Por favor, use este identificador para citar o enlazar este ítem: https://rima.ufrrj.br/jspui/handle/20.500.14407/22702
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorSilvestre, Beatriz Filgueiras-
dc.date.accessioned2025-07-24T15:31:41Z-
dc.date.available2025-07-24T15:31:41Z-
dc.date.issued2021-12-09-
dc.identifier.citationSILVESTRE, Beatriz Filgueiras. Linhagem de Células de Carrapato como Modelo para Estudo na Interação entre Carrapato e Leishmania Spp. 2021. 76 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/22702-
dc.description.abstractA leishmaniose é um conjunto de doenças causadas por protozoários do gênero Leishmania que afetam homens e animais. A leishmaniose canina é uma doença de grande importância na saúde pública, pois os cães são o principal reservatório do parasito. A maioria dos cães infectados vem de áreas pobres, onde há ectoparasitos, como o carrapato Rhipicephalus sanguineus. Sua presença levantou a hipótese de que este poderia ser um vetor do parasito. O objetivo deste trabalho foi propor um modelo in vitro de estudo da interação entre Leishmania spp. e carrapatos Ixodídeos, usando a linhagem celular do carrapato Ixodes scapularis (IDE8). Para esta análise, células IDE8 foram incubadas com promastigotas de L. amazonensis ou L. infantum durante: 2, 24 e 48 h a 34 ° C. Resultados mostraram que as formas promastigotas se ligam, interagem com a membrana das células de carrapato, são endocitadas e permanecem dentro de um vacúolo justaposto, como mostrado por microscopia eletrônica de transmissão e varredura. O índice de associação entre IDE8 e L. amazonensis não se alterou, mas entre IDE8 e L. infantum aumentou em cerca de 7 vezes em 48h. Os ensaios de viabilidade através da atividade de LDH mostraram que as células permanecem viáveis durante incubação com os parasitas. Além disso, L. infantum apresentou uma sobrevivência 13 vezes maior do que L. amazonensis após a interação com IDE8 em 48h. As células IDE8 apresentaram aumento de 2 vezes na produção de ROS e de 8 vezes da produção de oxiesterol após a interação com L. infantum. Os lipídeos triacilglicerol, 1,2 e 1,3 diacilgliceróis, monoacilglicerol e colesterol esterificado, todos derivados dos ácidos graxos, também apresentaram aumento após a interação. Assim, nossos dados indicam a capacidade de Leishmania spp. interagir com células de carrapato in vitro, sobreviver a essa interação e modular reações metabólicas na célula hospedeira.pt_BR
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectleishmaniose caninapt_BR
dc.subjectcélulas de carrapatospt_BR
dc.subjectLeishmania spppt_BR
dc.subjectmetabolismo lipídico de carrapatopt_BR
dc.subjectcanine leishmaniasispt_BR
dc.subjecttick cellspt_BR
dc.subjecttick lipid metabolispt_BR
dc.titleLinhagem de Células de Carrapato como Modelo para Estudo na Interação entre Carrapato e Leishmania Spppt_BR
dc.typeDissertaçãopt_BR
dc.description.abstractOtherLeishmaniasis is a group of diseases caused by protozoa of the genus Leishmania that affect humans and animals. Canine leishmaniasis is a disease of great public health importance, since dogs are the main reservoir of the parasite. Most infected dogs come from poor areas where there are ectoparasites, such as the Rhipicephalus sanguineus tick. Its presence raised the hypothesis that this could be a vector of the parasite. The aim of this work was to propose an in vitro model to study the interaction between Leishmania spp. and Ixodid ticks, using the cell line from the Ixodes scapularis tick (IDE8). For this