Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/22345Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Santana, Raissa Couto | - |
| dc.date.accessioned | 2025-07-11T16:20:19Z | - |
| dc.date.available | 2025-07-11T16:20:19Z | - |
| dc.date.issued | 2023-09-20 | - |
| dc.identifier.citation | SANTANA, Raíssa Couto. Análise da atividade leishmanicida do derivado sintético da piperina e do efeito imunomodulatório do composto sintético e de compostos naturais em linhagens de macrófagos murinos e canino. 2023. 103 f. Tese (Doutorado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal do Rio de Janeiro, Seropédica, 2023. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/22345 | - |
| dc.description.abstract | Os macrófagos são células fagocíticas presentes em diversos órgãos envolvidos na homeostase e proteção dos tecidos. Os macrófagos são as células hospedeiras do parasito Leishamania sp. agente causador da leishmaniose que aflige 1 milhão de pessoas anualmente. Os medicamentos são tóxicos e extremamente caros. Produtos naturais apresentam ação farmacológica com fácil acesso e na maioria seguros, além de apresentarem estruturas químicas que permitem modificações para seu aperfeiçoamento. Nosso grupo demonstrou anteriormente que 2 produtos naturais, (-)-Guaiol e Piperina (AF1) apresentam atividade leishmanicida para espécies de Leishmania amazonensis. Nesse trabalho confirmamos essa ação dos compostos naturais e estudamos pela primeira vez a atividade antileishmania do derivado sintético de piperina N4-cyclohexyl-1,2,4- triazol-3-thione (AF2). Avaliamos também a ação imunomoduladora dos compostos em diferentes linhagens celulares de macrófagos murinos P388D1 e RAW 264.7 e canino DH82. Os compostos demonstraram uma atividade leishmanicida in vitro para promastigotas de L. amazonensis com IC50 de 56.24 μM, 9.36 μM e 8.73 μM para (-)- Guaiol, AF1 e AF2, respectivamente. As linhagens celulares apresentaram viabilidade acima de 70% após tratamentos com os compostos. AF2 na concentração de 50 μM diminuiu a atividade fagocítica de DH82 após desafio com formas promastigotas. Os tratamentos com os compostos levaram a modulação na produção de NO e ROS e alterou a expressão de moléculas MHC I/II, CD80 e CD86 nas diferentes linhagens. Por fim, resultados de qPCR demonstram que linhagem RAW 264.7 e DH82 aumentam a expressão de mRNA da citocina IL 10 após tratamento com (-)-Guaiol e AF1 enquanto que os compostos diminuem a expressão de IL 10, IL 12, TLR4 e TLR9 nessas células quando estimuladas com LPS. A linhagem celular P388D1 em repouso e tratadas com (- )-Guaiol e AF1 levaram a uma redução da expressão de TLR4. Os resultados sugerem que o efeito dos compostos pode ser diferente dependendo do tipo celular. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Atividade imunomoduladora | pt_BR |
| dc.subject | tratamentos | pt_BR |
| dc.subject | produtos naturais e sintéticos | pt_BR |
| dc.subject | Immunomodulatory activity | pt_BR |
| dc.subject | treatment | pt_BR |
| dc.subject | natural and synthetic products | pt_BR |
| dc.title | Análise da atividade leishmanicida do derivado sintético da piperina e do efeito imunomodulatório do composto sintético e de compostos naturais em linhagens de macrófagos murinos e canino | pt_BR |
