Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/22167Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Rabello, Carla Alves | - |
| dc.date.accessioned | 2025-06-10T12:07:51Z | - |
| dc.date.available | 2025-06-10T12:07:51Z | - |
| dc.date.issued | 2025-02-28 | - |
| dc.identifier.citation | RABELLO, Carla Alves. Expressão diferencial de genes de vias imunológicas envolvidas na resposta de Rhipicephalus microplus (Acari: Ixodidae) à infecção por Theileria equi (Piroplasmida: Theileridae). 2025. 116 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/22167 | - |
| dc.description.abstract | Theileria equi é um protozoário intraeritrocítico causador da piroplasmose equina, uma doença que acomete equídeos e é responsável por gerar prejuízos à saúde e à economia do setor equestre mundialmente. No Brasil, Rhipicephalus microplus é a única espécie de carrapato com capacidade de atuar como vetor de T. equi em condições experimentais. Contudo, os mecanismos envolvidos nesta interface patógeno-vetor ainda não foram completamente esclarecidos. Assim, o objetivo deste trabalho foi analisar a expressão diferencial de genes envolvidos no metabolismo redox e nas principais vias de sinalização imunológica de R. microplus em resposta à infecção por T. equi. Para isso, um equino portador crônico de T. equi (controle positivo) e um equino não infectado (controle negativo) foram infestados com larvas de R. microplus livres de patógenos. Após o período de fixação e repasto sanguíneo, larvas e ninfas inteiras foram coletadas e armazenadas individualmente, enquanto as fêmeas foram dissecadas e o intestino e a glândula salivar de cada exemplar foi armazenado de forma individual. Em seguida, foi feita a extração do RNA e a síntese do cDNA de cada amostra, os quais foram submetidos ao ensaio de expressão gênica relativa através da qPCR. No primeiro capítulo, foram analisados genes relacionados ao metabolismo redox de R. microplus em resposta à infecção por T. equi. Assim, observou-se uma regulação positiva tanto de genes pró- oxidantes quanto de genes antioxidantes no intestino e na glândula salivar de fêmeas ingurgitadas infectadas por T. equi, com destaque para os genes que codificam para as enzimas dual oxidases (pró-oxidante) e catalase (antioxidante), sendo ambos mais expressos no grupo infectado. Na glândula salivar, porém, o gene que codifica para a enzima glutationa-s- transferase foi significativamente suprimido no grupo infectado, sugerindo que tal enzima pode ter papel fundamental na resposta antioxidante neste tecido. Nos estágios de larva e ninfa não foi observada uma resposta oxidativa significativa. No segundo capítulo, foram analisados genes envolvidos nas vias de sinalização imunológica Toll, IMD e JAK/STAT, além de genes que codificam para os peptídeos antimicrobianos microplusina, defensina e ixodidina. A infecção por T. equi estimulou a ativação das vias Toll e IMD no intestino e na glândula salivar de R. microplus, resultando em uma regulação positiva dos genes microplusina e defensina em ambos os tecidos. A via JAK/STAT, contudo, foi modulada negativamente no intestino em resposta à infecção por T. equi, o que pode ter ocasionado a expressão diferencial não significativa do gene ixodidina observada neste tecido. Nos estágios de larva e ninfa não foi observada uma resposta significativa à infecção por T. equi através das vias analisadas. Os resultados obtidos neste estudo permitem elucidar os mecanismos moleculares envolvidos na interação entre T. equi e R. microplus, contribuindo para uma melhor compreensão acerca de como o carrapato responde à infecção pelo protozoário. Tais informações auxiliam na identificação de moléculas-chave com potencial para serem utilizadas no desenvolvimento de novas estratégias de prevenção e controle da piroplasmose equina no país. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Piroplasmose equina | pt_BR |
