Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/23018
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlmeida, Sabrina Mayer de-
dc.date.accessioned2025-08-19T15:54:19Z-
dc.date.available2025-08-19T15:54:19Z-
dc.date.issued2022-08-17-
dc.identifier.citationALMEIDA, Sabrina Mayer de. Strategies for improving eucalypt bleached Kraft pulp application. 2022. 70 f. Dissertação (Mestrado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/23018-
dc.description.abstractBiorrefinarias são instalações que integram tecnologias e processos de conversão de biomassa para produção de bioenergia, bioquímicos, biocombustíveis e outros produtos de valor agregado. A madeira tem sido considerada a principal matéria-prima em uma biorrefinaria uma vez que muitas aplicações, como energia, químicos e materiais são possíveis considerando seu uso. Mas existem também oportunidades considerando produtos florestais já comerciais, como a polpa branqueada comercial, para produção de diversos produtos de celulose, como polpa solúvel, nanocelulose, xilitol, têxteis, etc. Processos alternativos como aplicação de líquidos iônicos, extração alcalina, hidrólise enzimática vem sendo reportados para produção de bioprodutos, devido sua capacidade de remover hemiceluloses seletivamente, garantindo a integridade das fibras de celulose e oferecendo mais oportunidades às fábricas. Por outro lado, a fração removida da polpa inicial não tem muitas aplicações descritas na literatura nem mesmo em escala industrial. Portanto, o principal objetivo desta pesquisa foi avaliar uma estratégia de aprimoramento dos usos de polpa Kraft comercial minimizando as perdas de material para geração de biomateriais potenciais, através do uso da tecnologia de extração alcalina a frio e aplicação do líquido iônico [2- HTEAF]mesy. Assim, esta disserção foi dividida em dois capítulos, onde o primeiro aborda o estado da arte da produção de polpa solúvel e o segundo avalia o uso de líquido iônico e extração alcalina a frio para produção de produtos de celulose de alto valor agregado. Os resultados mostraram que existem grandes oportunidades para produção de polpa solúvel e biomateriais na indústria de celulose. As plataformas de biorrefinaria possuem sinergia com as atuais instalações das fábricas de celulose, uma vez que sua integração seria facilitada pelo conhecimento prévio de processos e equipamentos necessários para fracionar os componentes da biomassa.pt_BR
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJpt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectbiorrefinariapt_BR
dc.subjectbioprodutospt_BR
dc.subjectextração alcalinapt_BR
dc.subjectlíquido iônicopt_BR
dc.subjectpolpa solúvelpt_BR
dc.subjectbiorefinerypt_BR
dc.subjectbio-productspt_BR
dc.subjectcaustic extractionpt_BR
dc.subjectionic liquidpt_BR
dc.subjectdissolving pulppt_BR
dc.titleStrategies for improving eucalypt bleached Kraft pulp applicationpt_BR
dc.typeDissertaçãopt_BR
dc.description.abstractOtherBiorefinery are facilities which integrate biomass conversion processes and technologies to produce bioenergy, biochemical, biofuels and others value-added products. The wood has been considered as the main raw material in a biorefinery industry since many applications, since many applications such as energy, chemicals and materials, are possible considering its use. But, there are also opportunities considering the already forest commercial products, such as the commercial bleached pulp, for producing several high added-value cellulose products, such as dissolving pulp, nanocellulose, xylitol, textiles, etc. Alternative processes such as ionic liquid application, caustic extraction, enzymatic hydrolysis have been reported to produce bio-products, due to the ability to selectively remove hemicelluloses, guaranteeing the integrity of cellulose fibers, delivering more opportunities to the pulp mills. On the other hand, the fraction removed from the initial pulp does not have many applications described in the literature, not even in industrial scale. Therefore, the main objective of this research was to evaluate a strategy for improving the uses of the commercial Kraft pulp minimizing material loss by the generation of the potential biomaterials, through the use of cold caustic extraction technology and application of the [2-HTEAF]mesy ionic liquid. Thus, this dissertation was divided in two chapters, being the first addresses to describe the state of the art of the dissolving pulp production and the second evaluates the use of ionic liquid and cold caustic extraction to produce high value-added cellulose products. The results showed that there are great opportunities for the production of dissolving pulp and biomaterials in the pulp mill. Biorefinery platforms have a synergy with the current pulp mill facilities, since their integration would be greatly facilitated by it already knowledge of processes and equipment necessary to fractionate biomass components.en
dc.contributor.advisor1Gomes, Fernando José Borges-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-0363-4888pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0502504979310236pt_BR
dc.contributor.advisor-co1Batalha, Larisse Aparecida Ribas-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8408754769772480pt_BR
dc.contributor.advisor-co2Almeida, Maíra Nicolau de-
dc.contributor.advisor-co2Latteshttp://lattes.cnpq.br/4310441559307271pt_BR
dc.contributor.referee1Gomes, Fernando José Borges-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-0363-4888pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/0502504979310236pt_BR
dc.contributor.referee2Lelis, Roberto Carlos Costa-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-2923-3839pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5175502780570226pt_BR
dc.contributor.referee3Ribeiro, Robisneia Adriana-
