Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/22172
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLuz, Camila Calazans da Silva-
dc.date.accessioned2025-06-10T16:18:08Z-
dc.date.available2025-06-10T16:18:08Z-
dc.date.issued2024-08-19-
dc.identifier.citationLUZ, Camila Calazans da Silva. Estudos com chuva simulada: análise cienciométrica dos dados no Brasil e processo erosivo em zona de transição Cerrado-Amazônia utilizando padrões de precipitação. 2024. 80 f. Tese (Doutorado em Agronomia, Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2024.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/22172-
dc.description.abstractSimuladores de chuva são uma ferramenta importante para o estudo da erosão do solo e outros processos hidrológicos como infiltração e escoamento superficial. Nesta Tese, apresenta-se uma análise bibliométrica e cienciométrica dos estudos com chuva simulada no Brasil, fornecendo uma visão geral do estado da arte da pesquisa nacional nessa temática. Os resultados indicam um total de 143 artigos publicados nos últimos 37 anos, e as principais áreas de pesquisa abordadas nos artigos são erosão do solo (57,34%), infiltração de água no solo (24,47%), perdas de nutrientes (9,8%) e desenvolvimento e calibração de simuladores de chuva (8,39%). A análise também revelou que o número de artigos publicados em periódicos internacionais de alto fator de impacto tem aumentado nos últimos anos. A maioria dos artigos (49,65%) refere-se a estudos realizados por instituições localizadas nas regiões sul e sudeste do Brasil. Além disso, há uma grande lacuna de estudos sobre chuva simulada em outras regiões do Brasil, onde biomas importantes como o Cerrado, a Amazônia e a Caatinga estão localizados. Além da análise bibliométrica, esta Tese aborda a erosão hídrica em áreas de cultivo de soja, milho e pastagem, localizadas no norte do estado de Mato Grosso, considerando diferentes condições de cobertura e padrões de precipitação Constante, Avançado, Intermediário e Atrasado, simulados pelo InfiAsper. Na área de soja, as chuvas foram aplicadas na presença da cultura sobre palhada de milho, apenas com palhada, em solo sem cobertura, e em solo revolvido, enquanto nas áreas de milho e pastagem foram consideradas apenas três coberturas (presença da cultura, solo sem cobertura e solo revolvido). A presença de cobertura vegetal demonstrou ser fundamental para reduzir a erosão do solo. Nas culturas da soja e do milho, a remoção da cobertura aumentou a taxa máxima de escoamento em 51,3% e 22,0%, respectivamente. Nas áreas de pastagem, a remoção da cobertura vegetal elevou a taxa máxima de escoamento em 47,29%. Os padrões de precipitação intermediário (IN) e avançado (AV) proporcionaram maiores perdas de solo em todas as coberturas, com destaque para a soja (até 5,79 g m−2) e milho (até 3,78 g m−2). O processo erosivo foi intensificado na condição de ausência de cobertura, demonstrando a sua importância na proteção do solo. Dessa forma, os resultados desta pesquisa não apenas preenchem lacunas no conhecimento atual sobre chuva simulada no Brasil, mas também oferecem informações valiosas para promover práticas sustentáveis e estratégias de conservação em ambientes agrícolas, especialmente em regiões ecologicamente sensíveis como a zona de transição Cerrado-Amazônia.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectWater erosionpt_BR
