Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/23106
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Raquel Ribeiro de Souza-
dc.date.accessioned2025-09-02T16:41:48Z-
dc.date.available2025-09-02T16:41:48Z-
dc.date.issued2024-12-27-
dc.identifier.citationRIBEIRO, Raquel de Souza. Desenvolvimento de dispositivos carreados com fármaco para o tratamento de câncer. 2024. 116 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2024.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/23106-
dc.description.abstractAtualmente, o câncer é uma das principais causas de mortes globais. No entanto, os tratamentos dessa enfermidade, apesar de eficazes, apresentam baixa seletividade e provocam efeitos colaterais adversos aos pacientes. Diante deste cenário, este trabalho tem por objetivo desenvolver um dispositivo polimérico multicamada responsivo à pH, visando potencializar a entrega do fármaco quimioterápico 6- mercaptopurina (6-MP) nas imediações do tumor. Para tal, um suporte de poli(ácido lático) (PLA) formado por duas peças (uma porosa – parte A e uma barreira difusional – parte B) foi impresso pela técnica de deposição de material fundido (FDM). Posteriormente, cerca de 0,13 mL de uma solução de 2% (p/v) de quitosana (QUI), 0,3% (p/v) de 6-MP e ácido acético diluído, foi adicionada ao sistema impresso para formar um fino filme de QUI/6-MP entre camadas de PLA, empregando-se a metodologia de evaporação de solvente. Os compostos puros (filamento de PLA, pó de QUI e pó de 6-MP), bem como os elementos produzidos (filmes de QUI e QUI/6- MP, e os dispositivos, vazio – DISPPLA, de única camada – DISP6MP e de dupla camada – DISP26MP), foram caracterizados pelos métodos de Espectroscopia no Infravermelho por Transformada de Fourier (FTIR), Espectroscopia por Energia Dispersiva (EDS), Microscopia Eletrônica de Varredura (MEV) e Difração de Raios-X (DRX), para avaliação química, estrutural e morfológica desses materiais. Além disso, foram realizados ensaios de liberação, em triplicata, dos sistemas de única camada (DISP6MP) em soluções tampão de fosfato de diferentes pHs (7,2, 6,4, 6,0 e 5,0), sob temperatura de 37°C, agitação de 70 rpm e durante 24 horas. Esses dados experimentais foram comparados com os modelos matemáticos de ordem zero, Higuchi, Ritger-Peppas e Peppas-Sahlin. Ademais, realizou-se um ensaio de permeabilidade com solução de azul de metileno e aparato próprio, visando verificar o funcionamento da barreira criada. Para mais, foi possível comprovar a presença do medicamento na camada interna dos dispositivos, verificando-se também um possível encapsulamento da droga. Para os ensaios de liberação, os valores acumulados obtidos foram de 60,4% (pH = 7,2), 80,1% (pH = 6,4), 56,3% (pH = 6,0) e 92,3% (pH = 5,0), corroborando para a hipótese do dispositivo fabricado ser responsivo à pH, possivelmente pelo comportamento da quitosana em meios ácidos. Ainda neste contexto, o modelo mais ajustado para todos os ensaios foi o de Ritger-Peppas, com coeficientes de correlação próximos a 0,99 em sua maioria. Esse resultado indica que a liberação do fármaco foi controlada tanto pela difusão quanto pelo inchamento das cadeias poliméricas. O ensaio de permeabilidade comprovou a eficácia da barreira difusional e assim, colabora para a confirmação da liberação unidirecional do sistema criado. Desta forma, o dispositivo de liberação fabricado neste estudo, torna-se uma opção promissora no tratamento de tumores sólidos pelo seu caráter responsivo e direcional.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectmanufatura aditivapt_BR
dc.subjectsistemas de liberação responsivospt_BR
dc.subjectadditive manufacturingpt_BR
dc.subjectdrug delivery systempt_BR
dc.subject6-mercaptopurinapt_BR
dc.subject6-mercaptopurinept_BR
dc.titleDesenvolvimento de dispositivos carreados com fármaco para o tratamento de câncerpt_BR
dc.typeDissertaçãopt_BR