dc.creator.Latteshttp://lattes.cnpq.br/5755491150555942pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Florestaspt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciências Ambientais e Florestaispt_BR
dc.relation.references1. ABUSHAMMALA, H.; MAO, J. A Review on the Partial and Complete Dissolution and Fractionation of Wood and Lignocelluloses Using Imidazolium Ionic Liquids. Polymers, v. 12, p. 195, 2020. DOI: 10.3390/polym12010195. 2. ADELEYE, A. T.; LOUIS, H.; TEMITOPE, H. A.; PHILIP, M.; AMOS, P. I.; MAGU, T. O.; OZIOMA, A. U.; AMUSAN, O. O. Ionic liquids (ILs): advances in biorefinery for the efficient conversion of lignocellulosic biomass. Asian Journal of Green Chemistry, v. 3, n. 3, p. 391-417, 2019. DOI: 10.22034/ajgc.2018.146881.1100 3. AJAO, O.; MARINOVA, M.; SAVADOGO, O.; PARIS, J. Hemicellulose based integrated forest biorefineries: Implementation strategies. Industrial Crops & Products, v. 126, p. 250–260, 2018. 4. ALIBABA. Alibaba Group. Available in: https://www.alibaba.com/?spm=a2700.galleryofferlist.scGlobalHomeHeader.4.18643da8BcD WCo Accessed on June 15th, 2022. 5. ANGELL, C. A.; BYRNE, N.; BELIERES, J. P. Parallel Developments in Aprotic and Protic Ionic Liquids: Physical Chemistry and Applications. Acc. Chem. Res., v. 40, p. 1228– 1236, 2007. 6. ARCE, C.; LLANO, T.; GARCÍA, P.; COZ, A. Technical and environmental improvement of the bleaching sequence of dissolving pulp for fibre production. Cellulose, v. 27, p. 4079–4090, 2020. DOI: https://doi.org/10.1007/s10570-020-03065-1 7. AREA, M. C.; CARVALHO, M.G.V.S.; FERREIRA, P.J.; FELISSIA, F.E.; BARBOZA, O.M.; BENGOECHEA, D.I. The influence of pulping and washing conditions on the properties of Eucalyptus grandis unbleached kraft pulps treated with chelants. Bioresource technology, v. 101, n. 6, p. 1877-1884, 2010. 8. ASEMAVE, K. Greener Chelators for Recovery of Metals and Other Applications. Organic and Medicinal Chemistry International Journal, v. 6, n. 4, 2017. DOI: : 10.19080/OMCIJ.2018.06.555694 9. AXEGÅRD, P. The effect of the transition from elemental chlorine bleaching to chlorine dioxide bleaching in the pulp industry on the formation of PCDD/Fs*. Chemosphere, v. 236, p. 124386, 2019. DOI: https://doi.org/10.1016/j.chemosphere.2019.124386 10. BAAQEL, H.; DÍAZ, I.; TULUS, V.; CHACHUAT, B.; GUILLÉNGOSÁLBEZ, G.; HALLETT, J. P. Role of life-cycle externalities in the valuation of protic ionic liquids–a case study in biomass pretreatment solvents. Green Chemistry, v. 22, n. 10, p. 3132-3140, 2020. DOI: 10.1039/D0GC00058B 11. BAJPAI, P. Production of Dissolving-Grade Pulp. Biotechnology for Pulp and Paper Processing, 2018. DOI: https://doi.org/10.1007/978-981-10-7853-8_15 12. BALKISSOON, S.; ANDREW, J.; SITHOLE, B. Dissolving wood pulp production: a review. Biomass Conversion and Biorefnery, p. 1-36, 2022. 45 13. BATALHA, L. A. R.; COLODETTE, J. L.; GOMIDE, J. L.; BARBOSA, L. C. A.; MALTHA, C. R. A.; GOMES, F. J. B. DIssolving pulp production from bamboo. BioResources , v. 7, n. 1, p. 0640-0651, 2012. 14. BEHIN, J.; MIKANIKI, F.; FADAEI, Z. Dissolving pulp (alphacellulose) from corn stalk by kraft process. Iran J Chem Eng, v. 5, p.15, 2008. 15. BHAUMIK, P.; DHEPE, P. L. Conversion of biomass into sugars. In Biomass Sugars for Non-fuel Applications. Edited by Murzin D, Simakova O, Royal Society of Chemistry, p. 1–53, 2015. DOI: 10.1039/9781782622079-00001 16. BOUIRI, B.; AMRANI, M. Elemental chlorine-free bleaching halfa pulp. Journal of Industrial and Engineering Chemistry, v. 16, p. 587 . J, 2010. 17. BRANDT-TALBOT, A.; GSCHWEND,, F. J. V.; FENNELL, P. S.; LAMMENS, T. M.; TAN, B.; WEALE, J. HALLETT, J.P. An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chemistry, v. 19, p. 3078–3102, 2017. DOI: 10.1039/c7gc00705a 18. BRINCHI, L., COTANA, F., FORTUNATI, E., KENNY, J. M. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymer, 94, 154–169, 2013. 19. BRZĘCZEK-SZAFRAN, A.; WIĘCŁAWIK, J.; BARTECZKO, N.; SZELWICKA, N.; BYRNE, E.; KOLANOWSKA, A.; KWAŚNY, M. S.; CHROBOK, A. Protic ionic liquids from di- or triamines: even cheaper Brønsted acidic catalysts. Green Chem., vol. 23, p. 4421, 2021. DOI: 10.1039/d1gc00515d 20. BRIGOULEIX, C.; ANOUTI, M.; JACQUEMIN, J.; CAILLON-CARAVANIER, M.; GALIANO, H.; LEMORDANT, D. Physicochemical Characterization of Morpholinium Cation Based Protic Ionic Liquids Used As Electrolytes. J. Phys. Chem. B, v. 114, p. 1757– 1766, 2010. DOI: 10.1021/jp906917v 21. CESARINO, I., ARAÚJO, P., DOMINGUES JÚNIOR, A.P., MAZZAFERA, P.: An overview of lignin metabolism and its effect on biomass recalcitrance. Brazilian Journal of Botany, v. 35, n. 4, p. 303–311, 2012. 22. CHO, H. M.; GROSS, A. S.; CHU, J. W. Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. Journal of the American Chemical Society, v. 133, n. 35, p. 14033-14041, 2011. 23. CHEN, L.; SHARIFZADEH, M.; DOWELL, N. M.; WELTON, T.; SHAH, N.; HALLETT, J. P. Inexpensive ionic liquids: [HSO4]−-based solvent production at bulk scale. Green Chem., v. 16, p. 3098, 2014. DOI: 10.1039/c4gc00016a 24. CHENG, D., AN, X., ZHANG, J.; TIAN, X.; HE, Z.; WEN, Y.; Ni, Y. Facile preparation of regenerated cellulose film from cotton linter using organic electrolyte solution (OES). Cellulose 24:1631–1639, 2017. DOI: https://doi.org/10.1007/s10570-017-1215-z 25. CHEN, Z.; ZHANG, H.; HE, Z.; ZHANG, L. Current and future markets of dissolving pulp in China and other countries. BioResources, v. 14, n. 4, p. 7627-7629, 2019. 46 26. CHEN, C.; DUAN, C.; LI, J.; LIU, Y.; MA, X.; ZHENG, L.; STAVIK, J.; NI, Y. Cellulose (Dissolving Pulp) Manufacturing Processes and Properties: A Mini-Review. BioResources , v. 11, n. 2, p. 5553-5564, 2016. 