| dc.title.alternative | Analysis of the leishmanicidal activity of the synthetic piperine derivative and the immunomodulatory effect of the synthetic compound and natural compounds in murine and canine macrophage lines | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | Macrophages are phagocytic cells situated in various organs involved in homeostasis and tissue protection. Macrophages are the host cells of the Leishamania sp. parasite causative agent of leishmaniasis that afflicts 1 million people annually. The treatments are toxic and extremely expensive. Natural products have pharmacological activity that is easy to access and mostly safe to use. In addition, having chemical structures that allow modifications for improvement. Our group previously demonstrated that 2 natural products, (-)-Guaiol and Piperine (AF1) have leishmanicidal activity against Leishmania amazonensis species. In this work, we confirmed this activity of natural compounds and studied for the first time the antileishmanial activity of the synthetic piperine derivative N4-cyclohexyl-1,2,4-triazol-3-thione (AF2). We also evaluated the immunomodulatory activity of the compounds in different macrophages cell lines of murine (P388D1 and RAW 264.7) and canine DH82. The compounds demonstrated in vitro leishmanicidal activity for L. amazonensis promastigotes with IC50 of 56.24 μM, 9.36 μM and 8.73 μM for (-)-Guaiol, AF1 and AF2, respectively. The cell lines showed viability above 70% after treatment with the compounds. AF2 at a concentration of 50 μM decreased the phagocytic activity of DH82 after challenge with promastigote forms. Treatment with the compounds modulate the production of NO and ROS and altered the expression of MHC I/II, CD80 and CD86 molecules in different lineages. Finally, qPCR results demonstrate that RAW 264.7 and DH82 strains increase the mRNA expression of the cytokine IL-10 after treatment with (-)-Guaiol and AF1, while the compounds decrease the expression of IL-10, IL-12, TLR4 and TLR9 in these cells when stimulated with LPS. Resting cell line P388D1 treated with (-)-Guaiol and AF1 led to a reduction in TLR4 expression. The results suggest that the effect of the compounds may be different depending on the cell type. | en |
| dc.contributor.advisor1 | Silva, Lucia Helena Pinto da | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-7085-8649 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/0013386072339397 | pt_BR |
| dc.contributor.advisor-co1 | Santos-Gomes, Gabriela | - |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/1344635636229785 | pt_BR |
| dc.contributor.referee1 | Lima, Debora Decote Ricardo de | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0001-8761-7641 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/3572066508469025 | pt_BR |
| dc.contributor.referee2 | Silva, Lucia Helena Pinto da | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0002-7085-8649 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/0013386072339397 | pt_BR |
| dc.contributor.referee3 | Amaral, Veronica Figueiredo do | - |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/2432524610182899 | pt_BR |
| dc.contributor.referee4 | Freire-de-Lima, Leonardo | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0003-3013-3173 | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/1632438969296293 | pt_BR |
| dc.contributor.referee5 | Almeida, Renato Porrozzi de | - |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/7510128797755635 | pt_BR |
| dc.creator.ID | https://orcid.org/0000-0001-5883-3783 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/2711105842691744 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Veterinária | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Ciências Veterinárias | pt_BR |
