bran. Plant Foods for Human Nutrition, v. 75, n. 2, p. 252–257, 2020. Disponível em: https://doi.org/10.1007/s11130-020-00810-6. Acesso em: 23 jun. 2020. OSEGUERA-TOLEDO, M. E.; CONTRERAS-JIMÉNEZ, B.; HERNÁNDEZ-BECERRA, E.; RODRIGUEZ-GARCIA, M. E. Physicochemical changes of starch during malting process of sorghum grain. Journal of Cereal Science, v. 95, p. 103069, 2020. Disponível em: https://doi.org/10.1016/j.jcs.2020.103069. Acesso em: 7 dez. 2020. PANAK BALENTIĆ, J.; JOZINOVIĆ, A.; AČKAR, Đ.; BABIĆ, J.; MILIČEVIĆ, B.; BENŠIĆ, M.; JOKIĆ, S.; ŠARIĆ, A.; ŠUBARIĆ, D. Nutritionally improved third generation snacks produced by supercritical CO 2 extrusion I. Physical and sensory properties. Journal of Food Process Engineering, v. 42, n. 2, 2019. Disponível em: https://doi.org/10.1111/jfpe.12961 PARAMAN, I.; SHARIF, M. K.; SUPRIYADI, S.; RIZVI, S. S. H. Agro-food industry byproducts into value-added extruded foods. Food and Bioproducts Processing, v. 96, p. 78– 85, 2015. Disponível em: https://doi.org/10.1016/j.fbp.2015.07.003 PASHA, I.; AHMAD, F. Monosaccharide composition and carbohydrates linkage identification in cereal brans using UHPLC/QqQ-DMRM-MS. Journal of Food Composition and Analysis, v. 96, p. 103732, 2021. Disponível em: https://doi.org/10.1016/J.JFCA.2020.103732. Acesso em: 7 dez. 2021. PEREIRA FILHO. Cultivo do Milheto. [s. l.], 2016. Disponível em: https://www.spo.cnptia.embrapa.br/conteudo?p_p_id=conteudoportlet_WAR_sistemasdeprod ucaolf6_1ga1ceportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id= column-1&p_p_col_count=1&p_r_p_-76293187_sistemaProducaoId=8101&p_r_p_- 996514994_topicoId=9018. Acesso em: 25 jan. 2021. PIMENTEL-MORAL, S.; BORRÁS-LINARES, I.; LOZANO-SÁNCHEZ, J.; ARRÁEZ- ROMÁN, D.; MARTÍNEZ-FÉREZ, A.; SEGURA-CARRETERO, A. Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. The Journal of Supercritical Fluids, v. 147, p. 213–221, 2019. Disponível em: https://doi.org/10.1016/J.SUPFLU.2018.11.005. Acesso em: 15 jul. 2021. PINHEIRO, S. S.; ANUNCIAÇÃO, P. C.; CARDOSO, L. de M.; DELLA LUCIA, C. M.; DE CARVALHO, C. W. P.; QUEIROZ, V. A. V.; PINHEIRO SANT’ANA, H. M. Stability of B vitamins, vitamin E, xanthophylls and flavonoids during germination and maceration of sorghum (Sorghum bicolor L.). Food Chemistry, v. 345, p. 128775, 2021. Disponível em: https://doi.org/10.1016/j.foodchem.2020.128775. Acesso em: 21 dez. 2020. PRZYBYLSKA-BALCEREK, A.; FRANKOWSKI, J.; STUPER-SZABLEWSKA, K. Bioactive compounds in sorghum. European Food Research and Technology, v. 245, n. 5, p. 1075–1080, 2019. Disponível em: https://doi.org/10.1007/s00217-018-3207-0. Acesso em: 8 dez. 2020. PUNIA, H.; TOKAS, J.; MALIK, A.; SATPAL; SANGWAN, S. Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Research Communications, v. 49, n. 3, p. 343–353, 2021. Disponível em: https://doi.org/10.1007/s42976-020-00118-w RUMLER, R.; BENDER, D.; SPERANZA, S.; FRAUENLOB, J.; GAMPER, L.; HOEK, J.; JÄGER, H.; SCHÖNLECHNER, R. Chemical and Physical Characterization of Sorghum Milling Fractions and Sorghum Whole Meal Flours Obtained via Stone or Roller Milling. Foods 2021, Vol. 10, Page 870, v. 10, n. 4, p. 870, 2021. Disponível em: https://doi.org/10.3390/FOODS10040870. Acesso em: 5 dez. 2021. SHIVHARE, R.; LAKHWANI, D.; ASIF, M. H.; CHAUHAN, P. S.; LATA, C. De novo assembly and comparative transcriptome analysis of contrasting pearl millet (Pennisetum glaucum L.) genotypes under terminal drought stress using illumina sequencing. Nucleus (India), v. 63, n. 3, p. 341–352, 2020. Disponível em: https://doi.org/10.1007/s13237-020- 00324-1. Acesso em: 8 dez. 2020. SINGH GUJRAL, H.; SINGH, N. International Journal of Food Properties EXTRUSION BEHAVIOUR AND PRODUCT CHARACTERISTICS OF BROWN AND MILLED RICE GRITS. International