27. CHEN, Y.; SHEN, K.; HE, Z.; WU, T.; HUANG, C.; LIANG, L.; FANG, G. Deep eutectic solvent recycling to prepare high purity dissolving pulp. Cellulose, v. 28, p. 11503– 11517, 2021. DOI: https://doi.org/10.1007/s10570-021-04188-9 28. CHOI, K. NAM, J. D.; KWON, S. H.; CHOI, H. J.; ISLAM, M. S.; KAO, N. Microfibrillated Cellulose Suspension and Its Electrorheology. Polymers, v. 11, p. 2119, 2019. DOI: 10.3390/polym11122119 29. CHUNILALL, V. Structure, accessibility and ‘reactivity’ of cellulose as revealed by cp/mas 13c-nmr spectroscopy and atomic force microscopy. PhD in: Science and Agriculture. University of KwaZulu-Natal, 2009. Available in: https://researchspace.ukzn.ac.za/xmlui/bitstream/handle/10413/8759/Chunilall_Viren_2009.p df?sequence=1&isAllowed=y 30. CLOUGH, M. T.; GEYER, K.; HUNT, P. A.; MERTES, J.; WELTON, T. Thermal decomposition of carboxylate ionic liquids: trends and mechanisms. Physical Chemistry, v. 15, p. 20480–20495, 2013. DOI: 10.1039/c3cp53648c 31. COLODETTE, J. L.; GOMES, F. J. B. Branqueamento de Polpa Celulósica: da produção da polpa marrom ao produto acabado. Viçosa: Editora UFV, 816 p., 2015. 32. COTA, I.; GONZALEZ-OLMOS, R.; IGLESIAS, M.; MEDINA, F. New short aliphatic chainionic liquids: synthesis, physical properties, and catalytic activity in aldol condensations. The Journal of Physical Chemistry B, v. 111, n. 43, p. 12468–12477, 2007. DOI: https://doi.org/10.1021/jp073963u 33. CUNICO, N. R.; OLÍMPIO, A. C. S.; QUEIROZ, G. T.; MENDONZA, Z. M. S. H.; BORGES, P. H. M. Fibras vegetais para produção de polpa celulósica. Brazilian Journal of Development, v.7, n.11, p. 101930-101941, 2021.DADI, A.P., VARANASI, S., SCHALL, C.A. Enhancement of cellulose saccharifi cation kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng, v. 95, p. 904 –910, 2006. 34. DAMASIO, R. A. P. Caracterização e aplicações de celuloses nanofibrilada (cnf) e nanocristalina (CNC). Dissertação (Mestrado), Universidade Federal de Viçosa, 2017. Available in: https://poscienciaflorestal.ufv.br/wp-content/uploads/2020/07/Renato-Augusto- Pereira-Damasio.pdf 35. DAUD, Z.; AWANG, H.; KASSIM, A. S. M.; HATTA, M. Z. M.; ARIPIN, A. M. Cocoa Pod Husk and Corn Stalk: Alternative Paper Fibres Study on Chemical Characterization and Morphological Structures. Advanced Materials Research, v. 911, p. 331- 335, 2014. DOI: 10.4028/www.scientific.net/AMR.911.331 36. DAVIDOWSKI, S. K.; THOMPSON, F.; HUANG, W.; HASANI, M.; AMIN, S. A.; ANGELL, C. A.; YARGER, J. L. NMR Characterization of Ionicity and Transport Properties for a Series of Diethylmethylamine Based Protic Ionic Liquids. The Journal of Physcal Chemistry, v. 120, p. 4279-4285, 2016. DOI: 10.1021/acs.jpcb.6b01203 47 37. DEMUNER, I. F. Produção e caracterização de lignocelulose nanofibrilada (lCNF) e celulose nanofibrilada (CNF) e aplicação de LCNF na manufatura de papéis de embalagem nanoestruturados. Dissertação (Mestrado), Universidade Federal de Viçosa, 2017. Available in: https://www.locus.ufv.br/bitstream/123456789/11566/1/texto%20completo.pdf 38. DUAN, C.; VERMA, S. K.; LI, J.; MA, X.; NI, Y. Combination of mechanical, alkaline and enzymatic treatments to upgrade paper-grade pulp to dissolving pulp with high reactivity. Bioresource Technology, v. 200, p. 458-463, 2015. DOI: http://dx.doi.org/10.1016/j.biortech.2015.10.067 39. DUAN, C.; VERMA, S. K.; Li, J.; MA, X.; NI, J. Combination of mechanical, alkaline and enzymatic treatments to upgrade papergrade pulp to dissolving pulp with high reactivity. BioresourTechnol 200:458–463, 2016. DOI: https://doi.org/10.1016/j.biortech.2015.10.067 40. DYUNYASHEVA, V. Dissolving pulp and its properties. University of Applied Sciences Paper, Chemical and Textile Engineering Degree Programme, Bachelor thesis, 36p. 2017. 41. ENDO, T.; AUNG, E. M.; FUJII, S.; HOSOMI, S.; KIMIZU, M.; NINOMIYA, K.; TAKAHASHI, K. Investigation of accessibility and reactivity of cellulose pretreated by ionic liquid at high loading. Carbohydrate Polymers, v. 176, p. 365–373, 2017. DOI: http://dx.doi.org/10.1016/j.carbpol.2017.08.105 42. FABRE, E.; MURSHED, S. M. S. A review of the thermophysical properties and potential of ionic liquids for thermal applications. Journal of Materials Chemistry A, v. 9, p. 15861–15879, 2021. DOI: 10.1039/d1ta03656d 43. FATRIASARI, W.; HERMIATI, E. Lignocellulosic biomass for bioproduct: its potency and technology development. Journal of Lignocellulose Technology, 2016. Available in: http://ejournal.lipi.go.id/index.php/jol/ 44. FERDOUS, T.; QUAIYYUM, M. A.; JAHAN, M. S. Chlorine dioxide bleaching of nineteen non-wood plant pulps. Nordic Pulp & Paper Research Journal, v. 35, n. 4, p.569– 576, 2020. DOI: https://doi.org/10.1515/npprj-2020-0043 45. FERREIRA, A. F. Biorefinery Concept. Biorefineries, p. 1–20, 2017. DOI:10.1007/978-3-319-48288-0_1 46. FRIEBEL, C.; BISCHOF, R. H.; SCHILD, G.; FACKLER, K.; GEBAUER, I. Effects of Caustic Extraction on Properties of Viscose Grade Dissolving Pulp. Processes, v. 7, n. 3, p. 122, 2019. DOI: https://doi.org/10.3390/pr7030122 47. FROSCHAUER, C.; HUMME, M.; IAKOVLEV, M.; ROSELLI, A.; SCHOTTENBERGER, H.; SIXTA, H. Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules, v. 14, n. 6, p. 1741- 1750, 2013. 48. GEHMAYR, V.; POTTHAST, A.; SIXTA, H. Reactivity of dissolving pulps modified by TEMPO-mediated oxidation. Cellulose, v. 19, n. 4, p. 1125-1134, 2012.DOI: https://doi.org/10.1007/s10570-012-9729-x 48 49. GEHMAYR, V.; SIXTA, H. Pulp properties and their influence on enzymatic degradability. Biomacromolecules, v. 13, n. 3, p. 645-651, 2012. DOI: https://doi.org/10.1021/bm201784u 50. GEORG, I. C. Modelagem e simulação da polpação Kraft antraquinona. Dissertação. Universidade Federal de Santa Catarina, Florianópolis. 2000. 51. GIERER, J. Chemical Aspects of Kraft Pulping. Wood Science and Technology , v. 14, n. 4, p. 241-266, 1980. DOI: 0043-7719/80/0014/0241/$ 5.20 52. GOMES, F. J. B.; COLODETTE,J. L.; BURNET, A.; BATALHA, L. A. R.; BARBOSA, B. M. Potential of Elephant Grass for Pulp Production. BioResources , v. 8, n. 3, p. 4359-4379, 2013. 53. GONG, C..; SHI, Y.; NI, J. P.; YANG, X. B.; LIU, Y. Z.; TIAN, C. Integration of hemicellulose recovery and cold caustic extraction in upgrading a paper-grade bleached kraft pulp to a dissolving grade. Journal of Bioresources and Bioproducts, v. 2, n. 1, p. 20-23, 2017. 