Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/22785
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLima Neto, Jacob Santana de-
dc.date.accessioned2025-08-07T12:59:37Z-
dc.date.available2025-08-07T12:59:37Z-
dc.date.issued2025-02-27-
dc.identifier.citationLIMA NETO, Jacob Santana de. Potencial do Cultivo de Chlorella sp. para Biorremediação de Efluentes de Leite de Soja e Produção de Biocombustíveis. 2025. 64 f. Dissertação (Mestrado em Engenharia Agrícola e Ambiental) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2025.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/22785-
dc.description.abstractAs mudanças climáticas são intensificadas pelas emissões de CO2 do uso de combustíveis fósseis, criando uma necessidade urgente de alternativas sustentáveis. Biocombustíveis de terceira geração, como os de microalgas, mitigam essas emissões por meio da biorremediação de efluentes e captura de CO2. Uma fonte significativa de efluente é a produção de leite de soja, que representa uma ameaça aos ecossistemas aquáticos quando descartados de forma inadequada. Nesse sentido o objetivo desta pesquisa foi avaliar cultivo de Chlorella sp. em efluente de leite de soja (SMW) para fins de biorremediação e produção de biocombustíveis. A pesquisa foi conduzida no município de Seropédica, RJ, Brasil. Seis tratamentos foram conduzidos em dois fotobiorreatores (FBRs) considerando três concentrações da SMW, 10, 20 e 30 mL L−1, e duas condições de suplementação de CO2, sem adição e com adição de CO2 a 2% v/v. Os FBRs foram iluminados continuamente com 6 lâmpadas de LED com potência de 40 W cada. Parâmetros físicos diários, como pH, temperatura e irradiância, foram monitorados, e a cinética do tratamento de águas residuais foi analisada medindo nitrogênio total (N), amônio (NH4+), demanda química de oxigênio (DQO) e carbono orgânico total (COT). A extração de lipídios e a análise de ácidos graxos foram conduzidas para avaliação do biodiesel. Um Delineamento Composto Central (CCD) foi inicialmente realizado, com dois fatores independentes (temperatura e irradiância) e densidade óptica (DO) como variável de resposta, modelada por meio de gráficos de superfície de resposta gerados no software R (v. 4.2.3). A biorremediação foi avaliada por meio da verificação da eficiência de remoção de N, NH4+, DQO e COT. Por fim, a análise estatística dos dados foi realizada por ANOVA, seguida do teste de Tukey (p < 0,05), no software R (v. 4.2.3). A extração lipídica foi realizada com clorofórmio pelo método de Randall e Twisselmann no equipamento VELP Scientifica modelo ELS SER 148/3 e os lipídios foram convertidos em ésteres metílicos (FAMEs) por transesterificação. Com base nas análises realizadas, os tratamentos resultaram em uma produção de biomassa seca variando entre 1,4 e 3,2 g L-1 e apresentaram de 78 a 98%x de eficiência de remoção para N, NH4+, DQO e COT. O tratamento que apresentou melhor desempenho na produção de lipídios, proteínas e carboidratos, foi o FBR2CO2 30 mL L-1 com composição de 12,24%; 51,67% e 25,67% respectivamente. Além disso, o cultivo de microalgas no sistema atingiu uma taxa de biofixação de CO2 de 44,96 Mg ano-1 A qualidade do biodiesel atendeu aos padrões internacionais e nacionais, incluindo ASTM D6751 (2024) e ANP (2024). O tratamento com FBR2CO2 30 mL L-1 apresentou produtividade e rendimentos significativos de biodiesel. Esses resultados demonstram que o cultivo de Chlorella sp. em FBRs usando SMW é uma solução promissora para tratamento de águas residuais e produção de biocombustíveis, contribuindo para a transição energética global.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectMicroalgaspt_BR
dc.subjecttratamento de águas residuárias agroindustriaispt_BR
dc.subjectlipídiospt_BR
dc.subjectbiodieselpt_BR
dc.subjectbiofixação de CO2pt_BR
dc.subjectmicroalgaept_BR
dc.subjectagro-industrial wastewater treatmentpt_BR