dc.description.abstractOtherCancer has become one of the major causes of death worldwide. While the available treatments can be effective, they often lack selectivity and can cause side effects. In this context, this study aims to develop a pH-responsive polymeric multilayer device to improve the delivery of 6-mercaptopurine (6-MP) directly at tumor environment. A poly (acid lactic) (PLA) support, composed of two parts (a porous section - part A, and a diffusion barrier - part B), was fabricated using the Fused Deposition Model (FDM) method. Approximately 0.13 mL of a solution containing 2% (w/v) of chitosan (QUI), 0.3% (w/v) 6-MP, and diluted acid acetic was applied between PLA layers to form a thin CHI/6-MP film. The raw materials (PLA filament, chitosan powder, and 6-MP powder)as well as the manufactured components (chitosan and chitosan/6-MP films, and the drug delivery systems: empty DISPPLA, single-layer DISP6MP, and double- layer DISP6MP) were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive Spectroscopy (EDS), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to assess their chemical, morphological and structural characteristics of these components. Additionally, release assays were conducted on the DISP6MP devices in phosphate buffer solutions at different pH values (pH of 7.2, 6.4, 6.0, and 5.0) at 37°C and 70 rpm over a 24-hour period. The data were analyzed using zero-order, Higuchi, Ritger-Peppas, and Peppas-Sahlin models for comparison. Furthermore, a permeability assay was carried out using a custom-built apparatus with methylene blue to investigate the barrier performance. The presence of the drug in the inner layer of the devices was confirmed, and possible encapsulation was suggested. The release results presented accumulated values of 60.4% (pH = 7.2), 80.1% (pH = 6.4), 56.3% (pH = 6.0), and 92.3% (pH = 5.0), supporting the conclusion that the devices are pH-responsive, likely due to the behavior of chitosan in acidic environments. Additionally, The Ritger-Peppas model provided the best fit for all four assays, with correlation coefficients around 0.99 for most cases. These findings suggest that the release of the drug was influenced by both diffusion and the swelling of the polymer chains. The permeability tests demonstrated the effectiveness of the diffusion barrier, confirming the unidirectional release capability of the developed system. These results indicate that the proposed drug delivery system, characterized by its responsiveness and directional release properties, holds promise as a potential option for the treatment of solid tumors.en
dc.contributor.advisor1Mendonça, Roberta Helena-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-1034-7027pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3724636742992170pt_BR
dc.contributor.advisor-co1Letichevsky, Sonia-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0003-1419-7935pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/6948246729078101pt_BR
dc.contributor.referee1Mendonça, Roberta Helena-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-1034-7027pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3724636742992170pt_BR
dc.contributor.referee2Sonia Letichevsky, Sonia-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-1419-7935pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/6948246729078101pt_BR
dc.contributor.referee3Bigansolli, Antonio Renato-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-0142-5989pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5868109671445446pt_BR
dc.contributor.referee4Silva, Cristiane Evelise Ribeiro da-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/6945452534442737pt_BR
dc.contributor.referee5Bastos, Daniele Cruz-
dc.contributor.referee5IDhttps://orcid.org/0000-0001-7368-9329pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/6597101803506089pt_BR
dc.creator.IDhttps://orcid.org/0000-0003-3786-493Xpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4642106188482299pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Tecnologiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapt_BR