analysis, IDE8 tick cells were incubated with L. amazonensis or L. infantum promastigotes during: 2, 24 and 48 h at 34 ° C. The results showed that promastigotes bind, interact with the tick cell membrane, are endocytosed, and remain within a juxtaposed vacuole, as shown by transmission and scanning electron microscopy. The association index between IDE8 and L. amazonensis did not change, but between IDE8 and L. infantum it increased approximately 7 times up to 48 h. Viability assay through LDH activity demonstrated that IDE8 tick cell remain viable during infection with parasites. Furthermore, L. infantum showed a survival 13 times higher than L. amazonensis after interaction with IDE8. IDE8 tick cells infected with L. infantum also showed a 2-fold increase in ROS production and an 8-fold increase in oxysterol production. The lipids triacylglycerol, 1,2 and 1,3 diacylglycerols, monoacylglycerol and esterified cholesterol, derived from fatty acids, also showed an increase after the interaction. Therefore, our data indicate that Leishmania spp. are able to interact with tick cells in vitro, survive, and modulate metabolic reactions in tick cells.pt_BR
dc.contributor.advisor1Silva, Lucia Helena Pinto da-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-7085-8649pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0013386072339397pt_BR
dc.contributor.referee1Fonseca, Adivaldo Henrique da-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-5834-141Xpt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4411441162862608pt_BR
dc.contributor.referee2Silva, Lucia Helena Pinto da-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-7085-8649pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0013386072339397pt_BR
dc.contributor.referee3Chagas, Evelize Folly das-
dc.contributor.referee3IDhttps://orcid.org/0000-0001-6313-2447pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/6167112361623319pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/1131513328603083pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Veterináriapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspt_BR
dc.relation.referencesAbongomera C, van Henten S, Vogt F, Buyze J, Verdonck K, van Griensven J. Prognostic factors for mortality among patients with visceral leishmaniasis in East Africa: Systematic review and meta-analysis. PLoS Negl Trop Dis. 2020 May 15;14(5):e0008319. Alberdi MP, Dalby MJ, Rodriguez-Andres J, Fazakerley JK, Kohl A, Bell-Sakyi L. Detection and identification of putative bacterial endosymbionts and endogenousviruses in tick cell lines. Ticks Tick Borne Dis. 2012 Jun;3(3):137-46. Alencar, J.E. - Calazar canino. Contribuição para o estudo da epidemiologia do calazar no Brasil Fortaleza, Imp. Oficial, 1959. (Tese da Universidade Federal do Ceará). Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. (2016) A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis 10(3): e0004349. Atayde VD, Hassani K, da Silva Lira Filho A, Borges AR, Adhikari A, Martel C, Olivier M. Leishmania exosomes and other virulence factors: Impact on innate immune response and macrophage functions. Cell Immunol. 2016 Nov;309:7-18. Bates, P. A. (2007). Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. International Journal for Parasitology, 37(10), 1097–1106. Bazin MA, Loiseau PM, Bories C, Letourneux Y, Rault S, El Kihel L. Synthesis of oxysterols and nitrogenous sterols with antileishmanial and trypanocidal activities. Eur J Med Chem. 2006 Oct;41(10):1109-16. Bell-Sakyi L, Zweygarth E, Blouin EF, Gould EA, Jongejan F. Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol. 2007 Sep;23(9):450-7. Bell-Sakyi L, Attoui H. Endogenous tick viruses and modulation of tick-borne pathogen growth. Front Cell Infect Microbiol. 2013 Jul 12;3:25. 56 Bell-Sakyi L, Attoui H. Virus Discovery Using Tick Cell Lines. Evol Bioinform Online. 2016;12(Suppl 2):31-34. Published 2016 Sep 15. Bell-Sakyi L, Darby A, Baylis M, Makepeace BL. The Tick Cell Biobank: A global resource for in vitro research on ticks, other arthropods and the pathogens they transmit. Ticks Tick Borne Dis. 2018 Jul;9(5):1364-1371. Bouchet F, Lavaud F. Solenophagie et telmophagie: mécanisme de piqûres chez quelques insectes hématophages [Solenophagy and telmophagy: biting mechanisms among various hematophagous insects]. Allerg Immunol (Paris). 1999 Dec;31(10):346- 50. French. Burza, S., Croft, S. L., & Boelaert, M. (2018). Leishmaniasis. The Lancet. Campolina, Thais Bonifácio. A ação da microbiota nativa de Lutzomyia longipalpis no desenvolvimento de Leishmania spp. / Thais Bonifácio Campolina. – Belo Horizonte, 2017. Rede de Bibliotecas da FIOCRUZ Biblioteca do CPqRR Campos, José Henrique Furtado; COSTA, Francisco Assis Lima. Participation of ticks in the infectious cycle of canine visceral leishmaniasis, in Teresina, Piauí, Brazil. Rev. Inst. Med. trop. S. Paulo, São Paulo , v. 56, n. 4, p. 297-300, Aug. 2014 . Available from <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0036- 46652014000400297&lng=en&nrm=iso>. access on 31 Mar. 2021. Cazan CD, Ionică AM, Matei IA, D'Amico G, Muñoz C, Berriatua E, Dumitrache MO. Detection of Leishmania infantum DNA and antibodies against Anaplasma spp., Borrelia burgdorferi s.l. and Ehrlichia canis in a dog kennel in South-Central Romania. Acta Vet Scand. 2020 Aug 3;62(1):42. Choi C, Finlay DK. Diverse Immunoregulatory Roles of Oxysterols-The Oxidized Cholesterol Metabolites. Metabolites. 2020 Sep 28;10(10):384. Cláudia Pinto. Veterinária Atual. Animais de estimação - E a leishmaniose felina? – 2019. Disponível em: https://www.veterinaria-atual.pt/na-clinica/e-a- leishmaniose-felina/Acesso em: 17 de set 2021 Coutinho, M.T., Linardi, P.M., 2007. Can fleas from dogs infected with canine visceral leishmaniasis transfer the infection to other mammals? Vet. Parasitol. 147, 320– 325. Coutinho, M.T., Bueno, L.L., Sterzik, A., Fujiwara, R.T., Botelho, J.R., De Maria, M., Genaro, O., Linardi, P.M., 2005. Participation of Rhipicephalus sanguineus (Acari: Ixodidae) in the epidemiology of canine visceral leishmaniasis. Vet. Parasitol. 128, 149– 155. 57 Cox, Michael M., and David L. Nelson. Lehninger principles of biochemistry. Vol. 5. New York: Wh Freeman, 2008. CVBD. Companion Vector- Borne Diseases. Leishmaniosis. Disponível em: https://cvbd.elanco.com/diseases/sand-fly-borne-diseases/leishmaniosis. Acesso em: 29 de Março . 2021. CRMVSP. Conselho Regional de Medicina Veterinária do Estado de São Paulo. Série Zoonoses: Leishmaniose Visceral. Disponível em : https://www.crmvsp.gov.br/arquivo_zoonoses/LEISHMANIOSE_SERIE_ZOONOSES. pdf. Acesso em : 29 de Março de 2021. Dahmani M, Anderson JF, Sultana H, Neelakanta G. Rickettsial pathogen uses arthropod tryptophan pathway metabolites to evade reactive oxygen species in tick cells. Cell Microbiol. 2020 Oct;22(10):e13237 Dantas-Torres, Filipe. "Ticks as vectors of Leishmania parasites." Trends in parasitology 27.4 (2011): 155-159. Dantas-Torres, F., Miró, G., Baneth, G., Bourdeau, P., Breitschwerdt, E., Capelli, G., et alOtranto, D. (2019). Canine Leishmaniasis Control in Context of One Health. Emerging Infectious Diseases, 25(12). de la Fuente J. The fossil record and the origin of ticks (Acari: Parasitiformes: Ixodida). Exp Appl Acarol. 