54. GONG, C; NI, J.-P; FAN, S.-J; ZHANG, Y; YANG, B; SU, Z. H.; TIAN, C. Value- added utilization of caustic soda lye from cold caustic extraction process in the pulp mill. BioResources, v. 16, n. 1, p. 1854, 2021. DOI:10.15376/biores.16.1.1854-1862 55. GRANHOLM, K.; HARJU, L.; IVASKA, A. Desorption of metal ions from kraft pulps. Part 1. Chelation of hardwood and softwood kraft pulp with EDTA. BioResources, v. 5, n. 1, p. 206-226, 2010. 56. GREAVES, T. L.; WEERAWARDENA, A.; FONG, C.; KRODKIEWSKA, I.; DRUMMOND, C. J. The Journal of Physical Chemistry B, v. 110, n. 45, p. 22479-22487, 2006. DOI: 10.1021/jp0634048 CCC: $33.50 57. GUOTAFSON, R. R.; SLEKHER, C. A.; MCKEAN, W.; FINLAYSON, B. A. Theoretical Model of the Kraft Pulping Process. Industrial & Engineering Chemistry Process Design and Development, v. 22, n. 1, p. 87-96, 1983. 58. HAGE, R.; LIENKE, A. Applications of Transition-Metal Catalysts to Textile and Wood-Pulp Bleaching. Angewandte Chemie International Edition, v. 45, n. 2, p. 206-222, 2006. DOI: 10.1002/anie.200500525 59. HAKKAK, J. A.; GRIGSBY, W. J.; KATHIRGAMANATHAN, K.; EDMONDS,N. R. Generation of Spherical Cellulose Nanoparticles from Ionic Liquid Processing via Novel Nonsolvent Addition and Drying. Advances in Materials Science and Engineering, 2019. DOI: https://doi.org/10.1155/2019/2081027 60. HALLETT JP, WELTON T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chemical Reviwes, v. 111, p. 3508–3576, 2011. DOI: dx.doi.org/10.1021/cr1003248 61. HARON, G. A. S.; MAHMOOD, H.; NOH, M. H.; ALAM, M. Z.; MONIRUZZAMAN, M. Ionic Liquids as a Sustainable Platform for Nanocellulose Processing from Bioresources: Overview and Current Status. ACS Sustainable Chem. Eng. v. 9, p. 1008−1034, 2021. 49 62. HASSAN, S. S.; WILLIAM, G. A.; JAISWAL, A. K. Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities. Renewable and Sustainable Energy Reviews, v. 101, p. 590–599, 2019. DOI: https://doi.org/10.1016/j.rser.2018.11.041 63. HAURU, L. K. J.; HUMMEL, M.; KING, A. W. T.; KILPELÄINEN, I.; SIXTA, H. Role of Solvent Parameters in the Regeneration of Cellulose from Ionic Liquid Solutions. Biomacromolecules , v. 13, n. 9, p. 2896–2905, 2012. DOI: https://doi.org/10.1021/bm300912y 64. HAURU, L. K.; MA, Y.; HUMMEL, M.; ALEKHINA, M.; KING, A. W. T.; KILPELÄINEN, I.; PENTTILÄ, P. A.; SERIMAA, R.; SIXTA, H. Enhancement of ionic liquid-aided fractionation of birchwood. Part 1: autohydrolysis pretreatment. RSC Adv, v. 3, p. 16365–16373, 2013. doi:10.1039/C3RA4 1529E 65. HE, L.; GUAN, Q. Q.; PENGA, L. C.; CHENA, K. L.; CHAIB, X. S. Improvement of alkali efficiency for purification of dissolving pulp by a modified cold caustic extraction process. Carbohydrates Polymers. 2017. DOI: http://dx.doi.org/10.1016/j.carbpol.2017.09.085 66. HOLBREY, J. D.; SEDDON, K. R. The Phase Behaviour of 1-Alkyl-3- methylimidazolium Tetrafluoroborates; Ionic Liquids and Ionic Liquid Crystals. J. Chem. Soc., Dalton Trans., p. 2133−2140, 1999. DOI: 10.1039/A902818H 67. HOU, O.; JU, M.; LI, W.; LIU, L.; CHEN, Y.; YANG, Q. Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems. Molecules, 22, 490, 2017. DOI: 10.3390/molecules22030490 68. HUMMEL, M.; MICHUD, A.; TANTTU, M.; ASAADI, S.; MA, Y.; HAURU, L. K. J.; PARVIAINEN, A.; KING, A. W. T.; KILPELA ̈INEN, I.; SIXTA, H. Ionic Liquids for the Production of Man-Made Cellulosic Fibers: Opportunities and Challenges. Adv Polym Sci, p. 133-168, 2015. DOI: 10.1007/12_2015_307 69. IBÁ. Ibá Anual Report. Indústria Brasileira de Árvores, 2020. Available in: https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf. Accessed on June 28th , 2021. 70. IBÁ. Ibá Anual Report. Indústria Brasileira de Árvores, 2021. Available in: https://www.iba.org/datafiles/publicacoes/relatorios/relatorioiba2021-compactado.pdf Accessed on June 28th, 2021. 71. IBARRA, D.; KO ̈PCKE, V.; LARSSON, P. T.; JA ̈A ̈SKELA ̈INEN, A-S.; EK, M. Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper- grade pulp to dissolvinggrade pulp. Bioresour Technol 101:7416–7423, 2010a. DOI:10. 1016/j.biortech.2010.04.050 72. INDEXBOX. Dissolving Wood Pulp Market Report: Production, Trade and Forecast to 2030. 2022. Available in: <https://www.globenewswire.com/en/news- release/2022/06/03/2455818/0/en/Dissolving-Wood-Pulp-Market-Report-Production-Trade- and-Forecast-to-2030- IndexBox.html#:~:text=Import%20Prices%20by%20Country,10.5%25%20against%20the%2 0previous%20year.> Accessed in June 29th, 2022. 50 73. JAHAN, M.S.; RAHMAN, M. M.; SARKAR, M. Upgrading old corrugated cardboard (OCC) to dissolving pulp. Cellulose, v. 23, p. 2039–2047, 2016. DOI: https://doi.org/10.1007/s10570-016-0894-1 74. JIANG, X.; BAI, Y.; CHEN, X.; LIU, W. A review on raw materials, commercial production and properties of lyocell fiber. Journal of Bioresources and Bioproducts, v. 5, p. 16–25, 2020. 75. JOY, J., JOSE, C., MATHEW, P. L., THOMAS, S., KHALAF, M.N. Biological delignification of biomass. In: Khalaf, M. N. (ed.) Green Polymers and Environmental Pollution Control, p. 271. CRC Press, Boca Raton, 2016. 76. JÚNIOR, F. G. S. Polpação kraft do eucalipto com adição de Antraquinona, polissulfetos e surfactante. 1997. 116 f. Tese de Doutorado. Tese (Doutorado em Engenharia Química)–Universidade Estadual de Campinas, Campinas. 77. KAKKO, T.; KING, A. W. T.; KILPELÄINEN, I. Homogenous esterification of cellulose pulp in [DBNH][OAc]. Cellulose, v. 24, p. 5341–5354, 2017. DOI 10.1007/s10570- 017-1521-5 78. KHALIL, H. P. S. A.; DAVOUDPOUR, Y.; ISLAM, N.; MUSTAPHA, A.; SUDESH, K.; DUNGANI, R.; JAWAID, M. Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, v. 99, p. 649– 665, 2014. 79. KILPELÄINEN, I.; XIE, H.; KING, A.; GRANSTROM, M.; HEIKKINEN, S.; ARGYROPOULOS, D. S. Dissolution of Wood in Ionic Liquids. Journal of Agricultural and Food Chemistry, v. 55, p. 9142–9148, 2007. DOI: 10.1021/jf071692e 80. KLOCK, U.; MUÑIZ, G. I. B.; HERNANDEZ, J. A.; ANDRADE, A. S. Química da madeira. Universidade Federal do Paraná, Curitiba, 2005. 