dc.relation.referencesADEPU, S. . &. R. S. Controlled drug delivery systems: current status and future directions. Molecules, 2021. AHMED, L. et al. Study the using of nanoparticles as drug delivery system based on mathematical models for controlled release. IJLTEMAS, 2019. 52-56. AHN, J. et al. Tumor Microenvironment on a Chip: The Progress and Future Perspective. Bioengineering, 2017. ALAM, F. .; VARADARAJAN, K. M.; KUMAR, S. 3D printed polylactic acid nanocomposite scaffolds for tissue engineering applications. Polymer Testing, 2020. ALIOTTA, L. et al. ffect of nucleating agents on crystallinity and properties of poly (lactic acid)(PLA). European Polymer Journal, 2017. ASENSIO, R. C. et al. Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Analytical and bioanalytical chemistry, 2009. BALAU, L. et al. Physico-chemical properties of chitosan films. Central European Journal of Chemistry, 2004. BORANDEH, S. et al. Polymeric drug delivery systems by additive manufacturing. Advanced drug delivery reviews, 2021. 349-373. BORBOLLA-JIMÉNEZ, F. V. et al. Films for wound healing fabricated using a solvent casting technique. Pharmaceutics, 1914. BREITENBACH, J. Melt extrusion: from process to drug delivery technology. European journal of pharmaceutics and biopharmaceutics, 2002. 107-117. BRUSCHI, M. L. Strategies to modify the drug release from pharmaceutical systems. [S.l.]: Woodhead Publishing, 2015. CALIXTO, G. M. F. et al. Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: a Review. AAPS PharmSciTech, 2019. 1-17. CANCER. World Health Organization, 2022. Disponivel em: <https://www.who.int/news-room/fact- sheets/detail/cancer>. Acesso em: 6 Novembro 2023. CANEVAROLO JUNIOR, S. V. Técnicas de caracterização de polímeros. São Paulo: Artliber Editora, 2004. CARDENAS, G.; MIRANDA, S. P. FTIR and TGA studies of chitosan composite films. Journal of the Chilean Chemical Society, 2004. CARDOSO, P. H. M. et al. Mechanical and dimensional performance of poly (lactic acid) 3D‐printed parts using thin plate spline interpolation. Journal of Applied Polymer Science, 2020. 108 CHU, B.; HSIAO, B. S. Small-angle X-ray scattering of polymers. Chemical reviews, 2001. DASH, S. et al. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm, 2010. DATAVIZ. Cancer Today, 2022. Disponivel em: <https://gco.iarc.fr/today/en/dataviz/pie?mode=cancer&group_populations=1&types=1&populations=7 6>. Acesso em: Outubro 2024. DAVOODI, P. et al. Drug delivery systems for programmed and on-demand release. Advanced Drug Delivery Reviews, 2018. 104-138. DAWID-PAC, R. Medicinal plants used in treatment of inflammatory skin diseases. Postepy Dermatol Alergol, p. 170-177, Junho 2013. DE MASI, A. et al. Chitosan films for regenerative medicine: Fabrication methods and mechanical characterization of nanostructured chitosan films. Biophysical Reviews, 2019. 807-815. DE OLIVEIRA, D. J. J.; MARQUES, R.; BRACKMANN, R. DEGRADAÇÃO FOTOCATALÍTICA DO CORANTE AZUL DE METILENO UTILIZANDO COMPOSTOS DE ZINCO. XII Congresso Brasileiro de Engenharia Química em Iniciação Científica. São Paulo: [s.n.]. 2017. DEEPTHI, S. et al. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, Kochi, n. 93, p. 1338-1353, Março 2016. DELCASSIAN, D.; PATEL, A. K. Nanotechnology and drug delivery. In: ______ Bioengineering Innovative Solutions for Cancer. [S.l.]: Academic Press, 2020. Cap. 3.1, p. 197-219. DERIDDER, L. et al. The past, present, and future of chemotherapy with a focus on individualization of drug dosing. Journal of Controlled Release, n. 352, 2022. 840-860. DORNIANI, D. et al. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system. Drug Design, Development and Therapy, 2013. DUMPA, N. et al. 3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. International Journal of Pharmaceutics, 2021. 1-15. EBRAHIMIA, F.; DANA, H. R. Poly lactic acid (PLA) polymers: from properties to biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, Aix-en- Provence, 2022. 