dc.subjectlipidspt_BR
dc.subjectCO2 biofixation.pt_BR
dc.titlePotencial do cultivo de chlorella sp. para biorremediação de efluentes de leite de soja e produção de biocombustíveispt_BR
dc.title.alternativePotential of chlorella sp. cultivation for bioremediation of soybean milk effluents and biofuel production.en
dc.typeDissertaçãopt_BR
dc.description.abstractOtherClimate change is intensified by CO2 emissions from fossil fuel use, creating an urgent need for sustainable alternatives. Third-generation biofuels, such as those derived from microalgae, help mitigate these emissions through wastewater bioremediation and CO2 capture. A significant source of wastewater is soybean milk production, which poses a threat to aquaticecosystems when improperly disposed of. In this context, the aim of this research was to evaluate the cultivation of Chlorella sp. in soybean milk wastewater (SMW) for bioremediation and biofuel production purposes. The study was conducted in the municipality of Seropédica, RJ, Brazil. Six treatments were carried out in two photobioreactors (PBRs), considering three concentrations of SMW (10, 20, and 30 mL L-1) and two CO2 supplementation conditions—without addition and with 2% v/v CO2 addition. The PBRs were continuously illuminated with six 40 W LED lamps. Daily physical parameters such as pH, temperature, and irradiance were monitored, and the kinetics of the wastewater treatment process were analyzed by measuring total nitrogen (N), ammonium (NH4+), chemical oxygen demand (COD), and total organic carbon (TOC). Lipid extraction and fatty acid analysis were conducted to evaluate biodiesel quality. A Central Composite Design (CCD) was initially performed, with two independent factors (temperature and irradiance) and optical density (OD) as the response variable, modeled through response surface graphs generated using R software (v. 4.2.3). Bioremediation efficiency was assessed by evaluating the removal of N, NH4+, COD, and TOC. Statistical analysis of the data was performed using ANOVA, followed by Tukey’s test (p < 0.05), also in R software (v. 4.2.3). Lipid extraction was carried out with chloroform using the Randall and Twisselmann method in a VELP Scientifica apparatus, model ELS SER 148/3. Lipids were then converted into fatty acid methyl esters (FAMEs) via transesterification. Based on the analyses, the treatments produced between 1.4 and 3.2 g L-1 of dry biomass and showed 78–98% removal efficiency for N, NH4+, COD, and TOC. The treatment with the best performance in lipid, protein, and carbohydrate production was FBR2CO2 30 mL L-1, with compositions of 12.24%, 51.67%, and 25.67%, respectively. Furthermore, the microalgae cultivation system achieved a CO2 biofixation rate of 44.96 Mg year-1. The biodiesel quality met both international and national standards, including ASTM D6751 (2024) and ANP (2024). The FBR2CO2 30 mL L-1 treatment showed significant biodiesel productivity and yield. These results demonstrate that cultivating Chlorella sp. in PBRs using SMW is a promising solution for wastewater treatment and biofuel production, contributing to the global energy transition.en
dc.contributor.advisor1Mendonça, Henrique Vieira de-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-7242-5110pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8897355054570578pt_BR
dc.contributor.referee1Mendonça, Henrique Vieira de-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-7242-5110pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8897355054570578pt_BR
dc.contributor.referee2Salvador, Conan Ayade-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-5503-9573pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9667991641636333pt_BR
dc.contributor.referee3Silva, Glicélia Pereira-
dc.contributor.referee3IDhttps://orcid.org/0000-0003-2440-8636pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/6421558847529228pt_BR