| dc.subject | Rhipicephalus microplus | pt_BR |
| dc.subject | interação patógeno-vetor | pt_BR |
| dc.subject | Equine piroplasmosis | pt_BR |
| dc.subject | pathogen-vector interface | pt_BR |
| dc.title | Expressão diferencial de genes de vias imunológicas envolvidas na resposta de Rhipicephalus microplus (Acari: Ixodidae) à infecção por Theileria equi (Piroplasmida: Theileridae) | pt_BR |
| dc.title.alternative | Differential expression of immune pathways genes in the tick Rhipicephalus microplus (Acari: Ixodidae) in response to Theileria equi (Piroplasmida: Theileridae) infection. | en |
| dc.type | Dissertação | pt_BR |
| dc.description.abstractOther | Theileria equi is an intraerythrocytic protozoan that causes equine piroplasmosis, a disease that affects equids and is responsible for significant health and economic losses to the global equine industry. In Brazil, Rhipicephalus microplus is the only tick species experimentally proven to act as a vector for T. equi. However, the mechanisms involved in this pathogen-vector interaction have not yet been fully elucidated. Therefore, the aim of this study was to analyze the differential expression of genes involved in redox metabolism and the main immune signaling pathways of R. microplus in response to T. equi infection. For this, a chronically infected equine with T. equi (positive control) and a non-infected equine (negative control) were infested with pathogen-free larvae of R. microplus. After the fixation and blood feeding period, whole larvae and nymphs were collected and stored individually, while the females were dissected, and the midgut, ovary, and salivary gland of each specimen were stored separately. RNA was then extracted, and cDNA was synthesized from each sample, followed by relative gene expression assays. In the first chapter, genes related to the redox metabolism of R. microplus in response to T. equi infection were analyzed. A upregulation of both pro-oxidant and antioxidant genes was observed in the midgut and salivary gland of engorged females infected by T. equi, with a particular emphasis on the genes encoding the enzymes dual oxidases (pro-oxidant) and catalase (antioxidant), both being more expressed in the infected group. However, in the salivary gland, the gene encoding the enzyme glutathione-S-transferase was significantly suppressed in the infected group, suggesting that this enzyme may play a key role in the antioxidant response in this tissue. No significant oxidative response was observed in the larval and nymph stages, nor in the ovaries of engorged females. In the second chapter, genes involved in the Toll, IMD, and JAK/STAT immune signaling pathways, as well as genes encoding the antimicrobial peptides microplusin, defensin, and ixodidin, were analyzed. T. equi infection stimulated the activation of the Toll and IMD pathways in the midgut and salivary gland of R. microplus, resulting in a positive regulation of the microplusin and defensin genes in both tissues. However, the JAK/STAT pathway was suppressed in the midgut in response to T. equi infection, which may have led to the non-significant differential expression of the ixodidin gene observed in this tissue. No significant response to T. equi infection through the analyzed pathways was observed in the larval and nymph stages, nor in the ovaries of engorged females. The results obtained in this study provide insights into the molecular mechanisms involved in the interaction between T. equi and R. microplus, contributing to a better understanding of how the tick responds to protozoan infection. Such information aids in identifying key molecules with potential to be used in the development of new strategies for the prevention and control of equine piroplasmosis in the country. | en |
