Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/23188Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Souza, Andressa Fabiane Faria de | - |
| dc.date.accessioned | 2025-09-15T12:41:50Z | - |
| dc.date.available | 2025-09-15T12:41:50Z | - |
| dc.date.issued | 2022-11-29 | - |
| dc.identifier.citation | SOUZA, Andressa Fabiane Faria de. Vias de sinalização envolvidas no estímulo do crescimento radicular em plantas de arroz ativadas por ácidos húmicos. 2022. 79 f. Tese (Doutorado em Agronomia – Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/23188 | - |
| dc.description.abstract | O uso de bioestimulantes está ganhando uma significativa visibilidade científica e comercial, e é considerada uma técnica promissora na melhoria da sustentabilidade ecológica da produção agrícola. Dentre as substâncias bioestimulantes, inúmeros estudos relatam o efeito dos ácidos húmicos (AH) como promotor do crescimento radicular melhorando a aquisição e o uso eficiente de nutrientes, aumento da tolerância à estresses abióticos e produtividade. Apesar das evidências estabelecidas dos efeitos bioestimulante, muitos aspectos funcionais ainda precisam ser elucidados. A pesquisa desenvolvida nessa tese busca contribuir para o entendimento dos mecanismos fisiológicos por trás dessas respostas utilizando abordagens fenotípicas e moleculares associadas ao uso de inibidores de Espécies Reativas de Oxigênio (ERO) e de vias hormonais. Nesse contexto, foram estabelecidas as seguintes hipóteses: (i) os AH isolados de vermicomposto sinalizam para o crescimento do sistema radicular via regulação oxidativa; (ii) os AH isolados de vermicomposto sinalizam para o crescimento do sistema radicular via regulação hormonal; (iii) os AH isolados de vermicomposto sinalizam para o crescimento do sistema radicular por meio da interação entre regulação das ERO e regulação hormonal. Para verificar essas hipóteses, o objetivo geral da pesquisa foi elucidar os mecanismos de sinalização pelo qual o ácido húmico estimula o crescimento do sistema radicular em plantas de arroz. Assim, a Tese foi dividida em 2 capítulos, sendo o objetivo do Capítulo I confirmar o efeito bioestimulante proporcionado pela aplicação do AH em raízes de plantas de arroz aliado a técnicas espectroscópicas para relacionar as propriedades do AH a sua bioatividade. Para isso, foi utilizado o vermicomposto para extração e purificação do AH e realizada espectroscopia RMN de 13C via CP/MAS e ATR-FTIR, e foram realizadas curvas de calibração para o AH e os inibidores (scavengers). Os dados obtidos sugerem que o AH oriundo do vermicomposto possui maior predomínio de fragmentos alifáticos e carbono carboxílico, que contribuem para o aumento da bioatividade. O objetivo do Capítulo II foi elucidar os mecanismos de sinalização responsáveis pela indução do crescimento do sistema radicular em resposta à aplicação de AH. Para isso, foi realizado um experimento de time-course para verificar o efeito da aplicação dos inibidores sobre o sistema radicular ao longo do tempo e realizada a aplicação combinada do AH e inibidor para verificar seu efeito sobre a morfologia radicular e expressão gênica. Através da abordagem fenotípica foi possível verificar os efeitos da aplicação de AH sobre as características morfológicas de plântulas de arroz, sugerindo que a promoção do crescimento radicular é um mecanismo dependente da produção de ERO, e o efeito estimulatório do AH parece ser dependente da produção de HO*, O2 -* e H2O2. Através da abordagem molecular foi possível observar alterações na regulação gênica ocasionadas pela aplicação do AH, sendo mais expressiva em genes relacionados a enzimas antioxidantes. As conclusões gerais deste estudo foram que AH extraídos de vermicomposto desempenham um papel no estímulo do crescimento radicular em plantas de arroz e sinalizam para o crescimento do sistema radicular via regulação oxidativa e hormonal, apresentando um efeito protetivo no crescimento das plantas, explicando em parte os mecanismos fisiológicos do AH por trás das respostas na promoção do crescimento radicular. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Bioatividade | pt_BR |
| dc.subject | Raiz | pt_BR |
| dc.subject | Inibidores | pt_BR |
| dc.subject | Espécies reativas de oxigênio | pt_BR |
| dc.subject | Oryza sativa | pt_BR |
| dc.subject | Bioactivity | pt_BR |
| dc.subject | Root | pt_BR |
| dc.subject | Scavengers | pt_BR |
| dc.subject | Reactive Oxygen Species | pt_BR |
| dc.title | Vias de sinalização envolvidas no estímulo do crescimento radicular em plantas de arroz ativadas por ácidos húmicos | pt_BR |
| dc.title.alternative | Signaling pathways involved in root growth stimulation in rice plants activated by humic acids | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | The use of biostimulants is gaining significant scientific and commercial visibility and is considered a promising technique for improving the ecological sustainability of agricultural production. Among biostimulant substances, numerous studies report the effects of humic acids (HA) as promoters of root growth, improving nutrient acquisition and use efficiency, increasing tolerance to abiotic stresses, and enhancing productivity. Despite the established evidence of the biostimulant effects, many functional aspects remain to be elucidated. This thesis aims to contribute to the understanding of the physiological mechanisms behind these responses by using phenotypic and molecular approaches associated with the use of reactive oxygen species (ROS) and hormonal pathway inhibitors. In this context, the following hypotheses were established: (i) HA isolated from vermicompost signal root system growth via oxidative regulation; (ii) HA isolated from vermicompost signal root system growth via hormonal regulation; (iii) HA isolated from vermicompost signal root system growth through the interaction between ROS regulation and hormonal regulation. To test these hypotheses, the general objective of the research was to elucidate the signaling mechanisms by which humic acid stimulates root system growth in rice plants. Thus, the thesis was divided into two chapters, with Chapter I aimed at confirming the bio-stimulant effect provided by HA application in rice plant roots combined with spectroscopic techniques to relate HA properties to its bioactivity. For this, vermicompost was used for HA extraction and purification, and 13C NMR via CP/MAS and ATR-FTIR spectroscopy were performed, along with calibration curves for HA and inhibitors (scavengers). The data suggest that HA from vermicompost has a greater predominance of aliphatic fragments and carboxylic carbon, which contribute to increased bioactivity. Chapter II aimed to elucidate the signaling mechanisms responsible for the induction of root system growth in response to HA application. For this, a time-course experiment was conducted to verify the effect of inhibitors on the root system over time, and