dc.contributor.referee4Vilas Bôas, Renata Nazaré-
dc.contributor.referee4IDhttps://orcid.org/0000-0002-0061-8703pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/7908954874920549pt_BR
dc.creator.IDhttps://orcid.org/0009-0006-3441-7383pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/1520152609696743pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Tecnologiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Agrícola e Ambientalpt_BR
dc.relation.referencesABD EL-MALEK, F. et al. Microorganism-mediated algal biomass processing for clean products manufacturing: Current status, challenges and future outlook. Fuel, v. 311, n. September 2021, p. 122612, 2022. ABDEL-LATIF, H. M. R. et al. The effectiveness of Arthrospira platensis and microalgae in relieving stressful conditions affecting finfish and shellfish species : An overview. Aquaculture Reports, v. 24, n. February, p. 101135, 2022. AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS (ANP). Resolução no 968, de 15 de maio de 2024. Estabelece a especificação do biodiesel e as obrigações quanto ao controle da qualidade a serem atendidas pelos agentes econômicos que comercializem o produto em território nacional. Disponível em: https://atosoficiais.com.br/anp/resolucao-n-920-2023-estabelece-a-especificacao-do-biodiesel- e-as-obrigacoes-quanto-ao-controle-da-qualidade-a-serem-atendidas-pelos-agentes- economicos-que-comercializem-o-produto-em-territorio-nacional?origin=instituicao. Acesso em: 26 jun. 2025. AKTER, S. et al. Bioethanol production from water-soluble and structural carbohydrates of normal and high sugary corn stovers harvested at three growth stages. Energy Conversion and Management, v. 221, n. July, p. 113104, 2020. ALMEIDA, C. J. et al. Biotechnological assessment of culture conditions on the stress- induced carotenoid production of Dunaliella salina and growth kinetics of chlorophyceae microalgae strains. Brazilian Archives of Biology and Technology, v. 63, 2020. AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). Standard Methods for the Examination of Water and Wastewater. 23. ed. Washington, DC: APHA, 2017. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). ASTM D6751 – 23A: Standard Specification for Biodiesel Fuel Blendstock (B100) for Middle Distillate Fuels. 2024. Disponível em: https://www.astm.org/d6751-23a.html. Acesso em: 26 jun. 2025. ANAHAS, A. M. P.; PRASANNABALAJI, N.; MURALITHARAN, G. Unlocking the potential of coal mine microalgae strains: Enhanced biodiesel production and CO2 sequestration through cultivation optimization. Biomass and Bioenergy, v. 192, n. September 2024, p. 107489, 2025. ARUNPRASAD, J.; ELANGO, T. Performance and emission characteristics of engine using Naviculla Sp. Algae oil methyl ester with MgO nanoparticles. Materials Today: Proceedings, v. 33, p. 3164–3168, 2020. BARSANTI, L.; GUALTIERI, P. Algae: Anatomy, Biochemistry, and Biotechnology. 2. ed. Boca Raton: CRC Press, 2006. 44 BARSANTI, L.; GUALTIERI, P. Algae: Anatomy, Biochemistry, and Biotechnology. 2. ed. Boca Raton: CRC Press, 2014. Disponível em: https://doi.org/10.1201/b16544. BEIGBEDER, J. B.; LAVOIE, J. M. Effect of photoperiods and CO2 concentrations on the cultivation of carbohydrate-rich P. kessleri microalgae for the sustainable production of bioethanol. Journal of CO2 Utilization, v. 58, n. December 2021, p. 101934, 2022. BOUWER, H.; CHANEY, R. L. Land treatment of wastewater. Advances in Agronomy, v. 26, p. 133–176, 1974. Disponível em: https://doi.org/10.1016/s0065-2113(08)60870-6. Acesso em: 26 jun. 2025. BRASIL. Resolução CONAMA no 430/2011, de 13 de maio de 2011. Conselho Nacional do Meio Ambiente, p. 8, 2011. BRENNAN, L.; OWENDE, P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, v. 14, n. 2, p. 557–577, 2010. CAVALETT, O. Análise do Ciclo de Vida da Soja. , 2008. Disponível em: https://www.unicamp.br/fea/ortega/extensao/Tese-OtavioCavalett.pdf CHANG, W. et al. Mixotrophic cultivation of microalgae to enhance the biomass and lipid production with synergistic effect of red light and phytohormone IAA. Renewable Energy, v. 187, p. 819–828, 2022. CHINI ZITTELLI, G. et al. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. [s.l.] Springer International Publishing, 2023. v. 22 CHISTI, Y. Constraints to commercialization of algal fuels. Journal of Biotechnology, v. 167, n. 3, p. 201–214, 2013. CHIU, S. Y. et al. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, v. 99, n. 9, p. 3389–3396, 2008. CONDOR, B. E. et al. Effects of carbon dioxide concentration and swine wastewater on the cultivation of Chlorella vulgaris FSP-E and bioethanol production from microalgae biomass. Applied Energy, v. 369, n. May, p. 123617, 2024. CONVERTI, A. et al. Chemical Engineering and Processing : Process Intensification Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. v. 48, p. 1146–1151, 2009. DE MENDONÇA, H. V. et al. Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: Comparison between batch and continuous operation. Science of the Total Environment, v. 633, p. 1–11, 2018. 45 DE SOUZA, D. S. et al. New methods to increase microalgae biomass in anaerobic cattle wastewater and the effects on lipids production. Biomass and Bioenergy, v. 176, n. October 2022, p. 106915, 2023. DING, W. et al. Journal of Water Process Engineering Pollutant removal and resource recovery of co-cultivated microalgae Chlorella sp . and Phaeodactylum tricornutum for marine aquaculture wastewater. Journal of Water Process Engineering, v. 67, n. September, p. 106182, 2024. DONG, T. et al. Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts. Algal Research, v. 19, p. 316–323, 2016. DOS SANTOS, M. G. B. et al. Microalgae Biomass Production for Biofuels in Brazilian Scenario: A Critical Review. Bioenergy Research, v. 14, n. 1, p. 23–42, 2021. DUARTE, J. H.; FANKA, L. S.; COSTA, J. A. V. CO2 Biofixation via Spirulina sp. Cultures: Evaluation of Initial Biomass Concentration in Tubular and Raceway Photobioreactors. Bioenergy Research, v. 13, n. 3, p. 939–943, 2020. DUBOIS, M. et al. Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, v. 28, n. 3, p. 350–356, 1956. EMERSON, K.; RUSSO, R. C.; LUND, R. E.; THURSTON, R. V. Aqueous ammonia equilibrium calculations: effect of pH and temperature. Journal of the Fisheries Research Board of Canada, v. 32, n. 12, p. 2379–2383, 1975. ESIPOVICH, A. L. et al. Processing of lipid-enriched microalgae Chlorella biomass into biofuels and value-added chemicals. Fuel, v. 381, n. PB, p. 133484, 2025. FAO – FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. The State of the World’s Land and Water Resources for Food and Agriculture – Systems at breaking point: Main report. Rome, 2022. Disponível em: https://doi.org/10.4060/cb9910en. FEBRIENI, V. N.; SEDJATI, S.; YUDIATI, E. Optimization of light intensity on growth rate and total lipid content of Chlorella vulgaris. IOP Conference Series: Earth and Environmental Science, v. 584, n. 1, p. 012040, 2020. Disponível em: https://doi.org/10.1088/1755-1315/584/1/012040. FORTIER, M. O. P. et al. Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae. Applied Energy, v. 122, n. July 2011, p. 73–82, 2014. GALDEANO, M. C. et al. Obtenção de Extrato de Soja com Menor Produção de Resíduos Industriais. Comunicado Técnico 212, v. Novembro, p. 1–4, 2015. GHAFFAR, I. et al. A review on the sustainable procurement of microalgal biomass from wastewaters for the production of biofuels. Chemosphere, v. 311, n. P2, p. 137094, 2023. GIRARDI, J. C. Otimização do ponto de entupimento de filtro a frio de biodiesel de babaçu. 2019. 46 GONÇALVES, B. Z. Tratamento de efluente de laticínio em reator de leito estruturado aeróbio. p. 52, 2017. GUPTA, A. K. et al. Biosynthesis and extraction of high-value carotenoid from algae. Frontiers in Bioscience - Landmark, v. 26, n. 6, p. 171–190, 2021. HENA, S. et al. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Research, v. 128, p. 267–277, 2018. HINTZ, N. H.; ZEISING, M.; STRIEBEL, M. Changes in spectral quality of underwater light alter phytoplankton community composition. Limnology and Oceanography, v. 66, n. 9, p. 3327–3337, 2021. IEA. Análise Energética Global: Emissões de CO2 em 2021. Disponível em: <https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2>. IEVINA, B.; ROMAGNOLI, F. Bioresource Technology Unveiling underlying factors for optimizing light spectrum to enhance microalgae growth. Bioresource Technology, v. 418, n. September 2024, p. 131980, 2025. IPCC. Ações urgentes contra mudança climática são necessárias para garantir um futuro habitável, alerta IPCC. Disponível em: <https://brasil.un.org/pt-br/224004-ações- urgentes-contra-mudança-climática-são-necessárias-para-garantir-um-futuro-habitável>. Acesso em: 15 out. 2023. JAIN, D. et al. Bioresource Technology Short Communication CO 2 fi xation and production of biodiesel by Chlorella vulgaris NIOCCV under mixotrophic cultivation. Bioresource Technology, v. 273, n. September 2018, p. 672–676, 2019. KHAIRUDDIN, F. et al. Evaluation on microalgae for the production of bio-chemicals and electricity. Chemosphere, v. 350, n. November 2023, p. 141007, 2023. KHOSRAVINIA, S. et al. Bioprospecting of Ten Microalgae Species Isolated from Saline Water Lake for Evaluation of the Biodiesel Production. Bioenergy Research, p. 1090–1103, 2023. KIM, M. et al. Cultivation of Chlorella sp. HS2 using wastewater from soy sauce factory. Chemosphere, v. 342, n. September, 2023. LACERDA FARIAS, S. et al. Remoção de nutrientes em sistema simbiótico microalga- bactéria: influência da adição de CO2, O2 e tipo de cultura. Revista DAE, v. 71, n. 240, p. 157–170, 2023. LEE, O. K.; OH, Y. K.; LEE, E. Y. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Bioresource Technology, v. 196, p. 22–27, 2015. 47 LEE, S. Y.; STUCKEY, D. C. Separation and biosynthesis of value-added compounds from food-processing wastewater: Towards sustainable wastewater resource recovery. Journal of Cleaner Production, v. 357, n. January, p. 131975, 2022. LIEUTAUD, C. et al. Fast non-invasive monitoring of microalgal physiological stage in photobioreactors through Raman spectroscopy. Algal Research, v. 42, n. June, p. 101595, 2019. LIN, H.; WANG, Y.; DONG, Y. Journal of Environmental Chemical Engineering A review of methods , influencing factors and mechanisms for phosphorus recovery from sewage and sludge from municipal wastewater treatment plants. Journal of Environmental Chemical Engineering, v. 12, n. 1, p. 111657, 2024. LIU, H. et al. Valorization of the microalgae fixing CO 2 from flue gas by co-hydrothermal liquefaction with high-protein microalgae : Denitrogenation of bio-oil by ash and high energy recovery. Fuel, v. 340, n. September 2022, p. 127566, 2023. LIU, J. et al. An overview of polyoxymethylene dimethyl ethers as alternative fuel for compression ignition engines. Fuel, v. 318, n. November 2021, p. 123582, 2022. MAKOWSKA, M.; DZIOSA, K. Environmental Technology & Innovation Influence of different pyrolysis temperatures on chemical composition and graphite-like structure of biochar produced from biomass of green microalgae Chlorella sp. Environmental Technology & Innovation, v. 35, n. March, p. 103667, 2024. MEKONNEN, K. D.; ENDRIS, Y. A.; ABDU, K. Y. Alternative Methods for Biodiesel Cetane Number Valuation: A Technical Note. ACS Omega, v. 9, n. 6, p. 6296–6304, 2024. MELLO, C. DE et al. Pollution control and biodiesel production with microalgae : new perspectives on the use of flat panel photobioreactors regarding variation in volume application rate. Environmental Science and Pollution Research, v. 31, n. 49, p. 58973– 58987, 2024. NUR, M. M. A. et al. Innovative strategies