| dc.contributor.advisor1 | Santos, Huarrisson Azevedo | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-8218-3626 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/3751609492049306 | pt_BR |
| dc.contributor.advisor-co1 | Paulino, Patrícia Gonzaga | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0001-9326-7609 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/5946161927068059 | pt_BR |
| dc.contributor.referee1 | Santos, Huarrisson Azevedo | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-8218-3626 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/3751609492049306 | pt_BR |
| dc.contributor.referee2 | Gôlo, Patrícia Silva | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0003-1854-7488 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/3935275742919097 | pt_BR |
| dc.contributor.referee3 | Godinho, Rodrigo Maciel da Costa | - |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/5593991918808836 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/4749180497231290 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Veterinária | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Ciências Veterinárias | pt_BR |
| dc.relation.references | 86 MAITI, S. K. et al. A CASE REPORT ON EQUINE PIROPLASMOSIS IN A THOROUGHBRED HORSE FROM DURG, CHHATTISGARH AND ITS THERAPEUTIC MANAGEMENT, Haryana Vet, v. 60, p. 114-116, 2021. MAJI, C. et al. Lumefantrine and o-choline – Parasite metabolism specific drug molecules inhibited in vitro growth of Theileria equi and Babesia caballi in MASP culture system. Ticks and Tick-borne Diseases, v. 10, n. 3, p. 568–574, jan. 2019. MALEKIFARD, F. Detection of Theileria equi and Babesia caballi using microscopic and molecular methods in horses in suburb of Urmia, Iran. Veterinary Research Forum, v. 5, n. 2, p. 129-133, jun. 2014. MANSFIELD, K. L. et al. Tick-borne pathogens induce differential expression of genes promoting cell survival and host resistance in Ixodes ricinus cells. Parasites & Vectors, v. 10, n. 1, fev. 2017. MARINHO, H. S. et al. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biology, v. 2, p. 535–562, 2014. MARQUES, R. et al. Climate change implications for the distribution of the babesiosis and anaplasmosis tick vector, Rhipicephalus (Boophilus) microplus. Veterinary Research, v. 51, n. 1, jun. 2020. MARTIN, R. Equine piroplasmosis: the temporary importation of seropositive horses into Australia. Australian Veterinary Journal, v. 77, n. 5, p. 308–309, maio 1999. MARTINS, L. A. et al. The Transcriptome of the Salivary Glands of Amblyomma aureolatum Reveals the Antimicrobial Peptide Microplusin as an Important Factor for the Tick Protection Against Rickettsia rickettsii Infection. Frontiers in Physiology, v. 10, 3 maio 2019. MARTINS, L. A. et al. Ixochymostatin, a trypsin inhibitor-like (TIL) protein from Ixodes scapularis, inhibits chymase and impairs vascular permeability. International Journal of Biological Macromolecules, v. 284, n. 1, p. 137949–137949, jan. 2025. MASCIARELLI, S. & SITIA, R. Building and operating an antibody factory: Redox control during B to plasma cell terminal differentiation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, v. 1783, n. 4, p. 578–588, abr. 2008. MAZARI, A. M. A. et al. The Multifaceted Role of Glutathione S-Transferases in Health and Disease. Biomolecules, v. 13, n. 4, p. 688–688, 18 abr. 2023. McCLURE, E. E. et al. p47 licenses activation of the immune deficiency pathway in the tick Ixodes scapularis. Proceedings of the National Academy of Sciences of the United States of America, v. 116, n. 1, p. 205–210, dez. 2018. MEHLHORN, H. & SCHEIN, E. Redescription of Babesia equi Laveran, 1901 as Theileria equi Mehlhorn, Schein 1998. Parasitology Research, v. 84, n. 6, p. 467–475, 6 abr. 1998. MENDOZA, F. J. et al. New insights in the diagnosis and treatment of equine piroplasmosis: pitfalls, idiosyncrasies, and myths. Frontiers in Veterinary Science, v. 11, ago. 2024. 