combined application of HA and inhibitors was performed to assess their effects on root morphology and gene expression. The phenotypic approach revealed the effects of HA application on the morphological characteristics of rice seedlings, suggesting that root growth promotion is a mechanism dependent on ROS production, and the stimulatory effect of HA appears to depend on the production of HO*, O2 - *, and H2O2. The molecular approach observed changes in gene regulation caused by HA application, being more expressive in genes related to antioxidant enzymes. The overall conclusions of this study were that HA extracted from vermicompost play a role in stimulating root growth in rice plants and signal root system growth via oxidative and hormonal regulation, presenting a protective effect on plant growth and partially explaining the physiological mechanisms of HA behind the responses in promoting root growth. | en |
| dc.contributor.advisor1 | Santos, Leandro Azevedo | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-2595-9432 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/4704465400011358 | pt_BR |
| dc.contributor.advisor-co1 | García, Andrés Calderín | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0001-5963-3847 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/8896375232574274 | pt_BR |
| dc.contributor.referee1 | Santos, Leandro Azevedo | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-2595-9432 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/4704465400011358 | pt_BR |
| dc.contributor.referee2 | Berbara, Ricardo Luiz Louro | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0002-3649-9443 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/8529910145308595 | pt_BR |
| dc.contributor.referee3 | Tavares, Orlando Carlos Huertas | - |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/6517289620714369 | pt_BR |
| dc.contributor.referee4 | Vidal, Márcia Soares | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0003-3378-4617 | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/3036544314910366 | pt_BR |
| dc.contributor.referee5 | Dobbss, Leonardo Barros | - |
| dc.contributor.referee5ID | https://orcid.org/0000-0003-0465-4186 | pt_BR |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/8618891960964827 | pt_BR |
| dc.creator.ID | https://orcid.org/0000-0002-5368-5221 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/4756481537895343 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Agronomia | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Agronomia - Ciência do Solo | pt_BR |
| dc.relation.references | AGUIAR, N. O.; NOVOTNY, E. H.; OLIVEIRA, A. L.; RUMJANEK, V. M.; OLIVARES, F. L.; CANELLAS, L. P. Prediction of humic acids bioactivity using spectroscopy and multivariate analysis. Journal of Geochemical Exploration, v.129, p. 95-102, 2013. AGUIAR, N. O. MEDICI, L. O.; OLIVARES, F. L.; DOBBSS, L. B.; TORRES-NETO, A.; SILVA, S. F.; NOVOTNY, E. H.; CANELLAS, L. P. Metabolic profile and antioxidant responses during drought stress recovery in sugarcane treated with humic acids and endophytic diazotrophic bactéria. Annals of Applied Biology, v. 168, p. 203-213, 2016. AHMAD, T.; KHAN, R.; KHATTAK, T. N. Effect of humic acid and fulvic acid based liquid and foliar fertilizers on the yield of wheat crop. Journal of Plant Nutrition, v. 41, p. 2438- 2445, 2018. ANDERSEN, C. L.; LEDET-JENSEN, J.; ØRNTOFT, T. Normalization of real-time quantitative RT-PCR data: a model-based variance estimation approach to identify genes suited for normalization - applied to bladder- and colon-cancer data-sets. Cancer Research, v. 64, p. 5245-5250, 2004. ANDERSON, M. D.; PRASAD, T. K.; STEWART, C. R. Changes in isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiology, v. 109, p. 1247-1257, 1995. ASLI, S.; NEUMANN, P. M. Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant and Soil, v. 336, p. 313-322, 2010. BIN RAHMAN, A. N. M. R.; ZHANG, J. Trends in rice research: 2030 and beyond. Food and Energy Security, e390, 2022. BAXTER, A.; MITTLER, R.; SUZUKI, N. ROS as key players in plant stress signalling. Journal of Experimental Botany, v. 65, p. 1229-1240. CANELLAS, L. P.; ZANDONADI, D. B.; BUSATO, J. G.; BALDOTTO, M. A.; SIMÕES, M. L.; MARTIN-NETO, L.; FAÇANHA, A. R.; SPACCINI, R.; PICCOLO, A. Bioactivity and chemical characteristics of humic acids from tropical soils sequence. Soil Science, v. 173, p. 624-637, 2008. CANELLAS, L. P.; OLIVARES, F. L. Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, v. 1, p. 1-11, 2014. CHEN, Y.; NOBILI, M.; AVIAD, T. Stimulatory effects of humic substances on plant growth. In: Soil organic matter in sustainable agriculture. Ed. MAGDOFF, F.; WEIL, R. R. London: [s.n.], p. 103-129, 2004. CHEN, Z.; YANG, B.; HAO, Z.; ZHU, J.; ZHANG, Y.; XU, T. Exogenous hydrogen sulfide ameliorates seed germination and seedling growth of cauliflower under lead stress and its antioxidant role. Journal of Plant Growth Regulation, v. 37, p. 5-15, 2018. 57 CHILSON, O. P.; KELLY-CHILSON, A. E.; SCHNEIDER, J. D. Pyrroline-5-carboxylate reductase in soybean nodules. Plant Physiology, v. 99, p. 119-123, 1992. CONAB. Companhia Nacional de Abastecimento. Análise Mensal – Maio-Junho/2020. Disponível em: https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e- extrativista/analises-do-mercado/historico-mensal-de-arroz CONSELVAN, G. B.; PIZZEGHELLO, D.; FRANCIOSO, O.; FOGGIA, M. D.; NARDI, S.; CARLETTI, P. Biostimulant activity of humic substances extracted from leonardites. Plant Soil, v. 420, p. 119-134, 2017. CONSELVAN, G. B.; FUENTES, D.; MERCHANT, A.; PEGGION, C.; FRANCIOSO, O.; CARLETTI, P. Effects of humic substances and indole-3-acetic acid on Arabidopsis sugar and amino acid metabolic profile. Plant Soil, v. 426, p. 17-32, 2018. CORDEIRO, F. C.; SANTA-CATARINA, C., SILVEIRA, V.; RIBEIRO, R. C.; SOUZA, S. R. Humic acid-induced hairy root growth in basil is modulated by nitric oxide and reactive oxygen species. American Journal of Plant Sciences, v. 8, p. 3140-3161, 2017. DAS, S.; KAR, R. K. Reactive oxygen species-mediated promotion of root growth under mild water stress during early seedling stage of Vigna radiata (L.) Wilczek. Journal of Plant Growth Regulation, v. 36, p. 338-347, 2017. DAS, K.; ROYCHOUDHURY, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, v. 2, p. 1-13, 2014. DHINDSA, R. S.; MATOWE, W. Drought tolerance in two mosses: correlation with enzymatic defense against lipid peroxidation. Journal Experimental Botany, v. 32, p.79-91, 1981. DING, A. H.; NATHAN, C. F.; STUEHR, D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages: Comparison of activating cytokines and evidence for independent production. The Journal of Immunology, v. 141, p. 2407-2412, 1988. DOBBS, L. B.; CANELLAS, L. P.; OLIVARES, F. L.; AGUIAR, N. O.; PERES, L. E. P.; AZEVEDO, M.; SPACCINI, R.; PICCOLO, A.; FAÇANHA, A. Bioactivity of Chemically Transformed Humic Matter from Vermicompost on Plant Root Growth. Journal of Agricultural and Food Chemistry, v.58, p. 3681-3688, 2010. EBIC. European Biostimulant Industry Council. Biostimulants Market. 