Journal of Food Properties, v. 5, n. 2, p. 307–316, 2002. Disponível em: https://doi.org/10.1081/JFP-120005787. Acesso em: 31 jan. 2021. SLAMA, A.; CHERIF, A.; SAKOUHI, F.; BOUKHCHINA, S.; RADHOUANE, L. Fatty acids, phytochemical composition and antioxidant potential of pearl millet oil. Journal fur Verbraucherschutz und Lebensmittelsicherheit, v. 15, n. 2, p. 145–151, 2020. Disponível em: https://doi.org/10.1007/s00003-019-01250-4. Acesso em: 8 dez. 2020. SRIVASTAVA, U.; SAINI, P.; SINGH, A. Effect of Natural Fermentation on Antioxidant Activity of Pearl Millet (Pennisetum glaucum). Current Nutrition & Food Science, v. 16, n. 3, p. 306–313, 2020. Disponível em: https://doi.org/10.2174/1573401314666181115103328. Acesso em: 8 dez. 2020. SRUTHI, N. U.; RAO, P. S.; RAO, B. D. Decortication induced changes in the physico- chemical, anti-nutrient, and functional properties of sorghum. Journal of Food Composition and Analysis, v. 102, p. 104031, 2021. Disponível em: https://doi.org/10.1016/j.jfca.2021.104031 SVENSSON, L.; SEKWATI-MONANG, B.; LUTZ, D. L.; SCHIEBER, R.; GÄNZLE, M. G. Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). Journal of Agricultural and Food Chemistry, v. 58, n. 16, p. 9214–9220, 2010. Disponível em: https://doi.org/10.1021/jf101504v. Acesso em: 7 dez. 2020. TAYLOR, J. R. N. Grain production and consumption: Africa. [S. l.: s. n.]. v. 2. E-book. Disponível em: https://books.google.com/books?hl=pt- BR&lr=&id=ce7tBgAAQBAJ&oi=fnd&pg=PA359&ots=LkUhivuHRb&sig=oe- 1MgjDBF6jLM5i6xC7lpL6_nE. Acesso em: 5 nov. 2020. TAYLOR, J. R. N.; SCHOBER, T. J.; BEAN, S. R. Novel food and non-food uses for sorghum and millets. [S. l.]: Academic Press, 2006. Disponível em: https://doi.org/10.1016/j.jcs.2006.06.009. Acesso em: 5 nov. 2020. TEJEDOR-CALVO, E.; GARCÍA-BARREDA, S.; SÁNCHEZ, S.; MORALES, D.; SOLER- RIVAS, C.; RUIZ-RODRIGUEZ, A.; SANZ, M. Á.; GARCIA, A. P.; MORTE, A.; MARCO, P. Supercritical CO2 extraction method of aromatic compounds from truffles. LWT, v. 150, p. 111954, 2021. Disponível em: https://doi.org/10.1016/J.LWT.2021.111954. Acesso em: 15 jul. 2021. TIRADO, D. F.; LATINI, A.; CALVO, L. The encapsulation of hydroxytyrosol-rich olive oil in Eudraguard® protect via supercritical fluid extraction of emulsions. Journal of Food Engineering, v. 290, p. 110215, 2021. Disponível em: https://doi.org/10.1016/j.jfoodeng.2020.110215. Acesso em: 9 set. 2020. TYMCHAK, D. O.; KUIANOV, Y. Y. PRODUCTION OF POPPED SORGHUM WITH USING MICROWAVE TREATMENT. Grain Products and Mixed Fodder’s, v. 18, n. 2, 2018. Disponível em: https://doi.org/10.15673/gpmf.v18i2.950. Acesso em: 7 dez. 2020. VAN DER KAMP, J. W.; POUTANEN, K.; SEAL, C. J.; RICHARDSON, D. P. The HEALTHGRAIN definition of “whole grain”. Food and Nutrition Research, v. 58, n. 1, 2014. Disponível em: https://doi.org/10.3402/FNR.V58.22100/SUPPL_FILE/ZFNR_A_11817518_SM0001.PDF. Acesso em: 2 jun. 2022. VARGAS-SOLÓRZANO, J. W.; CARVALHO, C. W. P.; TAKEITI, C. Y.; ASCHERI, J. L. R.; QUEIROZ, V. A. V. Physicochemical properties of expanded extrudates from colored sorghum genotypes. Food Research International, v. 55, p. 37–44, 2014. Disponível em: https://doi.org/10.1016/j.foodres.2013.10.023. Acesso em: 6 out. 2020. VIGANÓ, J.; COUTINHO, J. P.; SOUZA, D. S.; BARONI, N. A. F.; GODOY, H. T.; MACEDO, J. A.; MARTÍNEZ, J. Exploring the selectivity of supercritical CO2 to obtain nonpolar fractions of passion fruit bagasse extracts. Journal of Supercritical Fluids, v. 110, | pt_BR |
| dc.subject.cnpq | Ciência e Tecnologia de Alimentos | pt_BR |
| Appears in Collections: | Doutorado em Ciência e Tecnologia de Alimentos | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| André Leonardo dos Santos.Pdf | 2.38 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
