Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/23121Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Cruz, Beatriz Campanhã | - |
| dc.date.accessioned | 2025-09-04T13:02:53Z | - |
| dc.date.available | 2025-09-04T13:02:53Z | - |
| dc.date.issued | 2025-06-26 | - |
| dc.identifier.citation | CRUZ, Beatriz Campanhã. O hipotireoidismo experimental promove leve hiperglicemia, sinais análogos a ansiedade e depressão e alterações elétricas cardíacas in vivo e ex vivo em ratos wistar machos. 2025. 72 f. Dissertação (Mestrado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e de Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/23121 | - |
| dc.description.abstract | O hipotireoidismo é uma endocrinopatia caracterizada pela deficiência na produção dos hormônios tireoidianos, afetando diversos sistemas fisiológicos. Suas manifestações incluem alterações metabólicas, cognitivas, cardiovasculares e distúrbios do humor, como depressão e ansiedade. Segundo estimativas da Organização Mundial da Saúde (2022), uma em cada oito pessoas apresenta algum transtorno mental, sendo que no Brasil, dados da Organização Pan- Americana de Saúde (2017) registraram aproximadamente 11,5 milhões de indivíduos com depressão e 18,6 milhões com transtornos ansiosos. Considerando que uma parcela significativa desses pacientes apresenta disfunções tireoidianas, torna-se relevante investigar a associação entre hipotireoidismo e alterações comportamentais e fisiológicas. Neste contexto, o presente estudo avaliou os efeitos do hipotireoidismo experimental induzido por tireoidectomia total em ratos Wistar machos, com ênfase em alterações comportamentais, metabólicas e cardiovasculares. Trinta e sete animais foram distribuídos aleatoriamente em dois grupos: SHAM (falso-operado) e TX (tireoidectomizado). O protocolo experimental teve duração de 32 dias, com aferição semanal da massa corporal. Entre os dias 21 e 30 foram realizados testes comportamentais, nos dias 30 e 31 o registro eletrocardiográfico, e no dia 32 procedeu-se à eutanásia e coleta de sangue para dosagem de glicemia, TSH e T4, além da análise cardíaca pelo método de Langendorff. A eficácia do modelo foi confirmada por redução de 96% nos níveis de T4 e aumento de 545% no TSH no grupo TX. A glicemia apresentou elevação discreta (23%) nesse grupo. Quanto à massa corporal, os animais tireoidectomizados exibiram um platô de crescimento a partir da segunda semana, com diferença de ganho de peso total de aproximadamente 87% em relação ao grupo SHAM. Nos testes comportamentais, o campo aberto não revelou diferenças significativas. No labirinto em cruz elevado, houve redução de 30% no número de entradas e de 49% nos episódios de head dipping, sugerindo comportamento ansioso. No teste de preferência por sacarose, o grupo TX consumiu 16% menos sacarose, indicando anedonia, um comportamento compatível com quadro análogo à depressão. No reconhecimento de objetos, apesar de maior tempo total de interação, o grupo TX apresentou 35% mais interações negativas, indicando prejuízo na motivação exploratória e possível déficit cognitivo. No teste de esquiva passiva, a latência foi 308% maior no grupo TX na fase de curta duração, mas não se manteve após 24 horas, sugerindo déficit na consolidação da memória aversiva. Em relação aos parâmetros cardiovasculares, observou-se redução de 31% na massa cardíaca, bradicardia (queda de 10,4% na frequência cardíaca) e prolongamento dos intervalos QT e QTc, indicando maior risco de arritmias. A razão BF/AF não apresentou alterações significativas. A análise ex vivo confirmou as disfunções eletromecânicas não relacionadas à disautonomia apresentando redução da frequência cardíaca no grupo TX em relaçãoa o grupo controle (11%), além de apresentar aumenta no tempo da sístole basal (36%) e após administração de adrenalina (29%) no grupo TX. Conclui-se que o hipotireoidismo experimental induz alterações comportamentais compatíveis com transtornos ansiosos e depressivos, incluindo anedonia, além de disfunções cardíacas e metabólicas. Esses achados reforçam a relevância do modelo animal para investigações translacionais e abordagens terapêuticas integradas para o hipotireoidismo. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | hipotireoidismo | pt_BR |