81. KLOCK, U. Química da madeira. Associação Brasileira Técnica de Celulose e Papel, Suzano, São Paulo, 2013. Available in: https://www.eucalyptus.com.br/artigos/2013_Umberto_Klock_QuimicaMadeira.pdf. 82. KOSAN, B.; MICHELS, C.; MEISTER, F. Dissolution and forming of cellulose with ionic liquids. Cellulose, v. 15, p.59–66, 2008. DOI: 10.1007/s10570-007-9160-x 83. KRINGSTAD, K. P.; LINDSTRÖM, K.. Spent liquors from pulp bleaching. Environmental science & technology, v. 18, n. 8, p. 236A-248A, 1984. 84. KULKARNI, N.; SHENDYE, A.; RAO, M. Molecular and biotechnological aspects of xylanases. FEMS microbiology reviews, v. 23, n. 4, p. 411-456, 1999. DOI: https://doi.org/10.1111/j.1574-6976.1999.tb00407.x 85. KUMAR, A. Dissolving pulp production: Cellulases and xylanases for the enhancement of cellulose accessibility and reactivity. Physical Sciences Reviews, v. 6, n. 5, p. 111–129, 2021. doi:10.1515/psr-2019-0047 51 86. KUMAR, S., MISHRA, S.P., MISHRA, O.P., BAJPAI, P., TRIPATHI, S.,BAJPAI, P.K., VARADHAN, R. Hot chlorine dioxide versus conventional do stage in ECF. IPPTA J, v. 19, n. 1, p. 87–91, 2007. 87. KUNZ, P. M.; MÖRTTER, K.; MÜLLER, R.; SOMMER, I.; WELLER, P.; WILKESMAN, J. Improving manganese circular economy from cellulose by chelation with siderophores immobilized to magnetic microbeads. Environment, Development and Sustainability, v. 23, p. 8252–8271, 2021. DOI: 1 https://doi.org/10.1007/s10668-020-00962- 0 88. LAZZÚS, J. A. A group contribution method to predict the melting point of ionic liquids. Fluid Phase Equilibria, v. 313, p. 1-6, 2012. DOI:10.1016/j.fluid.2011.09.018 89. LEWIS, N. G., YAMAMOTO, E. Lignin: occurrence, biogenesis and biodegradation. Annual Review of Plant Physiology and Plant Molecular Biology, v. 41, n. 1, p. 455–496, 1990. DOI: 10.1146/annurev.pp.41.060190.002323 23 90. LI, D.; SEVASTYANOVA, O.; EK, M. Pretreatment of softwood dissolving pulp with ionic liquid. Holzforschung, v. 66, p. 935–943, 2012. DOI: 10.1515/hf-2011-0180 91. LI, J.; ZHANG, S.; LI, H.; HUANG, K.; ZHENG, L.; OUYANG, X.; ZHENG, Q.; HUANG, L.; CHEN, L.; NI, Y. A new approach to improve dissolving pulp properties: spraying cellulase on rewetted pulp at a high fiber consistency. Cellulose, v. 25, p. 6989– 7002, 2018a. DOI: https://doi.org/10.1007/s10570-018-2063-1(0123456789().,- volV)(0123456789().,-volV) 92. LI, H. Y.; CHEN, X.; LI, Y. J.; CAO, X. F.; SUN, S. N.; SUN, R. C. The effect of ionic liquids pretreatment on the distribution and structure of alkali-soluble hemicelluloses from Eucalyptus. Separation and Purification Technology, v. 191, p. 364–369, 2018b. 93. LIMA, N. S. Degradação oxidativa de líquidos iônicos baseados em imidazólio utilizando processos Fenton, Foto-Fentone Foto-Fenton Solar. Universidade Tiradentes. Dissertação, 2014. 94. LIU, S.; WANG, Q.; YANG, G.; CHEN, J.; NI, Y.; JI, X. Kinetics of viscosity decrease by cellulase treatment of bleached hardwood Kraft-Based Dissolving pulp. BioResources, v. 10, n. 2, p. 2418-2424, 2015. 95. LIU, H.; SALE, K. L.; SIMMONS, B. A.; SINGH, S. Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. The Journal of Physical Chemistry B, v. 115, n. 34, p. 10251-10258, 2011. 96. LU, Q.; TANG, L.; WANG, S.; HUANG, B.; CHEN, Y.; CHEN, X. An investigation on the characteristics of celulose nanocrystals from Pennisetum sínese. Biomass and Bioenergy, v. 70, p. 267-272, 2014. 97. LUNDBERG, V.; BOOD, J.; NILSSON, L.; AXELSSON, E.; BERNTSSON, T.; SVENSSON, E. Converting a kraft pulp mill into a multi-product biorefinery: techno- economic analysis of a case mill. Clean Techn. Environ. Policy, n. 16, v. 7, p. 1411–1422, 2014. DOI:10.1007/s10098-014-0741-8 52 98. LUO, X.; LIU, J.; HUANG, L.; CHEN, L. Comparison of hot-water extraction and steam treatment for production of high purity-grade dissolving pulp from green bamboo. Cellulose, v. 21, n. 3, p. 1445-1457, 2014. DOI: https://doi.org/10.1007/s10570-014- 0234-2 99. MA, X., LONG, Y., DUAN, C.; LIN, X.; CAO, S.; CHEN,L.; HUANG, L.; NI, Y. Facilitate hemicelluloses separation from chemical pulp in ionic liquid/water by xylanase pretreatment. Ind Crops Prod 109:459–463, 2017. DOI: https://doi.org/10.1016/j.indcrop.2017.08.063 100. MAGATON, A.S., COLODETTE, J.L., GOUVEA, A.F.G., GOMIDE, J.L., MUGUET, M.C.S., PEDRAZZI, Eucalyptus wood quality and its impact on Kraft pulp production and use. C. TAPPI Journal, 8:32, 2009. 101. MALARET, F.; GSCHWEND, F. J. V.; LOPES, J. M.; TUA, W. C.; HALLETT, J. P. Eucalyptus red grandis pretreatment with protic ionic liquids: effect of severity and influence of sub/ super-critical CO2 atmosphere on pretreatment performance. RSC Advances, v. 10, p. 16050–16060, 2020 102. MARSZALL, M. P.; MRKUSZEWSKI, M. J.; KALISZAN, R. J. Separation of nicotinic acid and its structural isomers using 1-ethyl-3-methylimidazolium ionic liquid as a buffer additive by capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis, v. 41, p. 329-332, 2006. DOI: 10.1016/j.jpba.2005.11.013 103. MARCUSCHAMER, D. K.; SIMMONS, B. A.; BLANCH, H. W. Techno‐economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre‐treatment. Biofuels, Bioproducts and Biorefining, v. 5, n. 5, p. 562-569, 2011. 104. MATEOS-ESPEJEL, E.; RADIOTIS, T.; JEMAA, N. Implications of converting a kraft pulp mill to a dissolving pulp operation with a hemicellulose extraction stage. Tappi J 12:29–38, 2013. 105. MBOOWA, D. A review of the traditional pulping methods and the recent improvements in the pulping processes. Biomass Conversion and Biorefinery, 2021. DOI: https://doi.org/10.1007/s13399-020-01243-6 106. McFARLANE, D. R.; SUN, J.; GOLDING, J.; MEAKIN, P.; FORSYTH, M. High conductivity molten salts based on the imide ion. Electrochim. Acta, v. 45, p. 1271–1278, 2000. DOI: https://doi.org/10.1016/S0013-4686(99)00331-X 107. MICHUD, A.; TANTTU, M.; ASAADI, S.; MA, Y.; NETTI, E.; KÄÄRIAINEN, P.; PERSSON, A.; BERNTSSON, A.; HUMMEL, M.; SIXTA, H. Ioncell-F: ionic liquid-based cellulosic textile fibers as an alternative to viscose and Lyocell. Textile Research Journal., v. 86, n. 5, p. 543–552, 2016. DOI: 10.1177/0040517515591774. 