2003;29(3-4):331-44. Delgado J, Macías J, Pineda JA, Corzo JE, González-Moreno MP, de la Rosa R, Sánchez-Quijano A, Leal M, Lissen E. High frequency of serious side effects from meglumine antimoniate given without an upper limit dose for the treatment of visceral leishmaniasis in human immunodeficiency virus type-1-infected patients. Am J Trop Med Hyg. 1999 Nov;61(5):766-9 de Morais RC, Gonçalves-de-Albuquerque Sda C, Pessoa e Silva R, Costa PL, da Silva KG, da Silva FJ, Brandão-Filho SP, Dantas-Torres F, de Paiva-Cavalcanti M. Detection and quantification of Leishmania braziliensis in ectoparasites from dogs. Vet Parasitol. 2013 Sep 23;196(3-4):506-8. de Sousa KC, André MR, Herrera HM, de Andrade GB, Jusi MM, dos Santos LL, Barreto WT, Machado RZ, de Oliveira GP. Molecular and serological detection of tick- borne pathogens in dogs from an area endemic for Leishmania infantum in Mato Grosso do Sul, Brazil. Rev Bras Parasitol Vet. 2013 Oct-Dec;22(4):525-31. Dougall AM, Alexander B, Holt DC, Harris T, Sultan AH, Bates PA, Rose K, Walton SF. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int J Parasitol. 2011;41(5):571–9. 58 Dong Y, Manfredini F and Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathogens 5, e1000423.. Elmahallawy EK, Sampedro Martinez A, Rodriguez-Granger J, Hoyos-Mallecot Y, Agil A, Navarro Mari JM, Gutierrez Fernandez J (2014) Diagnosis of leishmaniasis. J Infect Dev Ctries 8:961-972. Esch, K.J., Juelsgaard, R., Martinez, P.A., Jones, D.E., Petersen, C.A., 2013. Programmed death 1-mediated T cell exhaustion during visceral leishmaniasis impairs phagocyte function. J. Immunol. (Baltimore Md) 1950 (191), 5542–5550. Feingold KR, Grunfeld C. Lipids: a key player in the battle between the host and microorganisms. J Lipid Res. 2012; 53: 2487–9. Feitosa Ana Paula S., Marlos M. Chaves, Dyana L. Veras, Dayse M. Vasconcelos de Deus, Nairomberg C. Portela, Alberon R. Araújo, Luiz C. Alves, Fábio A. Brayner, Assessing the cellular and humoral immune response in Rhipicephalus sanguineussensu lato (Acari: Ixodidae) infected with Leishmania infantum (Nicolle, 1908), Ticks and Tick- borne Diseases, Volume 9, Issue 6, 2018, Pages 1421-1430, ISSN 1877-959X, Ferreira, M.G., Fattori, K.R., Souza, F., Lima, V.M., 2009. Potential role for dog fleas in the cycle of Leishmania spp. Vet Parasitol. 165, 150– 154. Folha de São Paulo. Leishmaniose canina. Disponível em: https://fotografia.folha.uol.com.br/galerias/46524-leishmaniose-canina. Acesso em: 17 de set de 2021. Freshney, R. Ian. Culture of animal cells: a manual of basic technique and specialized applications. – 6th ed. p. cm. 2010 Gilbert, Lawrence I., and Haruo Chino. "Transport of lipids in insects." Journal of lipid research 15.5 (1974): 439-456. Girao, H., Mota, C. & Pereira, P., (1999). Cholesterol may act as an antioxidant in lens membranes. Current Eye Research 18 (6): 448-454. Guia de Vigilância em Saúde : volume único [recurso eletrônico] / Ministério da Saúde, Secretaria de Vigilância em Saúde, Coordenação-Geral de Desenvolvimento da Epidemiologia em Serviços. – 3a. ed. – Brasília : Ministério da Saúde, 2019. Handler MZ, Patel PA, Kapila R, Al-qubati Y, Schwartz RA. Cutaneous and mucocutaneous leishmaniasis: Differential diagnosis, diagnosis, histopathology, and management. J Am Acad Dermatol. 