| dc.subject | depressão | pt_BR |
| dc.subject | ansiedade | pt_BR |
| dc.subject | alterações cardiovasculares | pt_BR |
| dc.subject | hypothyroidism | pt_BR |
| dc.subject | depression | pt_BR |
| dc.subject | anxiety | pt_BR |
| dc.subject | cardiovascular changes | pt_BR |
| dc.title | O hipotireoidismo experimental promove leve hiperglicemia, sinais análogos a ansiedade e depressão e alterações elétricas cardíacas in vivo e ex vivo em ratos wistar machos | pt_BR |
| dc.title.alternative | Experimental hypothyroidism induces mild hyperglycemia, signs analogous to anxiety and depression, and cardiac electrical changes in vivo and ex vivo in male Wistar rats | en |
| dc.type | Dissertação | pt_BR |
| dc.description.abstractOther | Hypothyroidism is an endocrinopathy characterized by a deficiency in the production of thyroid hormones, affecting various physiological systems. Its manifestations include metabolic, cognitive, cardiovascular alterations, and mood disorders such as depression and anxiety. According to estimates by the World Health Organization (2022), one in eight people presents some form of mental disorder, and in Brazil, data from the Pan American Health Organization (2017) reported approximately 11.5 million individuals with depression and 18.6 million with anxiety disorders. Considering that a significant portion of these patients presents thyroid dysfunctions, it becomes relevant to investigate the association between hypothyroidism and behavioral and physiological changes. In this context, the present study evaluated the effects of experimental hypothyroidism induced by total thyroidectomy in male Wistar rats, with emphasis on behavioral, metabolic, and cardiovascular alterations. Thirty-seven animals were randomly assigned to two groups: SHAM (sham-operated) and TX (thyroidectomized). The experimental protocol lasted 32 days, with weekly body mass measurements. Between days 21 and 30, behavioral tests were performed; on days 30 and 31, electrocardiographic recordings were made; and on day 32, euthanasia and blood collection for glucose, TSH, and T4 measurements were conducted, along with cardiac analysis using the Langendorff method. The model’s effectiveness was confirmed by a 96% reduction in T4 levels and a 545% increase in TSH in the TX group. Blood glucose showed a slight increase (23%) in this group. Regarding body mass, thyroidectomized animals exhibited a growth plateau starting from the second week, with a total weight gain difference of approximately 87% compared to the SHAM group. In behavioral tests, the open field test revealed no significant differences. In the elevated plus maze, there was a 30% reduction in the number of entries and a 49% decrease in head dipping episodes, suggesting anxious behavior. In the sucrose preference test, the TX group consumed 16% less sucrose, indicating anhedonia, a behavior compatible with a depression-like state. In the object recognition test, despite longer total interaction time, the TX group showed 35% more negative interactions, indicating impaired exploratory motivation and possible cognitive deficits. In the passive avoidance test, latency was 308% higher in the TX group during the short-term phase but did not persist after 24 hours, suggesting impaired consolidation of aversive memory. Regarding cardiovascular parameters, a 31% reduction in cardiac mass, bradycardia (10.4% decrease in heart rate), and prolongation of QT and QTc intervals were observed, indicating a higher risk of arrhythmias. The BF/AF ratio did not show significant changes. Ex vivo analysis confirmed electromechanical dysfunctions unrelated to dysautonomia, showing reduced heart rate in the TX group compared to controls (11%), as well as increased basal systole duration (36%) and after adrenaline administration (29%) in the TX group. In conclusion, experimental hypothyroidism induces behavioral changes compatible with anxiety and depressive disorders, including anhedonia, as well as cardiac and metabolic dysfunctions. These findings underscore the relevance of the animal model for translational research and integrated therapeutic approaches for hypothyroidism. | en |