87 MIYOSHI, T. et al. A Kunitz-type proteinase inhibitor from the midgut of the ixodid tick, Haemaphysalis longicornis, and its endogenous target serine proteinase. Molecular and Biochemical Parasitology, v. 170, n. 2, p. 112–115, dez. 2009. MOLTMANN, U. G. et al. Ultrastructural Study on the Development of Babesia equi (Coccidia: Piroplasmia) in the Salivary Glands of its Vector Ticks1. The Journal of Protozoology, v. 30, n. 2, p. 218–225, maio 1983. MORETTI, A. et al. Prevalence and diagnosis of Babesia and Theileria infections in horses in Italy: A preliminary study. Veterinary Journal, v. 184, n. 3, p. 346–350, jun. 2010. MÜLLER, J. et al. Repurposing of antiparasitic drugs: the hydroxy-naphthoquinone buparvaquone inhibits vertical transmission in the pregnant neosporosis mouse model. Veterinary Research, v. 47, n. 32, fev. 2016. MURPHY, M. P. How mitochondria produce reactive oxygen species. Biochemical Journal, v. 417, n. 1, p. 1–13, dez. 2008. NAIR, P. et al. Characterization and expression analysis of phospholipid hydroperoxide glutathione peroxidase cDNA from Chironomus riparius on exposure to cadmium. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, v. 163, n. 1, p. 37–42, set. 2012. NAKAJIMA, Y. et al. Antibacterial Hemoglobin Fragments from the Midgut of the Soft Tick, Ornithodoros moubata (Acari: Argasidae). Journal of Medical Entomology, v. 40, n. 1, p. 78–81, 1 jan. 2003. NAKAMURA, H. et al. REDOX REGULATION OF CELLULAR ACTIVATION. Annual Review of Immunology, v. 15, n. 1, p. 351–369, abr. 1997. NANDI, A. et al. Esterase and glutathione S-transferase levels associated with synthetic pyrethroid resistance in Hyalomma anatolicum and Rhipicephalus microplus ticks from Punjab, India. Experimental and Applied Acarology, v. 66, n. 1, p. 141–157, 5 fev. 2015. NARASIMHAN, S. et al. A Tick Antioxidant Facilitates the Lyme Disease Agent’s Successful Migration from the Mammalian Host to the Arthropod Vector. Cell Host & Microbe, v. 2, n. 1, p. 7–18, jul. 2007. NARASIMHAN, S. et al. Gut Microbiota of the Tick Vector Ixodes scapularis Modulate Colonization of the Lyme Disease Spirochete. Cell Host & Microbe, v. 15, n. 1, p. 58–71, jan. 2014. NAVA, S. et al. Assessment of habitat suitability for the cattle tick Rhipicephalus (Boophilus) microplus in temperate areas. Research in Veterinary Science, v. 150, p. 10–21, dez. 2022. NAVARRO-YEPES, J. et al. Oxidative Stress, Redox Signaling, and Autophagy: Cell DeathVersusSurvival. Antioxidants & Redox Signaling, v. 21, n. 1, p. 66–85, jul. 2014. 88 NEYEN, C. et al. Tissue- and Ligand-Specific Sensing of Gram-Negative Infection in Drosophila by PGRP-LC Isoforms and PGRP-LE. The Journal of Immunology, v. 189, n. 4, p. 1886–1897, 6 jul. 2012. NICARETTA, J. E. et al. Rhipicephalus microplus seasonal dynamic in a Cerrado biome, Brazil: An update data considering the global warming. Veterinary Parasitology, v. 296, p. 109506, ago. 2021. NIJHOF, A. M. et al. Selection of reference genes for quantitative RT-PCR studies in Rhipicephalus (Boophilus) microplus and Rhipicephalus appendiculatus ticks and determination of the expression profile of Bm86. BMC Molecular Biology, v. 10, n. 1, p. 112, 