2015 Dec;73(6):911-26; 927-8. Heier C, Kühnlein RP. Triacylglycerol Metabolism in Drosophila melanogaster. Genetics. 2018 Dec;210(4):1163-1184. 59 Hoogstraal H. 1970-1984. Bibliography of ticks and tick-borne diseases from Homer (about 800 B.C.) to 31 Dec. 1969 (to 1983). Special publications, NAMRU3, Cairo. INCTEM. Tópicos Avançados em Entomologia Molecular: Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular: Digestão em Insetos. 2012. Disponível em:http://www.inctem.bioqmed.ufrj.br/images/documentos/biblioteca/Capitulo_5_Dige stao_em_Insetos.pdf. Acesso em: 3 de setembro de 2021. Iqbal, Jahangir, and M. Mahmood Hussain. "Intestinal lipid absorption." American Journal of Physiology-Endocrinology and Metabolism 296.6 (2009): E1183-E1194. Jornal da USP. Júlio Bernardes. Estudo aponta caminhos para criar vacinas contra doenças causadas por carrapatos. Disponível em: https://jornal.usp.br/ciencias/estudo- aponta-caminhos-para-criar-vacinas-contra-doencas-causadas-por-carrapatos/. Acesso em: 14 de set de 2021. Kamhawi S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 2006 Sep;22(9):439-45 Khovidhunkit W, Kim M-S, Memon RA, Shigenaga JK, Moser AH, Feingold KR, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res. 2004. Langley, P. A. (1976). Initiation and Regulation of Ingestion by Hematophagous Arthropods. Journal of Medical Entomology, 13(2), 121–130. Lecoeur H, Giraud E, Prévost MC, Milon G, Lang T. Reprogramming NeutralLipid Metabolism in Mouse Dendritic Leucocytes Hosting Live Leishmania amazonensis Amastigotes. PLoS Negl Trop Dis. 2013; 7. Leishmaniose. WHO1 . Disponível em: <https://www.who.int/health- topics/leishmaniasis#tab=tab_1>. Acesso em: 26. Nov de 2020. Leishmaniose. Fatos importantes. WHO2 . <Disponível em: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis >. Acesso em: 26. Nov de 2020 Manoj, Ranju Ravindran Santhakumari; Roberta Iatta, Maria Stefania Latrofa, Loredana Capozzi, Muthusamy Raman, Vito Colella, Domenico Otranto, Canine vector- borne pathogens from dogs and ticks from Tamil Nadu, India, Acta Tropica, Volume 203, 2020. Meister S, Agianian B, Turlure F, Relogio A, Morlais I, Kafatos FC and Christophides GK (2009) Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. Plos Pathogens 5, e1000542. 60 Mhadhbi M, Sassi A. Infection of the equine population by Leishmania parasites. Equine Vet J. 2020 Jan;52(1):28-33. Molinaro, Etelcia Moraes. Conceitos e métodos para a formação de profissionais em laboratórios de saúde: volume 2, cap 5 . Rio de Janeiro: EPSJV; IOC, 2012. Mondragon-Shem K, Wongtrakul-Kish K, Kozak RP, Yan S, Wilson IBH, Paschinger K, Rogers ME, Spencer DIR, Acosta-Serrano A. Insights into the salivaryN- glycome of Lutzomyia longipalpis, vector of visceral leishmaniasis. Sci Rep. 2020 Jul 31;10(1):12903. Munderloh UG, Kurtti TJ. Formulation of medium for tick cell culture. Exp Appl Acarol. 1989 Aug;7(3):219-29 Munderloh UG, Liu Y, Wang M, Chen C, Kurtti TJ. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J Parasitol. 1994 Aug;80(4):533- 43. Murphy MP, Holmgren A, Larsson NG, Halliwell B, Chang CJ, Kalyanaraman B, Rhee SG, Thornalley PJ, Partridge L, Gems D, Nyström T, Belousov V, Schumacker PT, Winterbourn CC. Unraveling the biological roles of reactive oxygen species. Cell Metab. 2011 Apr 6;13(4):361-366 Nava S, Guglielmone AA, Mangold AJ. An overview of systematics and evolution of ticks. Front Biosci (Landmark Ed). 