dc.subjectSoil loss and waterpt_BR
dc.subjectRainfall simulatorpt_BR
dc.subjectErosão hídricapt_BR
dc.subjectPerda de solo e de águapt_BR
dc.subjectSimulador de Chuvapt_BR
dc.titleEstudos com chuva simulada: análise cienciométrica dos dados no Brasil e processo erosivo em zona de transição Cerrado-Amazônia utilizando padrões de precipitaçãopt_BR
dc.title.alternativeStudies with simulated rain: scientometric analysis of data in Brazil and erosion process in the Cerrado-Amazon transition zone using precipitation patterns.en
dc.typeTesept_BR
dc.description.abstractOtherSimulative rainfall is an important tool for studying soil erosion and other hydrological processes such as infiltration and runoff. In this thesis, we present a bibliometric and scientometric analysis of studies on simulated rainfall in Brazil. Offering a comprehensive review of the latest national research on this topic. The results indicate a total of 143 articles published in the last 37 years, and the main research areas addressed in the articles are soil erosion (57.34%), soil water infiltration (24.47%), nutrient losses (9.8%), and development and evaluation of rainfall simulators (8.39%). The analysis also revealed that the number of articles published in high-impact international journals has increased in recent years. Most of the articles (49.65%) refer to studies conducted by institutions located in the southern and southeastern regions of Brazil. Additionally, there is a large gap in studies on simulated rainfall in other regions of Brazil, where important biomes such as the Cerrado, the Amazon, the Caatinga, and their transitions are located. In addition to the bibliometric analysis, this thesis addresses water erosion in soybean, corn and pasture fields, considering different cover conditions and simulated rainfall precipitation patterns. Conducted in the northern region of Mato Grosso state, the study involved two crops (soybean and corn) and pasture areas under four rainfall patterns (constant, advanced, intermediate, and delayed). Soybean was subjected to four cover treatments, while the others were subjected to three (with cover, without cover, and tilled soil). The experiment, conducted in the northern region of Mato Grosso state, involved four cover conditions and four rainfall patterns. The presence of vegetation cover proved to be essential in reducing soil erosion. In soybean crops, the removal of cover increased the maximum flow rate by 51.3%. In corn, this rate was up to 22% higher in areas without cover. In pastures, vegetation cover increased the maximum flow rate by 47.29%. The intermediate (IN) and advanced (AV) precipitation patterns resulted in the highest soil losses in all crops, with soybean (up to 5.79 g m−2) and corn (up to 3.78 g m−2) showing the highest values. The absence of cover intensified erosion in all crops, demonstrating the importance of vegetation cover in soil protection Thus, the results of this research not only fill gaps in the current knowledge about simulated rainfall in Brazil, but also provide valuable information to promote sustainable practices and conservation strategies in agricultural environments, especially in ecologically sensitive regions such as the Cerrado-Amazon transition zone."en