| dc.relation.references | ALIJAR SOUZA, M. et al. Biological Properties of Aloysia gratissima (Gillies & Hook.) Tronc. (Verbenaceae). Evidence-based Complementary and Alternative Medicine, v. 2022, 2022. ALVAR, J.; YACTAYO, Sergio; BERN, Caryn. Leishmaniasis and poverty. Trends in Parasitology, v. 22, n. 12, p. 552–557, 2006. APEL, M. A. et al. Anti-inflammatory activity of essential oil from leaves of Myrciaria tenella and Calycorectes sellowianus. Pharmaceutical Biology, v. 48, n. 4, p. 433–438, 2010. ATRI, C.; GUERFALI, F. Z.; LAOUINI, D. Role of human macrophage polarization in inflammation during infectious diseases. International Journal of Molecular Sciences, v. 19, n. 6, p. 1801, 2018. BACELLAR, O. et al. Up-regulation of Th1-type responses in mucosal leishmaniasis patients. Infection and Immunity, v. 70, n. 12, p. 6734–6740, 2002. BAE, G. S. et al. Piperine Inhibits Lipopolysaccharide-induced Maturation of Bone- marrow-derived Dendritic Cells Through Inhibition of ERK and JNK Activation. Phytotherapy Research, v. 26, n. 12, p. 1893–1897, 2012. BARBOUR, S. E. et al. Mature macrophage cell lines exhibit variable responses to LPS. Molecular immunology, v. 35, n. 14-15, p. 977-987, 1998. BARNES, A. et al. Immunological and inflammatory characterisation of three canine cell lines: K1, K6 and DH82. Veterinary Immunology and Immunopathology, v. 75, n. 1– 2, p. 9–25, 2000. BAUER, S. R. et al. Clonal relationship of the lymphoblastic cell line P388 to the macrophage cell line P388D1 as evidenced by immunoglobulin gene rearrangements and expression of cell surface antigens. The Journal of Immunology (Baltimore, Md.: 1950), v. 136, n. 12, p. 4695–4699, 1986. BERGHAUS, L. J. et al. Innate immune responses of primary murine macrophage- lineage cells and RAW 264.7 cells to ligands of Toll-like receptors 2, 3, and 4. Comparative immunology, microbiology and infectious diseases, v. 33, n. 5, p. 443– 454, 2010. BERTRAND, J. Y. et al. Three pathways to mature macrophages in the early mouse yolk sac. Blood, v. 106, n. 9, p. 3004–3011, 2005. BOISSET, J. C. et al. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature, v. 464, n. 7285, p. 116–120, 2010. BOUVIER, G.. et al. Relationship between phagosome acidification, phagosome- lysosome fusion, and mechanism of particle ingestion. Journal of Leukocyte Biology, v. 55, n. 6, p. 729-734, 1994. BRESLIN, S.; O’DRISCOLL, L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discovery Today, v. 18, n. 5-6, p. 240-249, 2013. 75 BURZA, S.; CROFT, S. L.; BOELAERT, M. Leishmaniasis. The Lancet. v. 392, n. 10151, p. 951-970, 2018. CARNEIRO, P. P. et al. Blockade of TLR2 and TLR4 Attenuates Inflammatory Response and Parasite Load in Cutaneous Leishmaniasis. Frontiers in Immunology, v. 12, p. 706510, 2021. CARVALHO, J. P. et al. Estimating direct costs of the treatment for mucosal leishmaniasis in Brazil. Revista da Sociedade Brasileira de Medicina Tropical, v. 54, p. 1–9, 2021. CECÍLIO, P.; CORDEIRO-DA-SILVA, A.; OLIVEIRA, F. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Communications Biology. Nature Research, v. 5, n. 1, p. 305, 2022. CENTERS FOR DISEASES CONTROL AND PREVENTION (CDC). Leishmaniasis. 14 dezembro de 2017. Disponível em> https://www.cdc.gov/dpdx/leishmaniasis/index.html> Acesso em: 17 novembro de 2023. CHAMBERLAIN, L. M. et al. Phenotypic non-equivalence of murine (monocyte-) macrophage cells in biomaterial and inflammatory models. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, v. 88, n. 4, p. 858–871, 2009. CHOI, D. W. et al. Piperine Ameliorates Trimellitic Anhydride-Induced Atopic Dermatitis-Like Symptoms by Suppressing Th2-Mediated Immune Responses via Inhibition of STAT6 Phosphorylation. Molecules, v. 25, n. 9, p. 2186, 2020. CHRISTENSEN, J. L. et al. Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biology, v. 2, n. 3, p. e75, 2004. CHUCHAWANKUL, S.; KHORANA, N.; POOVORAWAN, Y. Piperine inhibits cytokine production by human peripheral blood mononuclear cells. Genetics and molecular research : GMR, v. 11, n. 1, p. 617–627, 2012. CONCEIÇÃO-SILVA, F.; MORGADO, F. N. Leishmania Spp-Host Interaction: There Is Always an Onset, but Is There an End? Frontiers in Cellular and Infection Microbiology. Frontiers Media S.A, v. 9, p. 330, 2019. COSTA-DA-SILVA, A. C. et al. Immune Responses in Leishmaniasis: An Overview. Tropical Medicine and Infectious Disease, v. 7, n. 4, p. 54, 2022. DAVID, B.; WOLFENDER, J. L.; DIAS, D. A. The pharmaceutical industry and natural products: historical status and new trends. Phytochemistry Reviews, v. 14, n. 2, p. 299– 315, 2015. DICK, S. A. et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles Science immunology, v. 7, n. 67, p. eabf7777, 2022. Disponível em: <https://www.science.org>. 76 DOUCETTE, C. D. et al. Piperine From Black Pepper Inhibits Activation-Induced Proliferation and Effector Function of T Lymphocytes. Journal of Cellular Biochemistry, v. 116, n. 11, p. 2577–2588, 2015. DUAN, Z. et al. Piperine Derived from Piper nigrum L. Inhibits LPS-Induced Inflammatory through the MAPK and NF-κB Signalling Pathways in RAW264.7 Cells. Foods, v. 11, n. 19, p. 2990, 2022. EKIERT, H. M.; SZOPA, A. Biological activities of natural products. Molecules, v. 25, n. 23, p. 5769, 2020. FAMPA, P. et al. Anti-Leishmania Effects of Volatile Oils and Their Isolates. Revista Brasileira de Farmacognosia, v. 31, n. 5, p. 561-578, 2021. FARIA, M. S.; REIS, F. C. G.; LIMA, A. P. C. A. Toll-like receptors in Leishmania infections: Guardians or promoters?. Journal of Parasitology Research, v. 2012, 2012. FENG, X. et al. Effects of Piperine on the Intestinal Permeability and Pharmacokinetics of Linarin in Rats. Molecules, v. 19, n. 5, p. 5624-5633, 2014. FERREIRA, C. et al. Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis. Phytochemistry, v. 72, n. 17, p. 2155–2164, 2011. FRANKLIM, T. N. et al. Design, Synthesis and Trypanocidal Evaluation of Novel 1,2,4- Triazoles-3-thiones Derived from Natural Piperine. Molecules, v. 18, n. 6, p. 6366-6382, 2013. FRESHNEY, R. I. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications: Sixth Edition. John Wiley & Sons, 2011. FUJIMOTO, Y. et al. Adenosine and ATP affect LPS-Induced cytokine production in canine macrophage cell line DH82 Cells. Journal of Veterinary Medical Science, v. 74, n. 1, p. 27–34, 2012. GALLEGO, C. et al. Toll-like receptors participate in macrophage activation and intracellular control of Leishmania (Viannia) panamensis. Infection and Immunity, v. 79, n. 7, p. 2871–2879, 2011. GARCIA, M. C. F. et al. The in vitro antileishmanial activity of essential oil from Aloysia gratissima and guaiol, its major sesquiterpene against Leishmania amazonensis. Parasitology, v. 145, n. 9, p. 1219–1227, 2018. GINHOUX, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, v. 330, n. 6005, p. 841–845, 2010. RUIZ-POSTIGO J. A. et al. Global leishmaniasis surveillance: 2021, assessing the impact of the COVID-19 pandemic. Weekly Epidemiological Record, n. 45, 2022. Disponível em: <https://www.who.int/publications/i/item/who-wer9745-575-590>. Acesso em: 14 jun. 2023. GORDON, S. Elie Metchnikoff, the Man and the Myth. Journal of Innate Immunity. v. 8, n. 3, p. 223-227, 2016. 