108. MOHD, N.; DRAMAN, S. F. S.; SALLEH, M. S. N.; YUSOF, N. B. Dissolution of cellulose in ionic liquid: A review. AIP Conference Proceedings, 1809, 020035, 2017. DOI: https://doi.org/10.1063/1.4975450 53 109. MONIZ, P., PEREIRA, H., QUILHÓ, T., CARVALHEIRO, F. Characterisation and hydrothermal processing of corn straw towards the selective fractionation of hemicelluloses. Industrial Crops and Products, v. 50, p. 145–153, 2013. DOI:10.1016/j.indcrop.2013.06.037 110. MORA-PALE, M;, MELI, L.; DOHERTY, T. V.; LINHARDT, R. J.; DORDICK, J. S. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnology and Bioengineering, v. 108, n. 6, p. 1229–1245, 2011. DOI: 10.1002/bit.23108 111. NASIRPOUR, N.; MOHAMMADPOURFARD, M.; HERIS, S. Ionic liquids: Promising compounds for sustainable chemical processes and applications. Chemical Engineering Research and Design, v. 160, p. 264-300, 2020. DOI: https://doi.org/10.1016/j.cherd.2020.06.006 112. NAYEEM, J.; SARKAR, M.; QUADERY, A. H.; JAHAN, M. S. High purity dissolving pulp from jute. Nordic Pulp & Paper Research Journal, v. 32, n. 4, 2017. 113. NAZ, S.; UROOS, M. Ionic Liquids Based Processing of Renewable and Sustainable Biopolymers. In: Khan, A., Mavinkere Rangappa, S., Siengchin, S., Asiri, A. (eds) Biofibers and Biopolymers for Biocomposites. Springer, Cham., 2020. DOI: https://doi.org/10.1007/978-3-030-40301-0_9 114. NEIVA, D., FERNANDES, L., ARAÚJO, S., LOURENÇO, A., GOMINHO, J., SIMÕES, R., PEREIRA, H. Chemical composition and kraft pulping potential of 12 eucalypt species. Industrial Crops and Products, v. 66, p. 89–95, 2015. 115. OVIEDO, C.; RODRÍGUEZ, J.EDTA: the chelating agent under environmental scrutiny. Quím. Nova, v. 26, n. 6, 2003. DOI: https://doi.org/10.1590/S0100-40422003000600020 116. PAYAL RS, BEJAGAM KK, MONDAL A, BALASUBRAMANIAN S. Dissolution of cellulose in room temperature ionic liquids: anion dependence. J. Phys. Chem., v. 119, p. 1654–1659, 2015. DOI: https://doi.org/10.1021/jp512240t 117. PENG, J.; QI, L.; YANG, G.; HE, M.; XUE, Y.; CHEN, J. Effect of Ultrasonic- assisted Ionic Liquid Pretreatment on the Bleachability and Properties of Eucalyptus Kraft Pulp. Journal of Korea TAPPI, v. 5, n. 2, p. 16-25, 2019. DOI: http://dx.doi.org/10.7584/JKTAPPI.2019.04.51.2.16 118. PENG, J.; YANG, G.; QI, L.; LIU, J.; LI, F.; CHEN, J.; LUCIA, L. Enhancement of delignification by ionic liquids pretreatment and modification of hardwood Kraft pulp in preparation for bleaching. BioResources, v. 15, n. 3, p. 6299-6308, 2020. 119. PERICA, B.; SIERRAA, J.; MARTÍA, E.; CRUANASA, R.; GARAUA, M. A.; ARNINGB, J.; BOTTIN-WEBERB, U.; STOLTEB,. S. (Eco)toxicity and biodegradability of selected protic and aproticionic liquids. Journal of Hazardous Materials, v. 261, p. 99–105, 2013. DOI: http://dx.doi.org/10.1016/j.jhazmat.2013.06.070 120. PÉREZ, J., MUÑOZ-DORADO, J., DE LA RUBIA, T., MARTÍNEZ, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. v. 5, n. 2, p. 53–63, 2002. DOI:10.1007/s10123-002-0062-3 54 121. PETTERSEN, R. C. The Chemical Composition of Wood. The Chemistry of Solid Wood, 57–126, 1984. DOI: 10.1021/ba-1984-0207.ch002. 122. PINTO, I. S. S.; ASCENSO, O. S.; BARROS, M. T.; SOARES, H. M. V. M. Pre- treatment of the paper pulp in the bleaching process using biodegradable chelating agents. Int. J. Environ. Sci. Technol., v. 12, p. 975–982, 2015. DOI 10.1007/s13762-013-0480-0 123. PLECHKOVA, N. V.; SEDDON, K. R. Applications of ionic liquids in the chemical industry. Chemical Society Reviews, v. 37, n. 1, p. 123-150, 2008. DOI: 10.1039/B006677J 124. PU, Y.; JIANG, N.; RAGAUSKAS, A. J. Ionic Liquid as a Green Solvent for Lignin. Journal of Wood Chemistry and Technology, v. 27, n. 1, p. 23-33, 2007. DOI: 10.1080/02773810701282330 125. QASIM, U.; RAFIQ, S.; JAMIL, F.; AHMED, A.; ALI, T.; KERS, J.; KHURRAM, M. S.; HUSSAIN, M.; INAYAT, A.; PARK, Y. K. Processing of lignocellulose in ionic liquids: A cleaner and sustainable approach. Journal of Cleaner Production, v. 323, p. 129189, 2021. 126. QI, L.; LIU, J.; PENG, J.; YANG, G.; LI, F.; XUE, Y.; CHEN, J. The Dual Effect of Ionic Liquid Pretreatment on the Eucalyptus Kraft Pulp during Oxygen Delignification Process. Polymers, v. 13, p. 1600, 2021. DOI: https://doi.org/10.3390/polym13101600 127. RESENDE, J. O.; COLODETTE, J. L.; ANDRADE, M. F. Estudo de localização da extração alcalina a frio (CCE) numa sequência de branqueamento de polpa solúvel de eucalipto. Scientia Florestalis, v. 47, n. 122, p. 326-335, 2019. DOI: doi.org/10.18671/scifor.v47n122.15 128. RESHMY, R.;. PAULOSE, T. A. P.; PHILIP, E. THOMAS, D.; MADHAVAN, A.; SIROHI, R.; BINOD, P.; AWASTHI, M. K.; PANDEY, A.; SINDHU, R. Updates on high value products from cellulosic biorefinery. Fuel, v. 308, p. 122056, 2022. DOI: https://doi.org/10.1016/j.fuel.2021.122056 129. REYES, G.; AGUAYO, M. G.; PÉREZ, A. F.; PÄÄKKÖNEN, T.; GACITÚA, W.; ROJAS, O. J. Dissolution and Hydrolysis of Bleached Kraft Pulp Using Ionic Liquids. Polymers, v. 11, p. 673, 2019. DOI: 10.3390/polym11040673 130. RODRIGUEZ, J. M. L.; COLODETTE, J. L.; GARCÍA, J. C.; LÓPEZ, F. Autohydrolysis, pulping, and bleaching of Eucalyptus urograndis in a Biorefinary Framework. BioResources, v. 14, n. 3, p. 5467-5487, 2019. 131. ROSELLI, A.; HUMMEL, M.; MONSHIZADEH, A.; MALONEY, T.; SIXTA, H. Ionic liquid extraction method for upgrading eucalyptus kraft pulp to high purity dissolving pulp. Cellulose, v 21, p. 3655–3666, 2014. DOI 10.1007/s10570-014-0344-x 132. ROSELLI, A.; ASIKAINEN, S.; STEPAN, A.; MONSHIZADEH, A.; WEYMARN, N. V.; KOVASIN, K.; WANG, Y.; XIONG, H.; TURUNEN, O.; HUMMEL, M.; SIXTA, S. Comparison of pulp species in IONCELL-P: selective hemicellulose extraction method with ionic liquids. Holzforschung, 2015. DOI: https://doi.org/10.1515/hf-2014-0313 55 133. ROSELLI, A.; HUMMEL, M.; VARTIAINEN, J.; NIEMINEN, K.; SIXTA, S. Understanding the role of water in the interaction of ionic liquids with wood polymers Carbohydrate Polymers, v. 168, p. 121–128, 2017. 