2009. NUGRAHA, A. B. et al. Screening the Medicines for Malaria Venture Pathogen Box against piroplasm parasites. International Journal for Parasitology: Drugs and Drug Resistance, v. 10, p. 84–90, ago. 2019. NUTTALL, G. H. F. & STRICKLAND, C. On the Occurrence of two Species of Parasites in Equine “Piroplasmosis” or “Biliary Fever.” Parasitology, v. 5, n. 1, p. 65–96, fev. 1912. NYANGIWE, N. & HORAK, I. G. Goats as alternative hosts of cattle ticks. Onderstepoort J Vet Res, v. 74, n. 1, set. 2007. OKADO-MATSUMOTO, A. & FRIDOVICH, I. Subcellular Distribution of Superoxide Dismutases (SOD) in Rat Liver. Journal of Biological Chemistry, v. 276, n. 42, p. 38388– 38393, out. 2001. OLIVEIRA, J. H. M. et al. Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika. PLOS Neglected Tropical Diseases, v. 11, n. 4, p. e0005525, 5 abr. 2017. O’NEAL, A. J. et al. Croquemort elicits activation of the immune deficiency pathway in ticks. Proceedings of the National Academy of Sciences, v. 120, n. 20, p. e2208673120, maio 2023. ONYICHE, T. E. et al. A Review on Equine Piroplasmosis: Epidemiology, Vector Ecology, Risk Factors, Host Immunity, Diagnosis and Control. International Journal of Environmental Research and Public Health, v. 16, n. 10, maio 2019. PALMER, W. J. & JIGGINS, F. M. Comparative Genomics Reveals the Origins and Diversity of Arthropod Immune Systems. Molecular Biology and Evolution, v. 32, n. 8, p. 2111–2129, abr. 2015. PASOLINI, M. P. et al. Inflammatory Myopathy in Horses With Chronic Piroplasmosis. Veterinary Pathology, v. 55, n. 1, p. 133–143, jul. 2017. PAULINO, P. G. et al. Differential Expression of Immune Genes in the Rhipicephalus microplus Gut in Response to Theileria equi Infection. Pathogens, v. 11, n. 12, p. 1478–1478, dez. 2022. 89 PECKLE, M. et al. Molecular epidemiology of Theileria equi in horses and their association with possible tick vectors in the state of Rio de Janeiro, Brazil. Parasitology Research, v. 112, n. 5, p. 2017–2025, mar. 2013. PECKLE, M. et al. Dynamics of Theileria equi Infection in Rhipicephalus (Boophilus) microplus during the Parasitic Phase in a Chronically Infected Horse. Pathogens, v. 11, n. 5, p. 525, maio 2022. PELC, R. S. et al. Defending the fort: a role for defensin‐2 in limiting Rickettsia montanensis infection of Dermacentor variabilis. Insect Molecular Biology, v. 23, n. 4, p. 457–465, 29 abr. 2014. PEREIRA, L. S. et al. Production of Reactive Oxygen Species by Hemocytes from the Cattle Tick Boophilus microplus. Experimental Parasitology, v. 99, n. 2, p. 66–72, out. 2001. PHIPPS, L. P. & OTTER, A. Transplacental transmission of Theileria equi in two foals born and reared in the United Kingdom. Veterinary Record, v. 154, n. 13, p. 406–408, mar. 2004. PIANTEDOSI et al. Seroprevalence and risk factors associated with Babesia caballi and Theileria equi infections in donkeys from Southern Italy. The Veterinary Journal, v. 202, n. 3, p. 578-582, sep. 2014. QABLAN, M. A. et al. Quest for the piroplasms in camels: Identification of Theileria equi and Babesia caballi in Jordanian dromedaries by PCR. Veterinary parasitology, v. 186, n. 3-4, p. 456–460, maio 2012. RAHAL, A. et al. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. BioMed Research International, v. 2014, p. 1–19, 2014. RAMIREZ, J. L. et al. Peptidoglycan Recognition Proteins (PGRPs) Modulates Mosquito Resistance to Fungal Entomopathogens in a Fungal-Strain Specific Manner. Frontiers in Cellular and Infection Microbiology, v. 9, 22 jan. 2020. RANA, V. S. et al. Dome1–JAK–STAT signaling between parasite and host integrates vector immunity and development. Science, v. 13, n. 379, p. 6628, jan. 2023. RIZK, M. A. et al. Discovering the in vitro potent inhibitors against Babesia and Theileria parasites by repurposing the Malaria Box: A review. Veterinary Parasitology, v. 274, p. 108895, out. 2019. RIZZOLI, A. et al. Parasites and wildlife in a changing world: The vector-host- pathogen interaction as a learning case. International Journal for Parasitology: Parasites and Wildlife, v. 9, p. 394–401, ago. 2019. ROSA, R. D. et al. Exploring the immune signalling pathway-related genes of the cattle tick Rhipicephalus microplus: From molecular characterization to transcriptional profile upon microbial challenge. Developmental & Comparative Immunology, v. 59, p. 1–14, jun. 2016. ROSA, A. C. et al. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules, v. 26, n. 7, p. 1844, 25 mar. 2021. 90 ROSCHE, K. L. et al. Arthropods Under Pressure: Stress Responses and Immunity at the Pathogen-Vector Interface. Frontiers in Immunology, v. 11, n. 629777, 15 fev. 2021. ROSCHE, K. L. et al. PERK-mediated antioxidant response is key for pathogen persistence in ticks. MSphere, v. 8, n. 5, 24 out. 2023. ROTHSCHILD, C. M. Equine Piroplasmosis. Journal of Equine Veterinary Science, v. 33, n. 7, p. 497–508, jul. 2013. RUDENKO, N. et al. Differential Expression of Ixodes ricinus Tick Genes Induced by Blood Feeding or Borrelia burgdorferi Infection. Journal of Medical Entomology, v. 42, n. 1, p. 36– 41, jan. 2005. RUDENKO, N. et al. Gene organization of a novel defensin of Ixodes ricinus: first annotation of an intron/exon structure in a hard tick defensin gene and first evidence of the occurrence of two isoforms of one member of the arthropod defensin family. Insect Molecular Biology, v. 16, n. 4, p. 501–507, ago. 2007. RUSSELL, T. A. et al. Imd pathway-specific immune assays reveal NF-κB stimulation by viral RNA PAMPs in Aedes aegypti Aag2 cells. PLOS Neglected Tropical Diseases, v. 15, n. 2, p. e0008524, 16 fev. 2021. SABADIN, G. A. et al. Effect of recombinant glutathione S-transferase as vaccine antigen against Rhipicephalus appendiculatus and Rhipicephalus sanguineus infestation. Vaccine, v. 35, n. 48, p. 6649–6656, 19 out. 2017. SABADIN, G. A. et al. Control of Redox Homeostasis in Tick Blood Feeding. Acta Scientiae Veterinariae, v. 47, n. 1, 27 jul. 2019. SABADIN, G. A. et al. An insight into the functional role of antioxidant and detoxification enzymes in adult Rhipicephalus microplus female ticks. Parasitology International, v. 81, p. 102274–102274, 19 dez. 2021. SAMBROOK, J. et al. Molecular Cloning: A Laboratory Manual, 2. Ed. Cold Spring Harbor Laboratory Press, v. 1, 1989. SCHEIN, E. et al. Babesia equi (Laveran 1901) 1. Development in horses and in lymphocyte culture. Tropenmed Parasitology, v. 32, n. 4, p. 223–7, dez. 1981. SCOLES, G. A. & UETI, M. W. Vector Ecology of Equine Piroplasmosis. Annual Review of Entomology, v. 60, n. 1, p. 561–580, jan. 2015. SEARS, K. et al. Imidocarb Dipropionate Lacks Efficacy against Theileria haneyi and Fails to Consistently Clear Theileria equi in Horses Co-Infected with T. haneyi. Pathogens, v. 9, n. 12, p. 1035–1035, dez. 2020. SEVERO, M. S. et al. The E3 Ubiquitin Ligase XIAP Restricts Anaplasma phagocytophilum Colonization of Ixodes scapularis Ticks. The Journal of Infectious Diseases, v. 208, n. 11, p. 1830–1840, jul. 2013. 91 SHAW, D. K. et al. Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nature Communications, v. 14, n. 8, p. 14401, fev. 2017. SHIN, M. et al. Subpopulation of Macrophage-Like Plasmatocytes Attenuates Systemic Growth via JAK/STAT in the Drosophila Fat Body. Frontiers in Immunology, v. 31, n. 11, jan. 2020. SIES, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biology, v. 11, p. 613–619, abr. 2017. SIES, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants, v. 9, n. 9, p. 852, set. 2020. SIES, H. & JONES, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology, v. 21, mar. 2020. SIES, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology, v. 23, n. 7, p. 499–515, fev. 2022. SILVA, F. D. et al. Structure and Mode of Action of Microplusin, a Copper II-chelating Antimicrobial Peptide from the Cattle Tick Rhipicephalus (Boophilus) microplus. Journal of Biological Chemistry, v. 284, n. 50, p. 34735–34746, dez. 2009. SILVA, F. D. et al. Effects of microplusin, a copper-chelating antimicrobial peptide, against Cryptococcus neoformans. FEMS Microbiology Letters, v. 324, n. 1, p. 64–72, set. 2011. SILVA, M. G. et al. Assessment of Draxxin® (tulathromycin) as an inhibitor of in vitro growth of Babesia bovis, Babesia bigemina and Theileria equi. International Journal for Parasitology-Drugs and Drug Resistance, v. 8, n. 2, p. 265–270, 1 ago. 2018. SILVERMAN, N. et al. Immune Activation of NF-κB and JNK Requires Drosophila TAK1. Journal of Biological Chemistry, v. 278, n. 49, p. 48928–48934, dez. 2003. ŠIMO, L. et al. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Frontiers in Cellular and Infection Microbiology, v. 7, 22 jun. 2017. SINGH, N. et al. Synergistic Effects of Heavy Metals and Pesticides in Living Systems. Frontiers in Chemistry, v. 5, n. 70, out. 2017. SMITH, A. A. & PAL, U. Immunity-related genes in Ixodes scapularis: perspectives from genome information. Frontiers in Cellular and Infection Microbiology, v. 22, n. 4, ago. 2014. SMITH, A. A. et al. Cross-Species Interferon Signaling Boosts Microbicidal Activity within the Tick Vector. Cell Host & Microbe, v. 20, n. 1, p. 91–98, jul. 2016. SOARES, J. F. et al. Parasitismo em ser humano por B. microplus (Acari: Ixodidae) em Santa Maria, RS, Brasil. Ciencia Rural, v. 37, n. 5, p. 1495–1497, out. 2007. 92 SONENSHINE, D. E. & HYNES, W. L. Molecular characterization and related aspects of the innate immune response in ticks. Frontiers in Bioscience, v. 1, n. 13, p. 7046, maio 2008. SONENSHINE, D. E. & MACALUSO, K. R. Microbial Invasion vs. Tick Immune Regulation. Frontiers in Cellular and Infection Microbiology, v. 7, n. 390, set. 2017. SUMBRIA, D. et al. Equine Piroplasmosis: Current status. Veterinaria, v. 2, n. 1, p. 9-14, jan. 2014. SUNYAKUMTHORN, P. et al. Gene Expression of Tissue-Specific Molecules in Ex vivo Dermacentor variabilis (Acari: Ixodidae) During Rickettsial Exposure. Journal of Medical Entomology, v. 50, n. 5, p. 1089–1096, 1 set. 2013. SVENSSON, M. J. & LARSSON, J. Thioredoxin-2 affects lifespan and oxidative stress in Drosophila. Hereditas, v. 144, n. 1, p. 25–32, 22 fev. 2007. SZCZOTKO, M. et al. Tick-Borne pathogens and defensin genes expression: A closer look at Ixodes ricinus and Dermacentor reticulatus. Developmental & Comparative Immunology, v. 160, p. 105231–105231, jul. 2024. SYKIOTIS, G. P. & BOHMANN, D. Keap1/Nrf2 Signaling Regulates Oxidative Stress Tolerance and Lifespan in Drosophila. Developmental Cell, v. 14, n. 1, p. 76–85, jan. 2008. TAMZALI, Y. Equine piroplasmosis: An updated review. Equine Veterinary Education, v. 25, n. 11, p. 590–598, out. 2013. TANJI, T. et al. Toll and IMD Pathways Synergistically Activate an Innate Immune Response in Drosophila melanogaster. Molecular and Cellular Biology, v. 27, n. 12, p. 4578–4588, 16 abr. 2007. TEW, K. D. et al. The role of glutathione S-transferase P in signaling pathways and S- glutathionylation in cancer. Free Radical Biology and Medicine, v. 51, n. 2, p. 299–313, jul. 2011. TIROSH-LEVY, S. et al. Twenty Years of Equine Piroplasmosis Research: Global Distribution, Molecular Diagnosis, and Phylogeny. Pathogens, v. 9, n. 11, p. 926, nov. 2020. TSAI, C. W. et