77 GRONE, A. et al. RT-PCR Amplification of Various Canine Cytokines and So-called House-keeping Genes in a Species-Specific Macrophage Cell Line (DHS2) and Canine Peripheral Blood Leukocytes. Journal of Veterinary Medicine, Series B, v. 46, n. 5, p. 301-310, 1999. HAQ, I. U. et al. Piperine: A review of its biological effects. Phytotherapy Research, v. 35, n. 2, p. 680-700, 2021. HEINRICH, F. et al. Passage-dependent morphological and phenotypical changes of a canine histiocytic sarcoma cell line (DH82 cells). Veterinary Immunology and Immunopathology, v. 163, n. 1–2, p. 86–92, 2015. HENDRICKX, S.; CALJON, G.; MAES, L. Need for sustainable approaches in antileishmanial drug discovery. Parasitology Research, v. 118, p. 2743-2752, 2019. Henrietta Lacks: science must right a historical wrong. Nature, v. 585, n. 7823, p. 7, 2020. HOEFFEL, G. et al. C-Myb+ Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to Adult Tissue-Resident Macrophages. Immunity, v. 42, n. 4, p. 665–678, 2015. HONG, Y. H. et al. Anti-Inflammatory and T-Cell Immunomodulatory Effects of Banana Peel Extracts and Selected Bioactive Components in LPS-Challenged in vitro and in vivo Models. Agriculture (Switzerland), v. 13, n. 2, p. 451, 2023. HOUSE, A. K.; GREGORY, S. P.; CATCHPOLE, B. Pattern-recognition receptor mRNA expression and function in canine monocyte/macrophages and relevance to canine anal furunuclosis. Veterinary Immunology and Immunopathology, v. 124, n. 3–4, p. 230–240, 2008. I. LEPESHEVA, G.; R. WATERMAN, M. Sterol 14alpha-Demethylase (CYP51) as a Therapeutic Target for Human Trypanosomiasis and Leishmaniasis. Current Topics in Medicinal Chemistry, v. 11, n. 16, p. 2060–2071, 2011. JANTAN, I.; AHMAD, W.; BUKHARI, S. N. A. Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials. Frontiers in Plant Science. Frontiers Research Foundation, v. 6, p. 655, 2015. JEDRZEJCZAK-SILICKA, M. History of Cell Culture. New Insights into Cell Culture Technology, v. 1, p. 13, 2017. JIN, Z. H. et al. Enhancement of oral bioavailability and immune response of Ginsenoside Rh2 by co-administration with piperine. Chinese Journal of Natural Medicines, v. 16, n. 2, p. 143–149, 2018. KAUFMANN, S. H. E. Immunology’s foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nature Immunology, v. 9, n. 7, p. 705–712, 2008. KHAJURIA, A.; THUSU, N.; ZUTSHI, U. Piperine modulates permeability characteristics of intestine by inducing alterations in membrane dynamics: Influence on brush border membrane fluidity, ultrastructure and enzyme kinetics. Phytomedicine, v. 9, n. 3, p. 224–231, 2002. 78 KOREN, H. S.; HANDWERGER, B. S.; WUNDERLICH, J. R. Identification of macrophage-like characteristics in a cultured murine tumor line. The Journal of Immunology, v. 114, n. 2, p. 894-897, 1975. KUMAR, A.; SASMAL, D.; SHARMA, N. Immunomodulatory role of piperine in deltamethrin induced thymic apoptosis and altered immune functions. Environmental Toxicology and Pharmacology, v. 39, n. 2, p. 504–514, 2015. KUMAR, A.; SHARMA, N. Comparative efficacy of piperine and curcumin in deltamethrin induced splenic apoptosis and altered immune functions. Pesticide Biochemistry and Physiology, v. 119, n. 1, p. 16–27, 2015. KUMARAVELU, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta- gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development, v. 