134. ROWELL, R. M. Handbook of Wood Chemistry and Wood Composites. Taylor & Francis Group, New York, 2005. DOI: https://doi.org/10.1201/9780203492437 135. SAHA, B.C. Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, v. 30, n. 5, p. 279–291, 2003. DOI: https://doi.org/10.1007/s10295-003-0049- x 136. SAKA, S.; MATSUMURA, H. Wood pulp manufacturing and quality characteristics. In: Rustemeyer P (ed) Cellulose acetates: properties and applications. Macromolecular [symposia. WILEY-VCH, Weinheim, p. 37–48, 2004. DOI: 10.1002/masy.200450404 137. SAKURADA, I.; NUKUSHINA, Y.; ITO, T. Experimental determination of elastic modulus of crystalline regions in oriented polymers. Journal of Polymer Science, v. 57, p. 651–660, 1962. 138. SARKAR, A. M.; NAYEEM, J.; RAHAMAN, M. M.; JAHAN, M. S. Dissolving pulp from non-wood plants by prehydrolysis potassium hydroxide process. Cellulose Chemistry and Technology, v. 55, n. 1, 2, p. 117-124, 2020. 139. SCHIER, F.; MORLAND, C.; Dieter Estimating supply and demand elasticities of dissolving pulp, lignocellulose-based che, M.; Weimar, H. mical derivatives and textile fibres in an emerging forest-based bioeconomy. Forest Policy and Economics, v. 126, p. 102422, 2021. DOI: https://doi.org/10.1016/j.forpol.2021.102422 140. SCHLESINGER, R.; RÖDER, T.; GÖTZINGER, G.; SIXTA, H.; HARASEK, M.; FRIEDL, A. Influence of hemicellulose aggregate and gel layer formation on flux and retention during nanofiltration of alkaline solutions. Desalination, v. 175, p. 121–134, 2005. 141. SHAMSIPUR, M.; BEIGI, A. A. M.; TEYMOURI, M.; POURMORTAZAVI, S. M.; IRANDOUST, M. Physical and electrochemical properties of ionic liquids 1-ethyl-3- methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. Journal of Molecular Liquidsv. 157, p. 43–50, 2010. DOI: 1 0.1016/j.molliq.2010.08.005 142. SHARMA, H. K.; XU, C.; QIN, W. Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste Biomass Valor, v. 10, n. 2, p. 235-251, 2019. DOI 10.1007/s12649-017-0059-y 143. SHARMA, N.; GODIYAL, R. D.; BHAWANA; THAPLIYAL, B. P.; ANUPAM, K. Insight into papermaking characteristics of D0EPD1-bleached soda, soda-AQ and kraft pulps of citronella grass (Cymbopogon winterianus Jowitt). Biomass Conversion and Biorefinery, p. 1-14, 2020a. DOI: https://doi.org/10.1007/s13399-020-00730-0 144. SHARMA, N.; BHARDWAJ, N. K.; SINGH, R. B. P. Environmental issues of pulp bleaching and prospects of peracetic acid pulp bleaching: A review. Journal of Cleaner Production, v. 256, p. 120338, 2020b. DOI: https://doi.org/10.1016/j.jclepro.2020.120338 56 145. SHATALOV, A. A. Efficient eco-clean upgrading of isolated cellulose fibers by polyoxometalate (POM) catalyzed ozonation boosted by enzymes. Green Chem., v. 19, p. 5092, 2017. 146. SIEDLECKA, E. M.; CZERWICKA, M.; STOLTE, S.; STEPNOWSKI, P.; Stability of Ionic Liquids in Application Conditions. Current Organic Chemistry, v.15, p. 1974-1991, 2011. 147. SILVA, B. A.; CUNHA, R. S.; VALÉRIO, A.; JUNIOR, A. N.; HOTZA, D.; GONZÁLEZ, S. Y. G. Electrospinning of cellulose using ionic liquids: An overview on processing and applications. European Polymer Journal, v. 147, p. 110283, 2021. 148. SINGH, S. K.; SAVOY, A. W. Ionic liquids synthesis and applications: An overview. Journal of Molecular Liquids, v. 297, p. 112038, 2020. DOI: https://doi.org/10.1016/j.molliq.2019.112038 149. SINGH, N.; SINGHANIA, R. R.; NIGAM, P. S.; DONG, C. D.; PATEL, A. K.; PURI, M. Global status of lignocellulosic biorefinery: Challenges and perspectives. Bioresource Technology, v. 344, p. 126415, 2022. DOI: https://doi.org/10.1016/j.biortech.2021.126415 150. SIXTA, H. Pulp properties and applications. In: Handbook of pulp, v 2. Wiley-VCH, New York, p. 1009–1067, 2006. 151. SIXTA, H.; IAKOVLEV, M.; TESTOVA, L.; ROSELLI, A.; HUMMEL, M.; BORREGA, M.; VAN HEININGEN, A.; FROSCHAUER, C.; SCHOTTENBERGER, H. Novel concepts of dissolving pulp production. Cellulose, v. 20, n. 4, p. 1547–1561, 2013. DOI: 10.1007/s10570-013-9943-1 152. SIXTA, H.; POTTHAST, A.; KROTSCHEK, A. W. Chemical pulping processes. In: Sixta H (ed) Handbook of pulp. Wiley-VCH, Weinheim, p. 325–366, 2006. 153. SIXTA, H.; MICHUD, A.; HAURU, L.; ASAADI, S.; MA, Y. KING, A. W. T.; KILPELÄINEN, I.; HUMMEL, M. Ioncell-F: A High-strength regenerated cellulose fiber. Nordic Pulp & Paper Research Journal, v. 30, n. 1, 2015. 154. SPECTRUM MAGAZINE. Global Trends in dissolving pulp., 2017. Available in <https://www.andritz.com/spectrum-en/latest-issues/issue-36/global-market-trends>. Accessed in 28/07/2022. 155. STARK, A. Ionic liquids in the biorefinery: a critical assessment of their potential. Energy & Environmental Science, v. 4, p. 19–32, 2011. DOI: 10.1039/c0ee00246a 156. STEINMEIER, H. 3. Acetate manufacturing, process and technology— 3.1 Chemistry of cellulose acetylation. Macromolecular Symposia, v. 208, n. 1, p. 49–60, 2004. DOI:10.1002/masy.200450405 157. STEPAN, A. M.; MICHUD, A.; HELLSTEN, S.; HUMMEL, M.; SIXTA, H. IONCELL-P&F: Pulp Fractionation and Fiber Spinning with Ionic Liquids. Industrial & Engineering Chemistry Research, v. 55, p. 8225−8233, 2016. DOI: 10.1021/acs.iecr.6b00071 57 158. SUAREZ, P.A.Z.; EINLOFT, S.; DULLIUS, J.E.L.; SOUZA, R.F. DE; DUPONT, J. Synthesis and physical–chemical properties of ionic liquids on 1-n-butyl-3- methylimidazolium cation. Journal de Chimie Physique et de Physico-Chimie Biologique, v. 95, n. 7, p. 1626–1639, 1998. DOI: https://doi.org/10.1051/jcp:1998103 159. SUCHY, M.; ARGYROPOULOS, D.S. Catalysis and activation of oxygen and peroxide delignification of chemical pulps: a review. Tappi Journal, v. 1, n. 2, p. 1-18, 2002. 