1-14. FACCHINATTO, W. M. et al. Evaluation of chitosan crystallinity: A high-resolution solid-state NMR spectroscopy approach. Carbohydrate polymers, 2020. FAID, A. H. . H. F. E. Z. . M. E. M. . S. S. A. . B. Y. A. . &. S. M. A. Hybrid chitosan gold nanoparticles for photothermal therapy and enhanced cytotoxic action of 6-mercaptopurine on breast cancer cell line. Beni-Suef University Journal of Basic and Applied Sciences, 2023. FAID, A. H. et al. Gold nanoparticles loaded chitosan encapsulate 6-mercaptopurine as a novel nanocomposite for chemo-photothermal therapy on breast cancer. BMC Chemistry, 2022. 1-14. 109 FARAH, S.; ANDERSON, D. G.; LANGER, R. Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 2016. 1-26. FILAMENTO PLA Natural Transparente para Impressora 3D - 3D Fila. 3D Fila, 2024. Disponivel em: <https://3dfila.com.br/produto/filamento-pla-natural-transparente/>. Acesso em: Outubro 2024. FU, Y.; KAO, W. J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert opinion on drug delivery, 2010. 429-444. GOVINDAN, S. et al. Synthesis and characterization of chitosan–silver nanocomposite. Applied Nanoscience, 2012. GOVINDAPPA, P. K. et al. Toxicity evaluation of 6-mercaptopurine-Chitosan nanoparticles in rats. Saudi Pharmaceutical Journal, 2020. GROSVENOR, E. C. et al. On the mechanism of electron beam radiation-induced modification of poly (lactic acid) for applications in biodegradable food packaging. Applied Sciences, 2022. HIGUCHI, T. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci, 1963. 1145-1149. IOELOVICH, M. Crystallinity and hydrophility of chitin and chitosan. J. Chem., 2014. JAMAL, A. et al. Preparation of 6-Mercaptopurine Loaded Liposomal Formulation for Enhanced Cytotoxic Response in Cancer Cells. Nanomaterials, 2022. 1-13. JARVIS, K. L.; BARNES, T. J.; PRESTIDGE, C. A. Surface chemical modification to control molecular interactions with porous silicon. Journal of colloid and interface science, 2011. 327-333. KARPINSKI, P. H. Polymorphism of active pharmaceutical ingredients. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 2006. KATZHENDLER, I. et al. Modeling of drug release from erodible tablets. Journal of pharmaceutical sciences, 1997. 110-115. KHAN, J. et al. Exploring the role of polymeric conjugates toward anti-cancer drug delivery: Current trends and future projections. International journal of pharmaceutics, 2018. 500-514. KRUKIEWICZ, K.; ZAK, J. K. Biomaterial-based regional chemotherapy: Local anticancer drug. Materials Science and Engineering C, 2016. 927-942. KUMAR, G. P. et al. Anti-cancerous efficacy and pharmacokinetics of 6-mercaptopurine loaded chitosan nanoparticles. Pharmacological Research, 2015. 47-57. LARACUENTE, M. L.; MARINA, H. Y.; MCHUGH, K. J. Zero-order drug delivery: State of the art and future prospects. Journal of Controlled Release, 2020. 834-856. LEE, B. K.; YUN, Y.; PARK, K. PLA micro- and nano-particles. Advanced Drug Delivery Reviews, 2016. 1-16. LI, C. et al. Advances in Medical Applications of Additive Manufacturing. Engineering, 2020. 1222- 1231. 110 LI, T.; SENESI, A. J.; LEE, B. Small angle X-ray scattering for nanoparticle research. Chemical reviews, 2016. LIU, M. et al. Recent advances in electrospun for drug delivery purpose. ournal of drug targeting, 2019. LU, H. et al. Release kinetics study of fatty acids eutectic mixture gated mesoporous carbon nanoparticles for chemo-photothermal therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023. MARCHI, H. F.; SOEIRO, T. N.; HALASZ, M. R. T. Estudo da adsorção do corante básico azul de metileno por cascas de Eucalyptus grandis lixiviadas. XI Congresso Brasileiro de Engenharia Química em iniciação Científica. [S.l.]: [s.n.]. 2015. MATOS, B. D. M. et al. Evaluation of commercially available polylactic acid (PLA) filaments for 3D printing applications. Journal of Thermal Analysis and calorimetry, 2019. MAZLOOM-JALALI, A. et al. Fabrication of chitosan–polyethylene glycol nanocomposite films containing ZIF-8 nanoparticles for application as wound dressing materials. International journal of biological macromolecules, 2020. MEI, Y. et al. 3D-printed degradable anti-tumor scaffolds for controllable drug delivery. International Journal of bioprinting, 2021. MIHAESCU, G.; CHIFIRIUC, C. Imunologie Si Imunopatologie. [S.l.]: Editura Medicala, 2015. MOHAMMED, A.; ABDULLAH, A. Scanning electron microscopy (SEM): A review. Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX. Băile Govora: [s.n.]. 2018. MOSAVI, S. H.; ZARE-DORABEI, R. Synthesis of NMOF-5 using microwave and coating with chitosan: a smart biocompatible pH-responsive nanocarrier for 6-mercaptopurine release on MCF-7 cell lines. ACS Biomaterials Science & Engineering, 2022. 2477-2488. NARASIMHAN, B.; PEPPAS, N. A. Molecular analysis of drug delivery systems controlled by dissolution of the polymer carrier. Journal of pharmaceutical sciences, 1997. 297-304. NAVYA, P. N. et al. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano convergence, 2019. 1-30. NEZHAD-MOKHTARI, P.; GHORBANI, M.; MAHMOODZADEH, F. Smart co-delivery of 6- mercaptopurine and methotrexate using disulphide-based PEGylated-nanogels for effective treatment of breast cancer. New Journal of Chemistry, 2019. NORI, Z. Z. et al. Synthesis and characterization of a new gold-coated magnetic nanoparticle decorated with a thiol-containing dendrimer for targeted drug delivery, hyperthermia treatment and enhancement of MRI contrast agent. Journal of Drug Delivery Science and Technology, 2023. PEPPAS, N. A.; SAHLIN, J. J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. International journal of pharmaceutics, 1989. 169-172. 111 PHARMA, A. PURINETHOL: Comprimidos. Aspen Pharma, 2021. Disponivel em: <https://akuramed.com.br/wp-content/uploads/2021/06/Purinethol-Mercaptopurina-Aspen.pdf>. Acesso em: Fevereiro 2024. PIRCALABIORU, G. G. et al. Nanodrug delivery systems in cancer. In: ______ Biomedical Applications of Nanoparticles. [S.l.]: William Andrew Publishing, 2019. p. 31-62. PREM, K. G. et al. Preparation, Characterization and In Vitro Drug Release Studies of 6-mercaptopurine Thin Film. Science, Technology and Arts Research Journal, 2014. PUTTIPIPATKHACHORN, S. et al. Drug physical state and drug–polymer interaction on drug release from chitosan matrix films. Journal of controlled release, 2001. RANGANATHANT, S. I. et al. Novel biodegradable and non-biodegradable 3d printed implants as a drug delivery system. WO2016205361A1, 2016. RAZA, K. et al. Polymorphism: The phenomenon affecting the performance of drugs. SOJ Pharmacy & Pharmaceutical Sciences, 2014. RINAUDO, M. Chitin and chitosan: Properties and applications. Progress in polymer science, 2006. RITGER, P. L.; PEPPAS, N. A. A simple equation for description of solute release I. Fickian and non- fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of controlled release, 1987. 23-36. ROJAS, F. S.; OJEDA, C. B. Recent development in derivative ultraviolet/visible absorption spectrophotometry: 2004–2008: A review. Analytica chimica acta, 2009. SAHDEV, A. K. et al. Update on modified chitosan frameworks and their applications for food, wastewater, toxic heavy metals, dyes treatment and cancer drug delivery. Journal of Environmental Chemical Engineering, 2022. SAHU, B. P. et al. A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. Pharmaceutical Investigation, 2022. 539-585. SALIM, S. A. et al. Mercaptopurine-Loaded Sandwiched Tri-Layered Composed of Electrospun Polycaprolactone/Poly(Methyl Methacrylate) Nanofibrous Scaffolds as Anticancer Carrier with Antimicrobial and Antibiotic Features: Sandwich Configuration Nanofibers, Release Study [.]. International Journal of Nanomedicine, 2022. 6937–6955. SANDLER, N.; PREIS, M. Printed Drug-Delivery Systems for Improved Patient Treatment. Trends in Pharmacological Sciences, 2016. 1070-1080. SEM Basics. Myscope.training, 2024. Disponivel em: <https://myscope.training/SEM_SEM_Basics>. Acesso em: Dezembro 2024. SETHI3D. Manual do Usário/ Sethi 3D S4X. [S.l.]: [s.n.], v. 1, 2024. SHARIATINIA, Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. Journal of Drug Delivery Science and Technology, 2021. 