129, n. 21, p. 4891–4899, 2002. LENDECKEL, U.; VENZ, S.; WOLKE, C. Macrophages: shapes and functions. ChemTexts, v. 8, n. 2, p. 12, 2022. LEPESHEVA, G. I.; FRIGGERI, L.; WATERMAN, M. R. CYP51 as drug targets for fungi and protozoan parasites: past, present and future. Parasitology, v. 145, n. 14, p. 1820 -1836, 2018. LIESE, J.; SCHLEICHER, U.; BOGDAN, C. TLR9 signaling is essential for the innate NK cell response in murine cutaneous leishmaniasis. European Journal of Immunology, v. 37, n. 12, p. 3424–3434, 2007. LIN, C. et al. Extracellular ATP induces CD44 shedding from macrophage-like P388D1 cells via the P2X7 receptor. Hematological Oncology, v. 30, n. 2, p. 70–75, 2012. LIU, Z. et al. Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell, v. 178, n. 6, p. 1509- 1525.e19, 2019. MAEDA, J. et al. Intrinsic radiosensitivity and cellular characterization of 27 canine cancer cell lines. PLoS ONE, v. 11, n. 6, p. e0156689, 2016. MARTÍNEZ-LÓPEZ, M. et al. Leishmania Hijacks myeloid cells for immune escape. Frontiers in Microbiology, v. 9, p. 883, 2018. MASS, E. Delineating the origins, developmental programs and homeostatic functions of tissue-resident macrophages. International Immunology, v. 30, n. 11, p. 493-501, 2018. MASS, E. et al. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nature Reviews Immunology, p. 1-17, 2023. MCGRATH, K. E. et al. Distinct Sources of Hematopoietic Progenitors Emerge before HSCs and Provide Functional Blood Cells in the Mammalian Embryo. Cell Reports, v. 11, n. 12, p. 1892–1904, 2015. MEDVINSKY, A.; DZIERZAK, E. Definitive Hematopoiesis Is Autonomously Initiated by the AGM Region. Cell, v. 86, n. 6, p. 897-906, 1996. 79 MEHROTRA, P.; RAVICHANDRAN, K. S. Drugging the efferocytosis process: concepts and opportunities. Nature Reviews Drug Discovery, v. 21, n. 8, p. 601-620, 2022. MENDONÇA, P. H. B. et al. Canine macrophage DH82 cell line as a model to study susceptibility to Trypanosoma cruzi infection. Frontiers in Immunology, v. 8, p. 604, 2017. MONTANER-ANGOITI, E.; LLOBAT, L. Is leishmaniasis the new emerging zoonosis in the world?. Veterinary Research Communications. Springer Science and Business Media B.V, p. 1-23, 2023. MURPHY, K. Imunobiologia de Janeway 8a edição (Em Português do Brasil). Editora Artmed, 2014. NADAES, N. R. et al. DH82 Canine and RAW264.7 Murine Macrophage Cell Lines Display Distinct Activation Profiles Upon Interaction With Leishmania infantum and Leishmania amazonensis. Frontiers in Cellular and Infection Microbiology, v. 10, p. 247, 2020. NAKANISHI-MATSUI, M. et al. Lipopolysaccharide induces multinuclear cell from RAW264.7 line with increased phagocytosis activity. Biochemical and Biophysical Research Communications, v. 425, n. 2, p. 144–149, 2012. NEWMAN, D. J. Natural products and drug discovery. National Science Review, v. 9, n. 11, 2022. NEWMAN, D. J.; CRAGG, G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, v. 83, n. 3, p. 770–803, 2020. PALIS, J. et al. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development, v. 126, n. 22, p. 5073–5084, 1999. PAN, H. et al. Piperine metabolically regulates peritoneal resident macrophages to potentiate their functions against bacterial infection. Oncotarget, v. 6, n. 32, p. 32468, 2015. PARK, M. D. et al. Macrophages in health and disease. Cell, v. 185, n. 23, p. 4259-4279, 2022. PRESTIDGE, R. L. et al. Interleukin 1: Production By P388d1 Cells Attached To Microcarrier Beads. Journal of Immunological Methods, v. 46, n. 2, p. 197-204, 1981 QUIJIA, C. R.; ARAUJO, V. H.; CHORILLI, M. Piperine: Chemical, biological and nanotechnological applications. Acta Pharmaceutica, v. 71, n. 2, p. 185–213, 2021. RAMSEY, J. T. et al. Essential Oils and Health. Yale Journal of Biology And Medicine, v. 93, n. 2, p. 291, 2020. RASCHKE, W. C. et al. Functional Macrophage Cell Lines Transformed by Abelson Leukemia Virus. Cell, v. 15, n. 1, p. 261-267, 1978. 