| dc.contributor.advisor1 | Olivares, Emerson Lopes | - |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1361659701207857 | pt_BR |
| dc.contributor.advisor-co1 | Rocha, Fabio Fagundes da | - |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/3804957959723162 | pt_BR |
| dc.contributor.referee1 | Olivares | - |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/1361659701207857 | pt_BR |
| dc.contributor.referee2 | Mecawi, Andre de Souza | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0003-4517-6221 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/7081349017203771 | pt_BR |
| dc.contributor.referee3 | Cortes, Wellington da Silva | - |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/1305510562756172 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/3797324094777274 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Ciências Biológicas e Da Saúde | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas | pt_BR |
| dc.relation.references | 1. AUBERT, A. E. et al. Complexity of cardiovascular regulation in small animals. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, v. 367, n. 1892, p. 1239-1250, 2009. 2. BATHLA, M.; SINGH, M.; RELAN, P. Prevalence of anxiety and depressive symptoms among patients with hypothyroidism. Indian Journal of Endocrinology and Metabolism, v. 20, n. 4, p. 468-474, 2016. 3. BEVINS, R. A.; BESHEER, J. Object recognition in rats and mice: a one-trial non- matching-to-sample learning task to study ‘recognition memory’. Nature Protocols, v. 1, n. 3, p. 1306-1311, 2006. 4. BIANCO, A. C. et al. American Thyroid Association guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid, v. 24, n. 1, p. 88- 168, 2014. 5. BOUSTANI, A. et al. Mild exercise plus levothyroxine ameliorates deficits of spatial navigation, anxiety profile, and hippocampal BDNF in hypothyroid male offspring rats. Brain and Behavior, v. 14, e3614, 2024. 6. BRENT, G. A. Mechanisms of thyroid hormone action. The Journal of Clinical Investigation, v. 122, n. 9, p. 3035-3043, 2012. 7. CAMPOS, L. S.; LOPES, T. A.; SOUZA, E. F. Distúrbios metabólicos no hipotireoidismo: uma revisão. Revista Brasileira de Endocrinologia, v. 21, n. 2, p. 123-135, 2024. 8. CHAKER, L.; RAZVI, S.; BENSENOR, I. M. Hypothyroidism. The Lancet, v. 390, n. 10101, p. 1550-1562, 2022. 9. CHIELLINI, G. et al. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB Journal, v. 21, n. 7, p. 1597–1608, 2007. 10. DA CONCEIÇÃO, R. R. et al. Metal coordinated poly-zinc-liothyronine provides stable circulating triiodothyronine levels in hypothyroid rats. Thyroid, v. 28, n. 11, p. 1483-1495, 2018. 11. Davis, P. J., et al. Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu. Rev. Pharmacol. Toxicol. 51, 99–115, 2011. 12. DE CASTRO, J. P. W. et al. Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine. The Journal of Clinical Investigation, v. 125, n. 2, p. 769-780, 2015. 13. ENNACEUR, A.; DELACOUR, J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behavioral Brain Research, v. 31, p. 47-59, 1988. 55 14. ETTLESON, M. D.; BIANCO, A. C. Individualized therapy for hypothyroidism: is T4 enough for everyone? The Journal of Clinical Endocrinology and Metabolism, v. 105, n. 9, p. e3090 e3104, 2020. 15. FERNANDEZ-RUOCCO, J. et al. Tirotropina alta é crítica para remodelação elétrica cardíaca e vulnerabilidade à arritmia no hipotireoidismo. Tireóide, v. 29, n. 7, p. e934- e945, 2019. 16. FROTA, I. J. et al. Transtornos de ansiedade: histórico, aspectos clínicos e classificações atuais. Journal of Health & Biological Sciences, v. 10, n. 1, p. 1-8, 2021. 17. GALIÑANES, M. et al. Early effects of hypothyroidism on the contractile function of the rat heart and its tolerance to hypothermic ischemia. J Thorac Cardiovasc Surg, v. 107, n. 3, p. 829-837, mar. 1994. 18. GHENIMI, N. et al. Adult-Onset Hypothyroidism Induces the Amyloidogenic Pathway of Amyloid Precursor Protein Processing in the Rat Hippocampus. J. Neuroendocrinol., v. 22, p. 951–959, 2010. 19. GODINI, A.; GHASEMI, A.; ZAHEDIASL, S. The possible mechanisms of the impaired insulin secretion in hypothyroid rats. PLoS One, v. 10, n. 7, e0131198, 2015. 