112 SIEMANN, U. Solvent cast technology–a versatile tool for thin film production. In: ______ Scattering methods and the properties of polymer materials. Heidelberg: Springer Berlin Heidelberg, 2005. p. 1-14. SIEPMANN, J.; SIEPMANN, F. Modeling of diffusion controlled drug delivery. Journal of controlled release, 2012. 351-362. SIERPE, R. et al. Construction of 6-thioguanine and 6-mercaptopurine carriers based on βcyclodextrins and gold nanoparticles. Carbohydrate polymers, 2017. SIMPLIFY3D. Using the Interface | Simplify3D Software. Simplify3d.com, 2024. Disponivel em: <https://www.simplify3d.com/resources/videos/using-the-interface/>. Acesso em: Outubro 2024. SIPARSKY, G. L.; VOORHEES, K. J.; MIAO, F. Hydrolysis of Polylactic Acid (PLA) and Polycaprolactone (PCL) in Aqueous Acetonitrile Solutions: Autocatalysis. Journal of Environmental Polymer Degradation, 1998. 1-11. START. Laboratório de Pesquisa em Engenharia de Software, 2013. Disponivel em: <https://www.lapes.ufscar.br/resources/tools-1/start-1>. Acesso em: 7 Novembro 2023. STORAGE and Handling. Gliadel, 2018. Disponivel em: <https://gliadel.com/hcp/storage.php>. Acesso em: Dezembro 2023. SUNG, Y. K.; KIM, S. W. Recent advances in polymeric drug delivery systems. Biomaterials Research, 2020. TALIB, A. B.; MOHAMMED, H. M. Preparation, characterization and preliminary cytotoxic evaluation of 6-mercaptopurine-coated biotinylated carbon dots nanoparticles as a drug delivery system. Materials Today, 2021. 1-7. TAN, D. K.; MANIRUZZAMAN, M.; NOKHODCHI, A. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery. Pharmaceutics, 2018. 1-23. TANAKA, K. et al. Role of the major histocompatibility complex class I antigens in tumor growth and metastasis. Annual review of immunology, 1988. 359-380. TANAKA, R. et al. Characterization of asphaltene aggregates using X-ray diffraction and small-angle X- ray scattering. Energy & Fuels, 2004. THERMOSCIENTIFIC. Exploring Uncharted Realms with Electron Microscopy. [S.l.]: [s.n.], 2024. TONG, X. et al. Recent advances in natural polymer-based drug delivery systems. Reactive and Functional Polymers, 2020. TYLER, B. et al. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Advanced Drug Delivery Reviews, 2016. 1-13. URAL, N. The significance of scanning electron microscopy (SEM) analysis on the microstructure of improved clay: An overview. Open Geosciences, 2021. WANG, X. et al. Glutathione-triggered “off–on” release of anticancer drugs from dendrimer- encapsulated gold nanoparticles. Journal of the American Chemical Society, 2013. 9805-9810. 113 WITTBRODT, B.; PEARCE, J. M. The effects of PLA color on material properties of 3-D printed components. Additive Manufacturing, 2015. XU, W.; RIIKONEN, J.; LEHTO, V. P. Mesoporous systems for poorly soluble drugs. International journal of pharmaceutics, 2013. 181-197. ZAIKI, Y.; ISKANDAR, A.; WONG, T. W. Functionalized chitosan for cancer nano drug delivery. Biotechnology Advances , 2023. 1-27. ZAWADZKI, J.; KACZMAREK, H. Thermal treatment of chitosan in various conditions. Carbohydrate Polymers, 2010. 394-400. ZHOU, W. et al. Preparation and evaluation of luteolin-loaded PLA-based shape memory gastroretentive drug delivery systems. International Journal of Pharmaceutics, 2024. 1-18. ZIELIńSKA, A. et al. Mesoporous silica nanoparticles as drug delivery systems against melanoma. In: ______ Design of Nanostructures for Theranostics Applications. [S.l.]: William Andrew Publishing, 2018. p. 437-466. ZOU, Y. et al. Preparation, Characterization, Pharmacokinetic and Therapeutic Potential of Novel 6- Mercaptopurine-Loaded Oral Nanomedicines for Acute Lymphoblastic Leukemia. International Journal of Nanomedicine, 2021. 1127–1141.pt_BR
dc.subject.cnpqEngenharia Químicapt_BR
dc.subject.cnpqEngenharia Químicapt_BR
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
RAQUEL DE SOUZA RIBEIRO.pdf6.19 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.