2009 Jan 1;14:2857-77. Nyindo, M., Shatry, A., Awiti, L. S., Chimtawi, M., AND Hendricks, L. D. 1987. Leishmania donovani and L. major: Cultivation in vitro in tick embryonic cell lines. Exper- imental Parasitology 63, 240-242. Obenchain F.D. and Galun R. 1982. Physiology of ticks. Current themes in tropical science. Pergamon Press, Oxford, pp vii-ix. Okwor I, Uzonna J. Social and Economic Burden of Human Leishmaniasis. Am J Trop Med Hyg. 2016;94(3):489-493. O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. Elife. 2020;9:e61675. Published 2020 Oct 29. OPS. Organización Panamericana de la Salud. Manual de procedimientos para vigilancia y control de las leishmaniasis en las Américas. Washington, D.C.; 2019. Otranto D, Dantas-Torres F. Fleas and ticks as vectors of Leishmania spp. to dogs: caution is needed. Vet Parasitol. 2010 Feb 26;168(1-2):173-4. Paz, G.F., Ribeiro, M.F.B., Michalsky, É.M. et al. Evaluation of the vectorial capacity of Rhipicephalus sanguineus (Acari: Ixodidae) in the transmission of canine visceral leishmaniasis. Parasitol Res 106, 523 (2010). 61 Pennisi, M.-G., Cardoso, L., Baneth, G., Bourdeau, P., Koutinas, A., Miró, G., Oliva, G., Solano-Gallego, L., 2015. LeishVet update and recommendations on feline leishmaniosis. Parasites Vectors 8, 302. Pennisi, M. G., & Persichetti, M. F. (2018). Feline leishmaniosis: Is the cat a small dog? Veterinary Parasitology, 251, 131–137. Pereira LS, Oliveira PL, Barja-Fidalgo C, Daffre S. Production of reactive oxygen species by hemocytes from the cattle tick Boophilus microplus. Exp Parasitol. 2001 Oct;99(2):66-72. Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, Lloyd- Smith JO. Pathways to zoonotic spillover. Nat Rev Microbiol. 2017 Aug;15(8):502-510. Rabhi S, Rabhi I, Trentin B, Piquemal D, Regnault B, Goyard S, et al. (2016) Lipid Droplet Formation, Their Localization and Dynamics during Leishmania major Macrophage Infection. PLoS ONE 11(2): e0148640. Rakotomanga M, Blanc S, Gaudin K, Chaminade P, Loiseau PM. Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 2007;51(4):1425–30 Sanches LD, Martini CC, Nakamura AA, Santiago ME, Dolabela de Lima B, Lima VM. Natural canine infection by Leishmania infantum and Leishmania amazonensis and their implications for disease control. Rev Bras Parasitol Vet. 2016 Oct-Dec;25(4):465- 469. Santos, R. L., & Oliveira, A. R. (2019). Leishmaniasis in non‐human primates: Clinical and pathological manifestations and potential as reservoirs. Journal of Medical Primatology. Seblová V, Sádlová J, Vojtková B, Votýpka J, Carpenter S, Bates PA, Volf P. The biting midge Culicoides sonorensis (Diptera: Ceratopogonidae) is capable of developing late stage infections of Leishmania enriettii. PLoS Negl Trop Dis. 2015; Silva, M., Carvalho, J. & Melo M.,(2011). Oxiesteróis: o seu papel na saúde e na doença. Química 121: 53-58. Sgroi G, Iatta R, Veneziano V, Bezerra-Santos MA, Lesiczka P, Hrazdilová K, Annoscia G, D'Alessio N, Golovchenko M, Rudenko N, Modrý D, Otranto D. Molecular survey on tick-borne pathogens and Leishmania infantum in red foxes (Vulpes vulpes) from southern Italy. Ticks Tick Borne Dis. 2021 May;12(3):101669. S. N. Mule, J. Silva Saad, L. Rosa-Fernandes, B. S. S. Carboni, M. Cortez and G. Palmisano, Mol. Omics, 2020. 62 Singh SP, Reddy DC, Rai M, Sundar S, 2006. Serious underreporting of visceral leishmaniasis through passive case reporting in Bihar, India. Trop Med Int Health 11: 899–905. Shi Y, Cheng D. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism. Am J Physiol Endocrinol Metab. 