2020. Acessado em: 04 set. 2020. Disponível em: https://biostimulants.eu/highlights/economic-overview-of-the- european-biostimulants-market/ EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. Arroz. 2004.Disponível em: http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Arroz/ArrozIrrigadoTocantins/adu bacao_calagem.htm. Acessado em: 02 de set. 2018. 58 ERTANI, A.; FRANCIOSO, O.; FERRARI, E.; SCHIAVON, M.; NARDI, S. Spectroscopic- chemical fingerprint and biostimulant activity of a protein-based product in solid form. Molecules, v. 23, p. 1-16, 2018. FAO. Food and Agriculture Organization of the United Nations. Food Outlook – Biannual Report on Global Food Markets. Rome. 2022. FOREMAN, J.; DEMIDCHIK, V.; BOTHWELL, J. H. F.; MYLONA, P.; MIEDEMA, H.; TORRES, M. A.; LINSTEAD, P.; COSTA, S.; BROWNLEE, C.; JONES, J. D. G.; DAVIES, J. M.; DOLAN, L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, V. 422, p. 442-446, 2003. FOYER, C. H.; NOCTOR, G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling, v. 11, p. 861-905, 2009. FOYER, C. H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, v. 154, p. 134-142, 2018. FRANÇA, M. G. C.; PEDROSA, M. G.; CARVALHO, M. M. L.; MAGALHÃES, J. R.; CORDEIRO, F. C.; SOUZA, S. R. Óxido Nítrico em Plantas. In: FERNANDES, M. S.; SOUZA, S. R.; SANTOS, L. A. (Ed). Nutrição Mineral de Plantas. 2. ed. Viçosa: Sociedade Brasileira de Ciência do Solo cap. 6, p. 195-226, 2018. GAO, J.; LIU, J.; LI, B.; LI, Z. Isolation and purification of functional total RNA from blue- grained wheat endosperm tissues containing high levels of starches and flavonoids. Plant Molecular Biology Reporter, v. 19, p. 185-186, 2001. GARCÍA, A. C.; SANTOS, L. A.; IZQUIERDO, F. G.; SPERANDIO, M. V. L.; CASTRO, R. N.; BERBARA, R. L. L. Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecological Engineering, v. 47, p. 203-208, 2012. GARCÍA, A. C.; SANTOS, L. A.; DE SOUZA, L. G. A.; TAVARES, O. C. H.; ZONTA, E.; GOMES, E. T. M.; BERBARA, R. L. L. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. Journal of Plant Physiology, v. 192, p. 56-63, 2016a. GARCÍA, A. C.; SOUZA, L. G. A.; PEREIRA, M. G.; CASTRO, R. N.; GARCÍA-MINA, J. M.; ZONTA, E.; LISBOA, F. J. G.; BERBARA, R. L. L. Structure-property-function relationship in humic substances to explain the biological activity in plants. Scientific Reports, v. 6, p. 1-10, 2016b. GARCÍA, A. C.; OLAETXEA, M.; SANTOS, L. A; MORA, V.; BAIGORRI, R.; FUENTES, M.; ZAMARREÑO, A. M.; BERBARA, R. L.; GARCIA-MINA, J. M. Involvement of hormone-and ROS-signaling pathways in the beneficial action of humic substances on plants growing under normal and stressing conditions. BioMed Research International, v. 2016, p. 1-13, 2016c. GARCÍA, A. C.; GARCÍA-MINA, J. M.; TAVARES, O. C. H.; SANTOS, L. A.; BERBARA, R. L. L. Substâncias húmicas e seus efeitos sobre a nutrição de plantas. In: FERNANDES, M. 59 S.; SOUZA, S. R.; SANTOS, L. A. (Ed). Nutrição Mineral de Plantas. 2. ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2018, cap. 7, p. 227-277. GARCÍA, A. C.; CASTRO, T. A. T.; SANTOS, L. A.; TAVARES, O. C. H.; CASTRO, R. N.; BERBARA, R. L. L.; GARCÍA-MINA, J. M. Structure-property–function relationship of humic substances in modulating the root growth of plants: a review. Journal of Environmental Quality, v. 48, p. 1622-1632, 2019. GIANNOPOLITIS, C. N. & RIES, S. K. Superoxide dismutases. I. Occurrence in higher plants. Plant Physiology, v. 59, p. 309-314, 1977. HARRIS, J. M., & ONDZIGHI‐ASSOUME, C. H. Environmental nitrate signals through abscisic acid in the root tip. Plant Signaling & Behavior, v. 12, p. 1-6, 2017. HERNÁNDEZ, R.; ROBLES, C.; GARCÍA, A. C.; GURIDI, F.; REYNALDO, I. M.; GONZÁLEZ, D. Efectos anti estrés de ácidos húmicos de vermicompost en dos cultivares de arroz (Oryza sativa. L). Cultivos Tropicales, v. 39, p. 65-74, 2018. HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil. California Agricultural of Experimental Station Bull, v. 347, p.1-32, 1950. HU, X.; NEILL, S. J.; CAI, W.; TANG, Z. NO-mediated hypersensitive responses of rice suspension cultures induced by incompatible elicitor. Chinese Science Bulletin, v. 48, p. 358- 363, 2003. JANA, S.; CHOUDHURI, M. A. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquatic Botany, v. 12, p. 345-354, 1982. JAWORSKI, E. G. Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communications, v. 43, p. 1274-1279, 1971. JIA, Z.; VON WIRÈN, N. Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species. Journal of Experimental Botany, v. 71, p. 4393-4404, 2020. JIAO, X.; LYU, Y.; WU, X.; LI, H.; CHENG, L.; ZHANG, C.; YUAN, L.; JIANG, R.; JIANG, B.; RENGEL, Z.; ZHANG, F.; DAVIES, W.; SHEN, J. Grain production versus resource and environmental costs: towards increasing sustainability of nutrient use in China. Journal of Experimental Botany, v. 67, p. 4935-4949, 2016. KAR, M.; MISHRA, D. Catalase, peroxidase and poliphenoloxidase activities during rice leaf senescence. Plant Physiology, v. 57, p. 315-319, 1976. KONDHARE, K. R.; HEDDEN, P.; KETTLEWELL, P. S.; FARRELL, A. D.; MONAGHAN, J. M. Use of the hormone-biosynthesis inhibitors fluridone and paclobutrazol to determine the effects of altered abscisic acid and gibberellin levels on pre-maturity a-amylase formation in wheat grains. Journal of Cereal Science, v. 60, p. 210-216, 2014. KOVÁČIK, J.; BAČKOR, M. Changes of phenolic metabolism and oxidative status in nitrogen-deficient Matricaria chamomilla plants. Plant Soil, v. 297, p. 255-265, 2007. 60 KOVÁČIK, J.; KLEJDUS, B.; BAČKOR, M. Nitric oxide signals ROS scavenger-mediated enhancement of PAL activity in nitrogen-deficient Matricaria chamomilla roots: side effects of scavengers. Free Radical Biology & Medicine, v. 46, p. 1686-1693, 2009. KUSHWAHA, B. K.; SINGH, S.; TRIPATHI, D. K.; SHARMA, S.; PRASAD, S. M.; CHAUHAN, D. K.; KUMAR, V.; SINGH, V. P. New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress. Journal of Hazardous Materials, v. 361, p. 134-140, 2019. LAM-SÁNCHEZ, A.; SANTOS, J. E.; TAKAMURA, K.; TREPTOW, R. M. O.; OLVEIRA, J. E. D. Estudos Nutricionais com arroz (Oryza sativa, L.). Alimentos e Nutrição, v. 5, p. 37- 48, 1994. LEE, D. J.; CHOI, H. J.; MOON, M. E.; CHI, Y. T.; JI, K. Y.; CHOI, D. Superoxide serves as a putative signal molecule for plant cell division: overexpression of CaRLK1 promotes the plant cell cycle via accumulation of O2 − and decrease in H2O2. Physiologia Plantarum, v. 159, p. 228-243, 2017. LÓPEZ-BUCIO, J.; CRUZ-RAMÍREZ, A.; HERRERA-ESTRELLA, L. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, v. 6, p. 280- 287, 2003. LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆C T method. Methods, v. 25, p. 402-408, 2001. LUTTS, S.; KINET, J. M.; BOUHARMONT, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, v. 78, p. 389-398, 1996. MHAMDI, A.; VAN BREUSEGEM, F. Reactive oxygen species in plant development. Development, v. 145, p. 1-12, 2018. MARKET DATA FORECAST. Biostimulants. Disponível em: https://www.marketdataforecast.com/market-reports/biostimulants-market. 