dc.contributor.advisor1Carvalho, Daniel Fonseca de-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-7629-9465pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4871187664578422pt_BR
dc.contributor.advisor-co1Souza, Adilson Pacheco de-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0003-4076-1093pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1396815209817592pt_BR
dc.contributor.advisor-co2Almeida, Frederico Terra de-
dc.contributor.advisor-co2IDhttps://orcid.org/0000-0003-1055-5766pt_BR
dc.contributor.advisor-co2Latteshttp://lattes.cnpq.br/5641123636520226pt_BR
dc.contributor.referee1Carvalho, Daniel Fonseca de-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-7629-9465pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4871187664578422pt_BR
dc.contributor.referee2Schultz, Nivaldo-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-3685-680Xpt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/6427351521723394pt_BR
dc.contributor.referee3Panachuki, Elói-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-5816-7466pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/4598968727968646pt_BR
dc.contributor.referee4Anache, Jamil Alexandre Ayach-
dc.contributor.referee4IDhttps://orcid.org/0000-0002-4460-2914pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/8735169530525485pt_BR
dc.contributor.referee5Salvador, Conan Ayade-
dc.contributor.referee5IDhttps://orcid.org/0000-0002-5503-9573pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/9667991641636333pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4995350248582972pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Agronomiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopt_BR
dc.relation.referencesALAVINIA, M.; SALEH, F. N.; ASADI, H. Effects of rainfall patterns on runoff and rainfall- induced erosion. International Journal of Sediment Research, 34(3), 270-278. 2019. DOI: https://.org/10.1016/j.ijsrc.2018.11.001. ALMEIDA, W. S.; PANACHUKI, E.; OLIVEIRA, P. T. S.; MENEZES, R. S.; SOBRINHO, T. A.; CARVALHO, D. F. Effect of soil tillage and vegetal cover on soil water infiltration. Soil & Tillage Research, 175, 130-138. 2018. Available at: DOI: https://.org/10.1016/j.still.2017.07.009. ALMEIDA, W. S.; SEITZ, S.; OLIVEIRA, L. F. C.; CARVALHO, D. F. Duration and intensity of rainfall events with the same erosivity change sediment yield and runoff rates. International Soil and Water Conservation Research, 9, 69-75. 2021. DOI: https://.org/10.1016/j.iswcr.2020.10.004. ALVES SOBRINHO, T.; GÓMEZ-MACPHERSON, H.; GÓMEZ, J. A. A portable integrated rainfall and overland flow simulator. Soil Use & Management, 24, 163-170. 