20. GULLO, D. et al. Levothyroxine monotherapy cannot guarantee euthyroidism in all athyreotic patients. PLoS One, v. 6, n. 8, e22552, 2011. 21. GUNASEKARAN, K.; CHUAN TAN, N. Otimizando a substituição de levotiroxina na prática de cuidados primários. IntechOpen, 2024. 22. HAGE, M. P.; AZAR, S. T. The link between thyroid function and depression. Journal of Thyroid Research, v. 2012, p. 590648, 2012. 23. HALL, John E. Tratado de Fisiologia Médica. Tradução da 12a edição por Alcides Marinho Junior et al. Rio de Janeiro: Elsevier, 2011. ISBN 978-85-352-4980-4. 24. JEAN-LUC, M. Simulating the anhedonia symptom of depression in animals. Dialogues in Clinical Neuroscience, v. 4, n. 4, p. 351-360, 2002. 25. JIN, Z. et al. Serotonin 2A receptor function and depression-like behavior in rat model of hypothyroidism. Experimental Brain Research, v. 239, n. 8, p. 2435-2444, 2021. 26. JOUKAR, S. A comparative review on heart ion channels, action potentials and electrocardiogram in rodents and humans: extrapolation of experimental insights to clinic. Laboratory Animal Research, v. 37, n. 1, p. 1-15, 2021. 27. KAHALY GJ, DILLMANN WH. Thyroid hormone action in the heart. Endocr Rev;26(5):704-28, 2005. 56 28. KLEIN, I.; OJAMAA, K. Thyroid hormone and the cardiovascular system. New England Journal of Medicine, v. 344, n. 7, p. 501-509, 2001. 29. KLEMPERER, J.; OJAMAA, K.; KLEIN, I. Thyroid hormone therapy in cardiovascular disease. Progress in Cardiovascular Diseases, v. 38, p. 329-336, 1996. 30. KONOPELSKI, P.; UFNAL, M. Electrocardiography in rats: a comparison to human. Physiological Research, v. 65, p. 717-725, 2016. 31. KRAEUTER, A. K. et al. The elevated plus maze test for measuring anxiety-like behavior in rodents. Methods in Molecular Biology, v. 1916, p. 69-74, 2019. 32. LADENSON, P. W. et al. American Thyroid Association guidelines for detection of thyroid dysfunction. Archives of Internal Medicine, v. 160, n. 11, p. 1573-1575, 2000. 33. LEGER, M. et al. Teste de reconhecimento de objetos em ratos. Nat Protoc 8, 2531– 2537,2013. 34. MCILWAIN, K. L. et al. The use of behavioral test batteries: effects of training history. Physiology & Behavior, v. 73, n. 5, p. 705-717, 2001. 35. MEHRAN, L. et al. Pharmacodynamic and pharmacokinetic properties of the combined preparation of levothyroxine plus sustained-release liothyronine: a randomized controlled clinical trial. BMC Endocrine Disorders, v. 23, p. 1-10, 2023. 36. MIKICS, E. et al. Behavioral specificity of nongenomic glucocorticoid effects in rats: effects on risk assessment in the elevated plus maze and the open-field. Hormones & Behavior, v. 48, n. 2, p. 152-162, 2005. 37. MONTERO-PEDRAZUELA, A. et al. Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior. Molecular Psychiatry, v. 11, n. 4, p. 361-371, 2006. 38. MOREAU J.L et al. O tratamento antidepressivo previne a anedonia crônica imprevisível induzida por estresse leve, conforme avaliado pelo comportamento de autoestimulação do tegmento ventral em ratos. Eur Neuropsychopharmacol.;2:43–9, 1992. 39. ÖGREN, S. O.; STIEDL, Oliver. Passive avoidance. Encyclopedia of psychopharmacology, v. 2, p. 960-967, 2010. 40. OJAMAA, K. et al. Changes in adenylyl cyclase isoforms as a mechanism for thyroid hormone modulation of cardiac beta-adrenergic receptor responsiveness. Metabolism, v. 49, n. 2, p. 275-279, 2000. 41. OLIVARES, E. L. et al. Social stress-induced hypothyroidism is attenuated by antidepressant treatment in rats. Neuropharmacology, v. 62, n. 1, p. 446-456, 2012. 57 42. ORGANIZAÇÃO MUNDIAL DA SAÚDE. Depression. Disponível em: https://www.who.int/news-room/fact-sheets/detail/depression Acesso em: 10 abril 2025. 43. ORGANIZAÇÃO MUNDIAL DA SAÚDE. Mental Health Gap Action Programme. Disponível em: https://www.who.int/teams/mental-health-and-substance- use/treatment-care/mental-health-gap-action-programme. Acesso em: 09 abril 2025. 44. ORGANIZAÇÃO PAN-AMERICANA DE SAÚDE. Aumenta o número de pessoas com depressão no mundo. Disponível em: https://www.paho.org/pt/noticias/23-2- 2017-aumenta-numero-pessoas-com-depressao-no-mundo. Acesso em: 10 abril 2025. 45. OSNAYA-BRIZUELA, N. et al. Is the acquired hypothyroidism a risk factor for developing psychiatric disorders? Frontiers in Psychiatry, v. 15, p. 1429255, 2024. 