80 REN, S. et al. Targeting P2X 7 receptor inhibits the metastasis of murine P388D1 lymphoid neoplasm cells to lymph nodes. Cell Biology International, v. 34, n. 12, p. 1205–1211, 2010. RODRIGUES, O. R. et al. H-2 complex influences cytokine gene expression in Leishmania infantum-infected macrophages. Cellular Immunology, v. 243, n. 2, p. 118– 126, 2006. SAKAGAMI, H. et al. Cell Death Induced by Nutritional Starvation in Mouse Macrophage-like RAW264.7 Cells. Anticancer Research, v. 29, n. 1, p. 343-347, 2009. SANTANA, R. C. et al. In vitro leishmanicidal activity of monoterpenes present in two species of Protium (Burseraceae) on Leishmania amazonensis. Journal of Ethnopharmacology, v. 259, p. 112981, 2020. SAQIB, U. et al. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget. v. 9, n. 25, p. 17937, 2018. SASIDHARAN, S.; SAUDAGAR, P. Leishmaniasis: where are we and where are we heading?. Parasitology Research, v. 120, n. 5, p. 1541–1554, 2021. SAUTER, I. P. et al. TLR9/MyD88/TRIF signaling activates host immune inhibitory CD200 in Leishmania infection. JCI Insight, v. 4, n. 10, 2019. SERAFIM, T. D. et al. Leishmaniasis: the act of transmission. Trends in Parasitology Elsevier Ltd, v. 37, n. 11, p. 976-987, 2021. SHARMA, S. et al. Protective efficacy of piperine against Mycobacterium tuberculosis. Tuberculosis, v. 94, n. 4, p. 389–396, 2014. SKLOOT, Rebecca. A vida imortal de Henrietta Lacks. Editora Companhia das Letras, 2011. ŚMIAŁEK, J. et al. Bacteriocin BacSp222 and Its Succinylated Forms Exhibit Proinflammatory Activities Toward Innate Immune Cells. Journal of Inflammation Research, v. 15, p. 4601–4621, 2022. SON, Y. et al. Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways?. Journal of Signal Transduction, v. 2011, p. 1– 6, 2011. SOUTAR, D. A. et al. Piperine, a Pungent Alkaloid from Black Pepper, Inhibits B Lymphocyte Activation and Effector Functions. Phytotherapy Research, v. 31, n. 3, p. 466–474, 2017. SOUZA, M. A. et al. Supercritical CO2 extraction of Aloysia gratissima leaves and evaluation of anti-inflammatory activity. Journal of Supercritical Fluids, v. 159, p. 104753, 2020. STUCHR, D. J.; MARIETTA, M. A. Synthesis of Nitrite and Nitrate in Murine Macrophage Cell Lines. Câncer Research, v. 47, n. 21, p. 5590-5594, 1987. Disponível em: <http://aacrjournals.org/cancerres/article- pdf/47/21/5590/2429010/cr0470215590.pdf>. 81 SURESH, D.; SRINIVASAN, K. Studies on the in vitro absorption of spice principles – Curcumin, capsaicin and piperine in rat intestines. Food and Chemical Toxicology, v. 45, n. 8, p. 1437–1442, 2007. SURESH, D. V. et al. Binding of bioactive phytochemical piperine with human serum albumin: a spectrofluorometric study. Biopolymers: Original Research on Biomolecules, v. 86, n. 4, p. 265–275, 2007. TACIAK, B. et al. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. PLoS ONE, v. 13, n. 6, 2018. TAKAHASHI, K.; YAMAMURA, F.; NAITO, M. Differentiation, Maturation, and Proliferation of Macrophages in the Mouse Yolk Sac: A Light-Microscopic, Enzyme- Cytochemical, Immunohistochemical, and Ultrastructural Study. Journal of Leukocyte Biotogy, v. 45, n. 2, p. 87-96, 1989. TOMIOTTO-PELLISSIER, F. et al. Macrophage Polarization in Leishmaniasis: Broadening Horizons. Frontiers in Immunology Frontiers Media S.A., 2018. UENO, N.; WILSON, M. E. Receptor-mediated phagocytosis of Leishmania: Implications for intracellular survival. Trends in Parasitology, v. 28, n. 8, p. 335-344, 2012. URIBE-QUEROL, E.; ROSALES, C. Phagocytosis: Our Current Understanding of a Universal Biological Process. Frontiers in Immunology Frontiers Media S.A., v. 11, p. 1066, 2020. VALÉRIO-BOLAS, A. et al. Intracellular and extracellular effector activity of mouse neutrophils in response to cutaneous and visceral Leishmania parasites. Cellular Immunology, v. 335, p. 76–84, 2019. VAN ASSCHE, T. et al. Leishmania-macrophage interactions: Insights into the redox biology. Free Radical Biology and Medicine, v. 51, n. 2, p. 337-351, 2011. VAN FURTH, R.; COHN, Z. A. The Origin And Kinetics Of Mononuclear Phagocytes. Journal of Experimental Medicine, v. 128, n. 3, p. 415–435, 1968. WANASEN, N.; SOONG, L. L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunologic Research, v. 41, p. 15-25, 2008. WASSERMAN, J. et al. Suppression of canine myeloid cells by soluble factors from cultured canine tumor cells. Veterinary Immunology and Immunopathology, v. 145, n. 1–2, p. 420–430, 2012. WEBER, J. I. et al. Insights on Host–Parasite Immunomodulation Mediated by Extracellular Vesicles of Cutaneous Leishmania shawi and Leishmania guyanensis. Cells, v. 12, n. 8, p. 1101, 2023. WELLMAN, M. L. et al. A macrophage-monocyte cell line from a dog with malignant histiocytosis. In Vitro Cellular & Developmental Biology, v. 24, n. 3, p. 223–229, 1988. 82 WORLD HEALTH ORGANIZATION (WHO). Leishmaniasis. 12 de Janeiro de 2023. Disponível em: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis. Acessado em: 17/11/2023. WORLD HEALTH ORGANIZATION (WHO). Leishmaniasis. [2023] Disponível em: https://www.who.int/health-topics/leishmaniasis#tab=tab_1. Acessado em: 17/11/2023. WU, Y.; HIRSCHI, K. K. Tissue-Resident Macrophage Development and Function. Frontiers in Cell and Developmental Biology Frontiers Media S.A., v. 8, p. 617879, 2021. YANG, Q. et al. (−)-Guaiol regulates RAD51 stability via autophagy to induce cell apoptosis in non-small cell lung cancer. Oncotarget, v. 7, n. 38, p. 62585, 2016. YANG, X. et al. (−)-Guaiol regulates autophagic cell death depending on mTOR signaling in NSCLC. Cancer Biology and Therapy, v. 19, n. 8, p. 706–714, 2018. YANG, X. et al. (−)-Guaiol triggers immunogenic cell death and inhibits tumor growth in non-small cell lung cancer. Molecular and Cellular Biochemistry, v. 478, n. 7, p. 1611-1620, 2022. YUNNA, C. et al. Macrophage M1/M2 polarization. European Journal of Pharmacology Elsevier B.V., v. 877, p. 173090, 2020. ZAHEER, A. et al. Diminished Cytokine And Chemokine Expression In The Central Nervous System Of Gmf-Deficient Mice With Experimental Autoimmune Encephalomyelitis. Brain research, v. 1144, p. 239-247, 2007. ZENG, Y. et al. Integrating Network Pharmacology, Molecular Docking, and Experimental Validation to Investigate the Mechanism of (−)-Guaiol Against Lung Adenocarcinoma. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, v. 28, p. e937131-1, 2022. | pt_BR |
| dc.subject.cnpq | Parasitologia | pt_BR |
| Appears in Collections: | Doutorado em Ciências Veterinárias | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2023 - Raíssa Couto Santana.pdf | 1.99 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