160. SUN, J.; KONDA, N. V. S. N. M.; PARTHASARATHI, R.; DUTTA, T.; VALIEV, M.; XU, F.; SIMMONS, B. A.; SINGH, S. One-pot integrated biofuel production using low- cost biocompatible protic ionic liquids. Green Chemistry, v. 19, p. 3152–3163, 2017. DOI: 10.1039/c7gc01179b 161. SWATLOSKI, R. P.; SPEAR, S. K.; HOLBREY, J. D.; ROGERS, R. D. Dissolution of Cellose with Ionic Liquids. J. American Chemical Society, v. 124, n. 18, 2002. DOI: 10.1021/ja025790m 162. SYED, H. U.; NEBAMOH, I. P.; GERMGARD, U. A comparison of hot and cold caustic extraction of a dissolved spruce sulfite pulp prior to final bleaching. Appita: Technology, Innovation, Manufacturing, Environment, v. 66, n. 3, p. 229–234, 2013. DOI: https://search.informit.org/doi/10.3316/informit.426269039488717 163. TESTOVA, L.; BORREGA, M.; TOLONEN, L. K.; PENTTIL, P. A.; SERIMAA, R.; LARSSON, P. T.; SIXTA, H. Dissolving-grade birch pulps produced under various prehydrolysis intensities: quality, structure and applications. Cellulose, v. 21, n. 3, p. 2007- 2021, 2014. DOI: https://doi.org/10.1007/s10570-014-0182-x 164. TONOLI, G. H.; TEIXEIRA, E.M.; CORRÊA, A.C.; MARCONCINI, J.M.; CAIXETA, L.A.; PEREIRA-DA-SILVA, M.A.; MATTOSO, L.H.C. Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties. Carbohydrate Polymers, v. 89, p. 80–88, 2012. 165. TRIPATHI, S. K.; BHARDWAJ, N. K.; GHATAK, H. R. Effect of different elemental chlorine-free bleaching sequences on pulp, effluent properties and their impact on index of global pollution. Environmental Science and Pollution Research, v. 27, p. 4917– 4926, 2020. 166. VEKARIYA, R. L. A review of ionic liquids: Applications towards catalytic organic transformations. Journal of Molecular Liquids, v. 227, p. 44–60, 2017. DOI: http://dx.doi.org/10.1016/j.molliq.2016.11.123 167. VIIKARI, L.; KANTELINEN, A.; SUNDQUIST, J.; LINKO, M. Xylanases in bleaching: From an idea to the industry. FEMS Microbiology Reviews, v. 13, n. 2-3, p. 335- 350, 1994. 168. WANG, Q.; LIU, S.; YANG, G..; CHEN, J.; JI, X.; NI, Y. Recycling cellulase towards industrial application of enzyme treatment on hardwood kraft-based dissolving pulp. Bioresource Technology, v. 212, p. 160-163, 2016. 169. WANG, H.; TAN, B.; WANG, J.; LI, Z.; ZHANG, S. Anion-Based pH Responsive Ionic Liquids: Design, Synthesis, and Reversible Self-Assembling Structural Changes in 58 Aqueous Solution. American Chemical Society, v. 30, p. 3971−3978, 2014. DOI: dx.doi.org/10.1021/la500030k 170. WASSERSCHEID, P.; KEIM, W. Ionic Liquids - New “Solutions” for Transition Metal Catalysis. Angewandte Chemie International Edition, v. 39, n. 21, p. 3772-3789, 2000. DOI: 1433-7851/00/3921-3773 171. WASSERSCHEID, P.; WELTON, T. Ionic Liquids in Syntesis, Wiley-VCH Verlag GmbH & Co. KGaA, Weiheim, 2003. 172. WELTON, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chemical Reviews, v. 99, n. 8, p. 2071−2083, 1999. DOI: 10.1021/cr980032t 173. WOLLBOLDT, P., STRACH, M., RUSSLER, A., JANKOVA, S., SIXTA, H. Upgrading of commercial pulps to high-purity dissolving pulps by an ionic liquid-based extraction method. Holzforschung, v. 71, p. 7-8, 2017. DOI:10.1515/hf-2016-0192 174. YANG, S.; YANG, B.; DUANC, C.; FULLERB, D. A.; WANG, X.; CHOWDHURYB, S. P.; STAVIKD, J.; ZHANGA, H.; NI, Y. Applications of enzymatic technologies to the production of high-quality dissolving pulp: A review. Bioresource Technology, v. 281, p. 440–448, 2019. DOI: https://doi.org/10.1016/j.biortech.2019.02.132 175. YANG, Y.; YANG, S.; YAO, X.; KANG, Y.; XIN, J.; EL-SAYED, I. E.T.; XUA, J.; LU, X. A renewable co-solvent promoting the selective removal of lignin by increasing the total number of hydrogen bonds. Green Chemistry, v. 22, p. 6393–6403, 2020. DOI: 10.1039/d0gc02319a 176. YANG, S.; LU, X.; ZHANG, Y.; XU, J.; XIN, J.; ZHANG, S. Separation and characterization of cellulose I material from corn straw by low-cost polyhydric protic ionic liquids. Celulose, v. 25, n. 6, p. 3241-3254, 2018. DOI: https://doi.org/10.1007/s10570-018- 1785-4 177. YANG, B.; QIN, X.; DUAN, C.; HE, Z.; NI, Y. Converting bleached hardwood kraft pulp to dissolving pulp by using organic electrolyte solutions. Cellulose, v. 28, p. 1311–1320, 2021. DOI: https://doi.org/10.1007/s10570-020-03642-4 178. ZHANG, Z., DONALDSON, A. A., MA, X. Advancements and future directions in enzyme technology for biomass conversion. Biotechnology Advances, v. 30, p. 913–919, 2012. DOI: 10.1016/j.biotechadv.2012.01.020 179. ZHAO, Y.; LIU, X.; WANG, J.; ZHANG, S. Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study. Chem. Phys. Chem., v. 13, p. 3126– 3133, 2012. DOI: https://doi.org/10.1002/cphc.201200286 180. ZHAO, L., YUAN, Z., KAPU, N. S., CHANG, X. F., BEATSON, R., TRAJANO, H. L. AND MARTINEZ, D. M. Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp. Bioresource Technology, 223, 40-46, 2017. 181. ZANUNCIO, A. J. V.; COLODETTE, J. L. Teores de lignina e ácidos urônicos na madeira e polpa celulósica de eucalipto. Revista Árvore, v. 35, n. 2, p. 341-347, 2011. 59 182. ZAVREL, M.; BROSS, D.; FUNKE, M.; BÜCHS, J.; SPIESS, A. C. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresource Technology, v. 100, p. 2580–2587, 2009. DOI: doi:10.1016/j.biortech.2008.11.052 183. ZHU, S.; WU, Y.; CHEN, Q.; YU, Z.; WANG, C.; JIN, S.; DINGA, Y. WUC, G. Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem., n. 8, p. 325–327, 2006. 184. ZHU, X.; PENG, C.; CHEN, H.; CHEN, Q.; ZHAO, Z. K.; ZHENG, Q.; XIE, H. Opportunities of Ionic Liquids for Lignin Utilization from Biorefinery. Chemistry Select, v. 3, p. 7945 – 7962, 2018. DOI: 10.1002/slct.201801393pt_BR
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpt_BR
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpt_BR
Appears in Collections:Mestrado em Ciências Ambientais e Florestais

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Sabrina Mayer de Almeida.pdf1.87 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.