for utilizing microalgae as dual-purpose biofertilizers and phycoremediators in agroecosystems. Biotechnology Reports, v. 45, n. November 2024, p. e00870, 2025. RAEESOSSADATI, M. J. et al. CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. Algal Research, v. 6, n. PA, p. 78–85, 2014. RICKMAN, M. et al. Life-cycle and techno-economic analysis of utility-connected algae systems. Algal Research, v. 2, n. 1, p. 59–65, 2013. ROSLI, S. S. et al. Optimum interaction of light intensity and CO2 concentration in bioremediating N-rich real wastewater via assimilation into attached microalgal biomass as the feedstock for biodiesel production. Process Safety and Environmental Protection, v. 141, p. 355–365, 2020. 48 SA, C. et al. Morphology , composition , production , processing and applications of Chlorella vulgaris : A review. v. 35, p. 265–278, 2014. SARANYA, D.; SHANTHAKUMAR, S. Green microalgae for combined sewage and tannery e ffl uent treatment : Performance and lipid accumulation potential. Journal of Environmental Management, v. 241, n. March, p. 167–178, 2019. SARAVANAN, A. et al. Strategies for enhancing the efficacy of anaerobic digestion of food industry wastewater: An insight into bioreactor types, challenges, and future scope. Chemosphere, v. 310, n. September 2022, p. 136856, 2023. SARWER, A. et al. Algal biomass valorization for biofuel production and carbon sequestration: a review. [s.l.] Springer International Publishing, 2022. v. 20 SATHASIVAM, R. et al. Saudi Journal of Biological Sciences Microalgae metabolites : A rich source for food and medicine. Saudi Journal of Biological Sciences, v. 26, n. 4, p. 709– 722, 2019. SGORLON, J. G.; RIZK, M. C.; BERGAMASCO, R. Avaliação da DQO e da relação C / N obtidas no tratamento anaeróbio de resíduos fruti-hortículas. p. 421–424, 2011. SILVA, M. C. C. DE P. E et al. Remoção De Nitrogênio Amoniacal Por Chlorella Sp. Em Diferentes Diluições De Lixiviado De Aterro Sanitário/Amoniacal Nitrogen Removal By Chlorella Sp. in Different Dillutions of Sanitary Terry Dillution. Brazilian Journal of Development, v. 6, n. 11, p. 86620–86631, 2020. STEWART, P., FRANKLIN, M., 2008. Physiological heterogeneity in biofilms. Nat Rev Microbiol 6, 199–210. https://doi.org/10.1038/nrmicro1838. TAKESHITA, T. et al. Bioresource Technology Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. BIORESOURCE TECHNOLOGY, v. 158, p. 127–134, 2014. TOMAR, S. et al. Microalgae: A promising source for biofuel production. Biocatalysis and Agricultural Biotechnology, v. 53, n. August, p. 102877, 2023. VASSALLE, L. et al. Chemosphere Can high rate algal ponds be used as post-treatment of UASB reactors to remove micropollutants ? v. 248, 2020. VASUDEVAN, V.; STRATTON, R. W.; PEARLSON, M. N. Supporting Information ( SI ) for : Environmental Performance of Algal Biofuel Technology Options. p. 1–35, 2012. WANG, Y. et al. Novel hybrid alcohol-dominated reaction network for highly selective conversion of CO2 into ethene. Chem Catalysis, v. 2, n. 5, p. 933–935, 2022. WANG, Y.; TIBBETTS, S. M.; MCGINN, P. J. Microalgae as sources of high-quality protein for human food and protein supplements. Foods, v. 10, n. 12, p. 1–18, 2021. 49 XIE, D. et al. Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification. Bioresource Technology, v. 349, n. February, p. 126886, 2022. YIN, X. et al. Biodiesel production from soybean oil deodorizer distillate enhanced by counter-current pulsed ultrasound. Ultrasonics Sonochemistry, v. 23, p. 53–58, 2015. ZHAO, B.; SU, Y. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renewable and Sustainable Energy Reviews, v. 31, p. 121–132, 2014.pt_BR
dc.subject.cnpqEngenharia Agrícolapt_BR
Appears in Collections:Mestrado em Engenharia Agrícola e Ambiental

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
JACOB SANTANA DE LIMA NETO.pdf1.54 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.