46. OSUNA, PM, et al. Hyperthyroidism and the Heart. Methodist Debakey Cardiovasc J. Apr-Jun;13(2):60-63, 2017. 47. OZAWA, T. et al. A feedback neural circuit for calibrating aversive memory strength. Nature Neuroscience, v. 20, p. 90–97, 2017. 48. PANVELOSKI-COSTA, A. C. et al. Thyroid hormone reduces inflammatory cytokines improving glycaemia control in alloxan-induced diabetic Wistar rats. Acta Physiologica, v. 217, p. 130–140, 2016. 49. PEREIRA-JUNIOR, P. P. et al. Noninvasive method for electrocardiogram recording in conscious rats: feasibility for heart rate variability analysis. Anais da Academia Brasileira de Ciências, v. 82, n. 2, p. 431-437, 2010. 50. PIZZO, E. et al. Heart rate variability reveals altered autonomic regulation in response to myocardial infarction in experimental animals. Frontiers in Cardiovascular Medicine, v. 9, 2022. 51. PRUT, L.; BELZUNG, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, v. 463, p. 3-33, 2003. 52. ROESLER, R. et al. Intrahippocampal infusion of the NMDA receptor antagonist AP5 impairs retention of an inhibitory avoidance task: protection of impairment by pre training preexposure to the task apparatus. Neurobiology of learning and memory, v.69, n.2, p.87-91, 1998. 53. ROESLER, R. et al. Infusions of AP5 into the basolateral amygdala impairs the formation but not the expression, of the step-down inhibitory avoidance. Brazilian Journal of medical an biological research, v.33, n.7, p. 829-834, 2000. 54. SANTIS, L. A.; CREMONEZI, I. M. Associação entre as alterações do hipotireoidismo e o comportamento das células cardíacas. Frontiers in Pharmacology, v. 11, p. 1079, 2020. 58 55. SILVA, E. et al. Cognitive dysfunction in hypothyroidism: a systematic review and meta-analysis. Journal of Thyroid Research, v. 2014, p. 890542, 2014. 56. SILVA, R. A.; CARRILHO, R. I. Neurobiologia da depressão: uma revisão. Revista Brasileira de Psiquiatria, v. 36, n. 2, p. 172-183, 2024. 57. SVORC, P.,et al. Sex differences in HRV under general anesthesia in rat model. Anesthesia and Pain Medicine, 4(1), 1–6, 2020. 58. TSE, Y. et al. Central thyroid hormone regulation: effects of thyroxine treatment on memory consolidation in rats. Journal of Neuroscience, v. 30, p. 5072-5081, 2010. 59. VAN MEURS, M. et al. Effect of thyroid hormone treatment on emotional behavior in hypothyroid rats. Neuroendocrinology Letters, v. 28, p. 171–175, 2007. 60. WALF A.A, FRYE C.A. The use of the elevated plus maze as an assay of anxiety- related behavior in rodents. Nat Protoc; 2(2):322-8, 2007. 61. WEISS, R. E. et al. Congenital hypothyroidism: from gene to therapy. Thyroid, v. 29, p. 1-11, 2019. 62. WISNIEWSKA-KNYCH, B. et al. Role of thyroid hormone in the regulation of hippocampal activity. Psychoneuroendocrinology, v. 69, p. 61-72, 2016. 63. YAO, S.; TANG, Z. Interactions between thyroid hormone and central nervous system in animal models of hypothyroidism. Endocrine Journal, v. 64, n. 8, p. 773-779, 2017. 64. ZOU, X. et al. Thyroid hormones and their receptors in the hippocampus: effects on memory and anxiety-like behavior. Journal of Neuroscience Research, v. 43, p. 42-56, 2024. 65. ZHANG, S. et al. Upregulation of the thyroid hormone receptor is involved in the antidepressant-like effects of chronic mild stress. Journal of Neuroscience Research, v. 35, p. 741-749, 2022. 66. ZHOU, J. et al. The role of thyroid hormones in the pathogenesis of mood disorders: an animal model study. Neurobiology of Disease, v. 64, p. 147-155, 2014. 67. ZHU, S. et al. The involvement of thyroid hormone signaling in brain metabolism and cognitive function. Neurochemical Research, v. 41, p. 365-372, 2016. 68. ZHANG, Y. et al. Effects of hypothyroidism on the physiology of the rat’s nervous system. Neuroendocrinology Letters, v. 38, p. 456-466, 2017. 69. ZHU, Y. et al. Functional relevance of thyroid hormone receptors in central nervous system diseases. Molecular Psychiatry, v. 21, p. 46-53, 2016. | pt_BR |
| dc.subject.cnpq | Fisiologia | pt_BR |
| Appears in Collections: | Mestrado Multicêntrico em Ciências Fisiológicas | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| BEATRIZ CAMPANHÃ CRUZ.pdf | 1.93 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