2008. DOI: https://.org/10.1111/j.1475-2743.2008.00150.x. ALVES, A. S.; SCHULTZ, N.; CONFORTO, B. A. A. F.; ZONTA, E.; CARVALHO, D. F. Soil, water and nutrient loss under simulated rainfall patterns in an area fertilised with chicken litter. Journal of Hydrology, 620, 129543, 2023a. DOI:https://.org/10.1016/j.jhydrol.2023.129543. ALVES, M. A. B.; BORELLA, D. R.; LUZ, C. C. DA S.; CASTAGNA, D.; SILVA, W. C. DA; SILVA, A. F. DA; ALMEIDA, F. T. DE; SOUZA, A. P. DE. Classes de solos nas bacias hidrográficas dos rios Caiabi e Renato, afluentes do rio Teles Pires, no sul da Amazônia. Nativa, v. 10, n. 3, 2022. DOI: https://.org/10.31413/nativa.v10i3.14192. ALVES, M. A. B.; SOUZA, A. P.; ALMEIDA, F. T.; HOSHIDE, A. K.; ARAÚJO, H. B.; SILVA, A. F.; CARVALHO, D. F. Effects of Land Use and Cropping on Soil Erosion in Agricultural Frontier Areas in the Cerrado-Amazon Ecotone, Brazil, Using a Rainfall Simulator Experiment. Sustainability, v. 15, 2023b. DOI: https://doi.org/10.3390/su15064954 AN, J.; ZHENG, F. L.; HAN, Y. Effects of Rainstorm Patterns on Runoff and Sediment Yield Processes. Soil Science, v.179, 2014. DOI: doi:10.1097/ss.0000000000000068 ATAKOUN, A. M.; TOVIHOUDJI, P. G.; DIOGO, R. V. C.; YEMADJE, P. L.; BALARABE, O.; AKPONIKPÈ, P. B. I.; SEKLOKA, E., HOUGNI, A.; TITTONELL, P. Evaluation of cover crop contributions to conservation agriculture in northern Benin. Field Crops Research, v. 303, p. 109118, 1 nov. 2023. BENIAICH, A.; SILVA, M. L. N.; GUIMARÃES, D. V.; BISPO, D. F. A.; AVANZI, J. C.; CURI, N.; PIO, R. Assessment of soil erosion in olive orchards (Olea europaea L.) under cover crops management systems in the tropical region of Brazil. Rev. Bras. Ciênc. Solo, v. 44, 2020. DOI: 10.36783/18069657rbcs20190088 BERIHUN, M. L. TSUNEKAWA, A.; HAREGEWEYN, N.; TSUBO, M.; FENTA, A. A.; EBABU, K.; SULTAN, D.; DONDEYNE, S. Reduced runoff and sediment loss under 75 alternative land capability-based land use and management options in a sub-humid watershed of Ethiopia. Journal of Hydrology: Regional Studies, v. 40, p. 100998, 2022. DOI: 10.1016/j.ejrh.2022.100998 BONETTI, J.; ANGHINONI, I.; IVONIR GUBIANI, P.; CECAGNO, D.; MORAES, M. T. D. Impact of a long-term crop-livestock system on the physical and hydraulic properties of an Oxisol. Soil and Tillage Research, v. 186, p. 280–291, 2019. DOI: 10.1016/j.still.2018.11.003. BORELLA, D. R. SOUZA, A. P. DE; ALMEIDA, F. T. DE; ABREU, D. C. DE; HOSHIDE, A. K.; CARVALHO, G. A.; PEREIRA, R. R.; SILVA, A. F. Dynamics of Sediment Transport in the Teles Pires River Basin in the Cerrado-Amazon, Brazil. Sustainability, v. 14, n. 23, p. 16050, 2022. DOI: 10.3390/su142316050. CARAUTA, M.; PARUSSIS, J.; HAMPF, A.; LIBERA, A.; BERGER, T. No more double cropping in Mato Grosso, Brazil? Evaluating the potential impact of climate change on the profitability of farm systems. Agricultural Systems, v. 190, p. 103104, 2021. DOI: 10.1016/j.agsy.2021.103104 CARVALHO, D.F.; MACEDO, P.M.S.; PINTO, M.F.; ALMEIDA, W.S.; SCHULTZ, N. Soil loss and runoff obtained with customised precipitation patterns simulated by InfiAsper. International Soil and Water Conservation Research, v. 10, p. 407-413, 2022. DOI: https://.org/10.1016/j.iswcr.2021.12.003. CERDÀ, A.; BORJA, M. E. L.; PARDO, I. F.; ÚBEDA, X.; NOVARA, A.; VICENTE, M. L.; POPOVIĆ, Z.; PULIDO, M. The role of plant species on runoff and soil erosion in a Mediterranean shrubland. Science of The Total Environment, v. 799, p. 149-218, 2021. DOI: https://.org/10.1016/j.scitotenv.2021.149218. CHEN, J.; Xiao, H.; Ning, K.; Tang, C. Effects of land use and land cover on soil erosion control in southern China: Implications