2009 Jul;297(1):E10-8. Skloot, R. A vida imortal de Henrietta Lacks. Tradução: Ivo Korytowski. São Paulo: Companhia das Letras, 2011. Soares-Bezerra, Rômulo José; LEON, Leonor; Genestra, Marcelo. Recentes avanços da quimioterapia das leishmanioses: moléculas intracelulares como alvo de fármacos. Rev. Bras. Cienc. Farm., São Paulo, v. 40, n. 2, p. 139-149, June 2004 . Available from <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516- 93322004000200003&lng=en&nrm=iso>. access on 26 Nov. 2020. Solano-Gallego, L., Koutinas, A., Miró, G., Cardoso, L., Pennisi, M.G., Ferrer, L., Bourdeau, P., Oliva, G., Baneth, G., 2009. Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniosis. Vet. Parasitology 165, 1–18. Soulages JL, Wu Z, Firdaus SJ, Mahalingam R, Arrese EL. Monoacylglycerol and diacylglycerol acyltransferases and the synthesis of neutral glycerides in Manduca sexta. Insect Biochem Mol Biol. 2015 Jul;62:194-210. Souza, Alda & Nunes, VLB & Borralho, V. & Ishikawa, EAY. (2009). Domestic feline cutaneous leishmaniasis in the municipality of Ribas do Rio Pardo, Mato Grosso do Sul State, Brazil: a case report. Journal of Venomous Animals and Toxins Including Tropical Diseases - J VENOM ANIM TOXINS TROP DIS. 15. 10.1590/S1678- 91992009000200017. Steverding D. The history of leishmaniasis. Parasit Vectors. 2017;10(1):82. Published 2017 Feb 15. Telleria EL, Martins-da-Silva A, Tempone AJ, Traub-Csekö YM. Leishmania, microbiota and sand fly immunity. Parasitology. 2018 Sep;145(10):1336-1353 Teixeira, Dirceu E et al. Atlas didático: Ciclo de vida da Leishmania/ Rio de Janeiro : Fundação CECIERJ, Consórcio CEDERJ, 2013. Tiago D. Serafim, Ranadhir Dey, Hira L. Nakhasi, Jesus G. Valenzuela, Shaden Kamhawi, Chapter 6 - Unique Features of Vector-Transmitted Leishmaniasis and Their Relevance to Disease Transmission and Control, Editor(s): Stephen K. Wikel, Serap Aksoy, George Dimopoulos, Arthropod Vector: Controller of Disease Transmission, 63 Volume 2, AcademicPress,2017,Pages 91-114, (https://www.sciencedirect.com/science/article/pii/B978012805360700006X) Toepp, A.J., Monteiro, G.R.G., Coutinho, J.F.V. et al. Comorbid infections induce progression of visceral leishmaniasis. Parasites Vectors 12, 54 (2019). Trotta M, Nicetto M, Fogliazza A, Montarsi F, Caldin M, Furlanello T, Solano- Gallego L. Detection of Leishmania infantum, Babesia canis, and rickettsiae in ticks removed from dogs living in Italy. Ticks Tick Borne Dis. 2012 Dec;3(5-6):294-7. Viol MA, Guerrero FD, de Oliveira BC, de Aquino MC, Loiola SH, de Melo GD, de Souza Gomes AH, Kanamura CT, Garcia MV, Andreotti R, de Lima VM, Bresciani KD. Identification of Leishmania spp. promastigotes in the intestines, ovaries, and salivary glands of Rhipicephalus sanguineus actively infesting dogs. Parasitol Res. 2016 Sep;115(9):3479-84. Voet, Donald, and Judith G. Voet. Bioquímica. Ed. Médica Panamericana, 2006. Xu N, Zhang SO, Cole RA, McKinney SA, Guo F, Haas JT, et al. The FATP1- DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. J Cell Biol. 2012; 198: 895–911. Wang, Y., Rogers, P. M., Su, C. et al., (2008). Regulation of Cholesterologenesis by the Oxysterol Receptor, LXRα. J Biol Chem. 283(39): 26332-26339. Wilhelm, T. J. (2019). Viszerale Leishmaniose. Der Chirurg. Yao C, Wilson ME. Dynamics of sterol synthesis during development of Leishmania spp. parasites to their virulent form. Parasit Vectors. 2016 Apr 12;9:200.pt_BR
dc.subject.cnpqMedicina Veterináriapt_BR
dc.subject.cnpqMedicina Veterináriapt_BR
Aparece en las colecciones:Mestrado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
BEATRIZ FILGUEIRAS SILVESTRE.pdf2.38 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.