al. Drosophila melanogaster Mounts a Unique Immune Response to the Rhabdovirus Sigma virus. Applied and Environmental Microbiology, v. 74, n. 10, p. 3251– 3256, 15 maio 2008. UETI, M. W. et al. Ability of the vector tick Boophilus microplus to acquire and transmit Babesia equi following feeding on chronically infected horses with low-level parasitemia. Journal of Clinical Microbiology, v. 43, n. 8, p. 3755-3759, 2005. UILENBERG, G. Babesia — A historical overview. Veterinary Parasitology, v. 138, n. 1-2, p. 3–10, maio 2006. VALANNE, S. et al. The Drosophila Toll Signaling Pathway. The Journal of Immunology, v. 186, n. 2, p. 649–656, jan. 2011. 93 VILLAR, S. F. et al. The multifaceted nature of peroxiredoxins in chemical biology. Current Opinion in Chemical Biology, v. 76, p. 102355, out. 2023. WEIDINGER, A. & KOZLOV, A. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction. Biomolecules, v. 5, n. 2, p. 472–484, abr. 2015. WISE, L. N. et al. Review of Equine Piroplasmosis. Journal of Veterinary Internal Medicine, v. 27, n. 6, p. 1334–1346, ago. 2013. WOOD, Z. A. et al. Peroxiredoxin Evolution and the Regulation of Hydrogen Peroxide Signaling. Science, v. 300, n. 5619, p. 650–653, abr. 2003. WU, Y. et al. In Vitro Pharmacodynamics and Bactericidal Mechanism of Fungal Defensin- Derived Peptides NZX and P2 against Streptococcus agalactiae. Microorganisms, v. 10, n. 5, p. 881–881, 22 abr. 2022. XI, Z. et al. The Aedes aegypti Toll Pathway Controls Dengue Virus Infection. PLoS Pathogens, v. 4, n. 7, p. e1000098, jul. 2008. XIE, Y. et al. GPX4 in cell death, autophagy, and disease. Autophagy, v. 19, n. 10, p. 2621– 2638, 4 jun. 2023. XUAN, J. et al. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resistance Updates, v. 68, p. 100954, mar. 2023. YANG, X. et al. A Dityrosine Network Mediated by Dual Oxidase and Peroxidase Influences the Persistence of Lyme Disease Pathogens within the Vector. The Journal of Biological Chemestry, v. 289, n. 18, p. 12813–12822, 2 maio 2014. ZAPF, E. & SCHEIN, E. New findings in the development of Babesia (Theileria) equi (Laveran, 1901) in the salivary glands of the vector ticks Hyalomma species. Parasitology Research, v. 80, n. 7, p. 543–548, jan. 1994. ZAUGG, J. L. & LANE, V. M. Evaluations of buparvaquone as a treatment for equine babesiosis (Babesia equi). Am J Vet Res. , v. 50, n. 5, p. 782–785, maio 1989. ZELKO, I. N. et al. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free radical biology & medicine, v. 33, n. 3, p. 337–49, 2002. ZHANG, L. & GALLO, R. L. Antimicrobial peptides. Current Biology, v. 26, n. 1, p. 14–19, jan. 2016 ZHONG, L. et al. Structure and mechanism of mammalian thioredoxin reductase: The active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine- selenocysteine sequence. Proceedings of the National Academy of Sciences of the United States of America, v. 97, n. 11, p. 5854–5859, maio 2000. ZITO, E. ERO1: A protein disulfide oxidase and H2O2 producer. Free Radical Biology & Medicine, v. 83, p. 299–304, 1 jun. 2015. 94 ZOBBA, R. et al. Clinical and Laboratory Findings in Equine Piroplasmosis. Journal of Equine Veterinary Science, v. 28, n. 5, p. 301–308, maio 2008. ZUMAYA-ESTRADA, F. A. et al. Comparative genomics analysis of triatomines reveals common first line and inducible immunity-related genes and the absence of Imd canonical components among hemimetabolous arthropods. Parasites & Vectors, v. 11, n. 48, jan. 2018. | pt_BR |
| dc.subject.cnpq | Parasitologia | pt_BR |
| Appears in Collections: | Mestrado em Ciências Veterinárias | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2025 - Carla Alves Rabello.pdf | 1.76 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