from a systematic quantitative review. Journal of Environmental Management, v. 282, p. 111924, 2021.DOI: 10.1016/j.jenvman.2020.111924. CHRISTIANSEN, J. E. Irrigation by Sprinkling. California Agricultural Experiment Station. Bulletin n. 670, 1942; 124, 2022. EEKHOUT, J. P. C.; MILLARES‐VALENZUELA, A.; MARTÍNEZ‐SALVADOR, A.; GARCÍA‐LORENZO, R.; PÉREZ‐CUTILLAS, P.; CONESA‐GARCÍA, C.; DE VENTE, J. A process‐based soil erosion model ensemble to assess model uncertainty in climate‐change impact assessments. Land Degradation & Development, v. 32, n. 7, p. 2409–2422, 2021. DOI: 10.1002/ldr.3920. ELTZ, F. L. F.; MEHL, H. U.; REICHERT, J. M. Perdas de solo e água em entressulcos em um Argissolo Vermelho-Amarelo submetido a quatro padrões de chuva. Revista Brasileira de Ciência do Solo, v. 25, n. 2, p. 485-493. FAO. The State of Food and Agriculture 2023: Revealing the true cost of food to transform agrifood systems [online]. Roma, Itália: FAO, 2023. doi:10.4060/cc7724en FERREIRA, L. DE S.; OLIVEIRA, V. DE S.; MARCHIORI, J. J. DE P.; GOMES, M. DE P.; FERREIRA, T. C.; VARGENS, F. N.; BOLSONI, E. Z.; CARRIÇO, E.; HOLTZ, A. M. Soil 76 Fertility Indicators in Crop-Livestock-Forest Integration Systems. International Journal of Plant & Soil Science, v. 35, n. 20, p. 1093–1104, 2023. DOI: 10.9734/ijpss/2023/v35i203906. GONÇALVES, M. S.; RIBEIRO, W. R.; GONÇALVES, D. DA C.; GUERRA FILHO, P. A.; TANURE, M. M. C.; AMARAL, J. F. T. DO; COSER, A. C.; GARCIA, G. DE O.; REIS, E. F. DOS; SANTOS, A. R DOS. Tropical grasses adaptability as a sustainable tool for recovering degraded pastures and restricting soil loss: Use diagnosis and future scenarios. Environmental Development, v. 47, p. 100887, 2023. DOI: 10.1016/j.envdev.2023.100887 GREEN, D. Chapter 5.3: Modelling geomorphic systems: scaled physical models. In: COOK, S.; CLARKE, L.; NIELD, J. (Eds.). Geomorphological Techniques (Online Edition). British Society for Geomorphology, 2014, p. 1-17. HAN, D.; DENG, J.; GU, C.; MU, X.; GAO, P.; GAO, J. Effect of shrub-grass vegetation coverage and slope gradient on runoff and sediment yield under simulated rainfall. International Journal of Sediment Research, v. 36, n. 1, p. 29–37, 2021. DOI: https://.org/10.1016/j.ijsrc.2020.05.004. HOFFMANN, L.; RIES, R.E. Relationship of soil and plant characters to erosion and runoff on pasture and range. Journal of soil and water conservation, v. 2, p. 143-147, 1991. IMEA. Boletim Anual: Retrospectiva e Perspectiva - Milho. [Boletim anual], n° 780, 18 de dezembro de 2023. Disponível em: https://imea.com.br/imea-site/arquivo- externo?categoria=relatorio-de-mercado&arquivo=boletimanual-milho&numero publicacao=780&_gl=1*1gtigtv*_ga*mta5ndk3njy2ms4xnza5mtu4ntc3*_ga_243h7nmkpd* mtcxmzq2otuyoc4yljeumtcxmzq2otg3nc41ns4wlja. [acesso em: 22 de jan 2024] INDEA. Rebanho bovino de Mato Grosso chega a 34,4 milhões de animais [online]. Disponível em: https://www.indea.mt.gov.br/-/rebanho-bovino-de-mato-grosso-chega-a-34-4- milh%C3%B5es-de-animais. [Acesso em 26 de mar 2024] JIANG, F.; HUANG, Y.; WANG, M.; LIN, J.; ZHAO, G.; & GE, H. Effects of Rainfall Intensity and Slope Gradient on Steep Colluvial Deposit Erosion in Southeast China. Soil Science Society of America Journal, v. 78, n. 5 p. 1741-1752, 2014. DOI: https://doi.org/10.2136/SSSAJ2014.04.0132. KAVIAN, A.; MOHAMMADI, M.; CERDÀ, A.; FALLAH M.; GHOLAMI, L. Calibration of the SARI portable rainfall simulator for field and laboratory experiments. Hydrological Sciences Journal, v. 64, p. 1581364, 2019. DOI: 10.1080/02626667.2019.1581364. KRAESKI, A.; ALMEIDA, F. T. DE; SOUZA, A. P. DE; CARVALHO, T. M. DE; ABREU, D. C. DE; HOSHIDE, A. K.; ZOLIN, C. A. Land Use Changes in the Teles Pires River Basin’s Amazon and Cerrado Biomes, Brazil, 1986–2020. Sustainability, v. 15, n. 5, p. 4611, 2023. DOI: 10.3390/su15054611 LI, D.; CHEN, X.; TAO, T.; TAN, W.; MA, L. Quantifying the sheet-rill erosion process along a saturated soil slope. Catena, v. 219, p. 106631, 2022. DOI: doi:10.1016/j.catena.2022.106631 LIMA, C. A DE; MONTENEGRO A. A de A; LIMA, J. L. M. P. de; ALMEIDA, T. A. B.; SANTOS, J. C. N. dos. Uso de coberturas alternativas do solo para o controle das perdas de 77 solo em regiões semiáridas. Eng Sanit Ambient, v. 25, n. 3, p. 53142, 2020. DOI: https://doi.org/10.1590/S1413-41522020193900 LUETZENBURG, G.; BITTNER, M. J.; CALSAMIGLIA, A.; RENSCHLER, C. S.; ESTRANY, J.; POEPPL, R. Climate and land use change effects on soil erosion in two small agricultural catchment systems Fugnitz – Austria, Can Revull – Spain. Science of The Total Environment, v. 704, p. 135389, 2020. doi:10.1016/j.scitotenv.2019.135389 LUZ, C. C. DA S.; ALMEIDA, W. S. DE; SOUZA, A. P. DE; SCHULTZ, N.; ANACHE, J. A. A.; & CARVALHO, D. F. DE. Simulated rainfall in Brazil: An alternative for assesment of soil surface processes and an opportunity for technological development. International Soil and Water Conservation Research, v. 12, n. 1, p. 29-42, 2024. DOI: doi:10.1016/j.iswcr.2023.05.002 MA, Y.; LIU, Y.; TIAN, L.; LONG, Y.; LEI, M.; DUAN, J.; YANG, J.; NIE, X.; LI, Z. Roles of soil surface roughness in surface–subsurface flow regulation and sediment sorting. Journal of Hydrology, v. 623, p. 129834, 2023. DOI: https://.org/10.1016/j.jhydrol.2023.129834. MACEDO, P. M. S.; PINTO, M. F.; SOBRINHO, T. A.; SCHULTZ, N.; COUTINHO, T. A. R.; & CARVALHO, D. F. A modified portable rainfall simulator for soil erosion assessment under different rainfall patterns. Journal of Hydrology, v. 596, p. 126052, 2021. DOI: https://.org/10.1016/j.jhydrol.2021.126052. MACHADO, P. L. O. A.; WADT, P. G. Boas práticas agrícolas: Terraceamento [online]. Brasília, DF: Embrapa, 2021. Disponível em: https://www.embrapa.br/documents/10180/13599347/ID01.pdf. [Acesso em: 22 ago. 2023] MAI, J.; WANG, Z.; HU, F.; HUANG, J.; & ZHAO, S. Study on soil hydraulic properties of slope farmlands with different degrees of erosion degradation in a typical black soil region. Environmental Science, v. 11, e15930, 2023. DOI: https://doi.org/10.7717/peerj.15930. MAPBIOMAS. Coleções do MapBiomas no Brasil: Cobertura e transições bioma & Estados (coleção 8) [online]. Disponível em: https://brasil.mapbiomas.org/estatisticas/. [Acesso em 26 de mar 2024] MESHESHA, D.; TSUNEKAWA, A.; TSUBO, M.; HAREGEWEYN, N.; & TEGEGNE, F. Evaluation of kinetic energy and erosivity potential of simulated rainfall using Laser Precipitation Monitor. Catena, v. 137, p. 237-243, 2016. DOI: https://doi.org/10.1016/J.CATENA.2015.09.017. MEENA, R. K.; SEN, S.; NANDA, A.; DASS, B.; MISHRA, A. A contribution to rainfall simulator design – a concept of moving storm automation. Hydrology and Earth System Sciences, v. 26, p. 4379-4390, 2022. DOI:https://.org/10.5194/hess-26-4379-2022. MEENA, G. L.; SETHY, B. K.; MEENA, H. R.; ALI, S.; KUMAR, A.; SINGH, R. K.; MEENA, R. S.; MEENA, R. B.; SHARMA, G. K.; MINA, B. L.; KUMAR, K. Quantification of Impact of Land Use Systems on Runoff and Soil Loss from Ravine Ecosystem of Western India. Agriculture, v. 13, n. 4, p. 773, 2023. DOI: 10.3390/agriculture13040773. MORATELLI, F. A.; ALVES, M. A. B.; BORELLA, D. R.; KRAESKI. A.; ALMEIDA, F. T. D.; ZOLIN, C. A.; HOSHIDE, A. K.; SOUZA, A. P. D. Effects of Land Use on Soil Physical- 78 Hydric Attributes in Two Watersheds in the Southern Amazon, Brazil. Soil Systems, v. 7, n. 4, p. 103, 2023. DOI: https://.org/10.3390/soilsystems7040103 OLIVEIRA, E. M.; DE HERMÓGENES, G. M.; BRITO, L. DA C.; SILVA, B. M.; AVANZI, J. C.; BENIAICH, A.; SILVA, M. L. N. Cover crop management systems improves soil quality and mitigate water erosion in tropical olive orchards. Scientia Horticulturae, v. 330, p. 113092, 2024. DOI: 10.1016/j.scienta.2024.113092. PATAULT, E.; LEDUN, J.; LANDEMAINE, V.; SOULIGNAC, A.; RICHET, J.-B.; FOURNIER, M.; OUVRY, J.-F.; CERDAN, O.; LAIGNEL, B. Analysis of off-site economic costs induced by runoff and soil erosion: Example of two areas in the northwestern European loess belt for the last two decades (Normandy, France). Land Use Policy, v. 108, p. 105541, 2021. DOI: https://.org/10.1016/j.landusepol.2021.105541. PETRYK, A.; KRUK, E.; RYCZEK, M.; & LACKÓOVÁ, L. Comparison of Pedotransfer Functions for Determination of Saturated Hydraulic Conductivity for Highly Eroded Loess Soil. Land, v. 12, p. 610, 2023. DOI: https://doi.org/10.3390/land12030610. PRIMA, S.; CONCIALDI, P.; LASSABATÈRE, L.; ANGULO-JARAMILLO, R.; PIRASTRU, M.; CERDÀ, A., & KEESSTRA, S. Laboratory testing of Beerkan infiltration experiments for assessing the role of soil sealing on water infiltration. Catena. v. 167. , p. 373- 384, 2018. DOI: https://doi.org/10.1016/J.CATENA.2018.05.013. R CORE TEAM. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Disponível em: https://www.R-project.org. [Acesso em 20 jul 2023]. RAHMA, A. E.; WARRINGTON, D. N.; LEI, T. Efficiency of wheat straw mulching in reducing soil and water losses from three typical soils of the Loess Plateau, China. International Soil and Water Conservation Research, v. 7, n. 4, p. 335-345, 2019. DOI: https://.org/10.1016/j.iswcr.2019.08.003. ROCHA JUNIOR, P. R. DA; ANDRADE, F. V.; MENDONÇA, E. DE S.; DONAGEMMA, G. K.; FERNANDES, R. B. A.; BHATTHARAI, R.; KALITA, P. K. Soil, water, and nutrient losses from management alternatives for degraded pasture in Brazilian Atlantic Rainforest biome. Science of The Total Environment, v. 583, p. 53–63, 2017. DOI: 10.1016/j.scitotenv.2016.12.187 SALEM, H., & MESELHY, A. A portable rainfall simulator to evaluate the factors affecting soil erosion in the northwestern coastal zone of Egypt. Natural Hazards, v. 105, p. 2937 – 2955, 2020. DOI: https://doi.org/10.1007/s11069-020-04432-8. SARTORI, M.; PHILIPPIDIS, G.; FERRARI, E.; BORRELLI, P.; LUGATO, E.; MONTANARELLA, L.; PANAGOS, P. A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion. Land Use Policy, 86, 299-312. 2019. DOI: https://.org/10.1016/j.landusepol.2019.05.014 SIRQUEIRA, E. S.; ALMEIDA, F. T. DE; SOUZA, A. P. DE; ARAÚJO, H. B.; ZOLIN, C. A.; PAULISTA, R. S. D. Avaliação das Perdas de Solo pela MUSLE na Microbacia do rio Caiabi. Revista Brasileira de Geografia Física, v. 15, n. 5, p. 2430–2447, 2022. DOI: 10.26848/rbgf.v15.5.p2430-2447. 79 SOUZA, A. P. DE; MOTA, L. L. DA; ZAMADEI, T.; MARTIM, C. C.; ALMEIDA, F. T. DE; PAULINO, J. Climate classification and climatic water balance in Mato Grosso State, Brazil. Nativa: Pesquisas Agrárias e Ambientais, v. 1, n. 1, p. 34–43, 2013. STAŠEK, J.; KRÁSA, J.; MISTR, M.; DOSTÁL, T.; DEVÁTÝ, J.; STŘEDA, T.; MIKULKA, J. Using a Rainfall Simulator to Define the Effect of Soil Conservation Techniques on Soil Loss and Water Retention. Land, v. 12, n. 2, p. 431, 2023. DOI: 10.3390/land12020431. TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de Métodos de Análise de Solo. 3. ed. Rio de Janeiro: Embrapa Solos, 2017. Disponível em: https://www.infoteca.cnptia.embrapa.br/handle/doc/1085209. Acesso em: 22 ago. 2023. THORNTON, C. M.; ELLEDGE, A. E. Heavy grazing of buffel grass pasture in the Brigalow Belt bioregion of Queensland, Australia, more than tripled runoff and exports of total suspended solids compared to conservative grazing. Marine Pollution Bulletin, v. 171, p. 112704, 2021. doi:10.1016/j.marpolbul.2021.112704 VIEIRA FILHO, J. E. R. O desenvolvimento da agricultura do brasil e o papel da Embrapa [online]. Instituto de Pesquisa Econômica Aplicada - Brasília: Rio de Janeiro: Ipea, 2022. Disponível em: https://repositorio.ipea.gov.br/bitstream/11058/11100/1/td_2748.pdf. [Acesso em: 22 ago. 2023] WANG, Y.; YOU, W.; FAN, J.; JIN, M.; WEI, X., & WANG, Q. Effects of subsequent rainfall events with different intensities on runoff and erosion in a coarse soil. Catena, v. 170, p. 100- 107, 2018. DOI: https://doi.org/10.1016/J.CATENA.2018.06.008.YAKUBU, M.L.; YUSOP, Z. Adaptability of rainfall simulators as a research tool on urban sealed surfaces – a review. Hydrological Sciences Journal, v. 62, p. 996–1012, 2017. doi: http://dx.doi.org/10.1080/02626667.2016.1267355 YAN, T.; WANG, Z.; LIAO, C.; XU, W.; WAN, L. Effects of the morphological characteristics of plants on rainfall interception and kinetic energy. Journal of Hydrology, v. 592, p. 125807, 2021. DOI: https://doi.org/10.1016/j.jhydrol.2020.125807. YIN, L.; HUANG, C.; HAO, S.; MIAO, L.; LI, J.; QIU, Y.; LIU, H. Experimental Study on the Stability of Shallow Landslides in Residual Soil. Water, v. 15, p. 37-32, 2023. DOI: https://doi.org/10.3390/w15213732 ZOLIN, C. A.; MATOS, E. da S.; MAGALHÃES, C. A. de S.; PAULINO, J.; LAL, R.; SPERA, S. T.; BEHLING, M. Short-term effect of a crop-livestock-forestry system on soil, water and nutrient loss in the Cerrado-Amazon ecotone. Acta Amazonica, v. 51, n. 2, p. 102- 112, 2021. DOI: https://.org/10.1590/1809-4392202000391.pt_BR
dc.subject.cnpqAgronomiapt_BR
Appears in Collections:Doutorado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
Camila Calazans da Silva Luz.Pdf4.74 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.