2022. MARKETS AND MARKETS. Biostimulants. Disponível em: https://www.marketsandmarkets.com/Market-Reports/biostimulant-market-1081.html. 2021. MITTLER, R.; VANDERAUWERA, S.; SUZUKI, N.; MILLER, G.; TOGNETTI, V. B.; VANDEPOELE, K.; GOLLERY, M.; SHULAEV, V.; VAN BREUSEGEM, F. ROS signaling: the new wave? Trends in Plant Science, v. 16, p. 300-309, 2011. MITTLER, R. ROS are good. Trends in Plant Science, v. 22, p. 11-19, 2017. MITTLER, R.; ZANDALINAS, S. I.; FICHMAN, Y.; VAN BREUSEGEM, F. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, v. 23, p. 663-679, 2022. MORA, V.; BAIGORRI, R.; BACAICOA, E.; ZAMARRENO, A. M.; GARCÍA-MINA, J. M. The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environmental and Experimental Botany, v. 76, p. 24-32, 2012. 61 MUSCOLO, A., SIDARI, M., NARDI, S. Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration, v. 129, 57-63, 2013. NAKANO, Y. & ASADA, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, v. 22, p. 867-880, 1981. NARDI, S.; PIZZEGHELLO, D.; MUSCOLO, A.; VIANELLO, A. Physiological effects of humic substances on higher plants. Soil Biological Biochemical, v. 34, p. 1527-1536, 2002. NARDI, S.; MUSCOLO, A.; VACCARO, S.; BAIANO, S.; SPACCINI, R.; PICCOLO, A. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biology and Biochemistry, v. 39, p. 3138-3146, 2007. NARDI, S.; PIZZEGHELLO, D.; ERTANI, A. Hormone-like activity of the soil organic matter. Applied Soil Ecology, v. 123, p. 517-520, 2018. NOCTOR, G.; REICHHELD, J.-P.; FOYER, C. H. ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology, v. 80, p. 3-12, 2018. NUNES, R. O.; DOMICIANO, G. A.; ALVES, W. S.; MELO, A. C. A.; NOGUEIRA, F. C. S.; CANELLAS, L. P.; OLIVARES, F. L.; ZINGALI, R. B.; SOARES, M. R. Evaluation of the effects of humic acids on maize root architecture by label-free proteomics analysis. Scientific Reports, v. 9, p. 1-11, 2019. OLAETXEA, M.; MORA, V.; BACAICOA, E.; GARNICA, M.; FUENTES, M.; CASANOVA, E.; ZAMARREÑO, A. M.; IRIARTE, J. C.; ETAYO, D.; EDERRA I.; GONZALO, R.; BAIGORRI, R.; GARCÍA-MINA, J. M. Abscisic acid regulation of root hydraulic conductivity and aquaporin gene expression is crucial to the plant shoot growth enhancement caused by rhizosphere humic acids. Plant Physiology, v. 169, p. 2587-2596, 2015. OLAETXEA, M.; MORA, V.; GARCÍA, A.; C.; SANTOS, L. A.; BAIGORRI, R.; FUENTES, M.; GARNICA, M.; BERBARA, R. L. L.; ZAMARREÑO, A. M.; GARCÍA-MINA, J. M. Root-Shoot Signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids. Plant Signalling & Behavior, v. ;11, e1161878, 2016. OLAETXEA, M.; HITA, D.; GARCÍA, A. C.; FUENTES, M.; BAIGORRI, R.; MORA, V.; GARNICA, M.; URRUTIA, O.; ERRO, J.; ZAMARREÑO, A. M.; BERBARA, R. L. L.; GARCIA-MINA, J. M. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot-growth. Applied Soil Ecology, v. 123, p. 521-537, 2018. OLAETXEA, M.; MORA, V.; BACAICOA, E.; BAIGORRI, R.; GARNICA, M.; FUENTES, M.; ZAMARREÑO, A. M.; SPÍCHAL, L.; GARCÍA‐MINA, J. M. Root ABA and H+ ‐ATPase are key players in the root and shoot growth‐promoting action of humic acids. Plant Direct, v. 3, p. 1-12, 2019. OLIVEIRA, E. A. G. Desenvolvimento de substratos orgânicos, com base na vermicompostagem, para produção de mudas de hortaliças em cultivo protegido. 2011. 65f. Dissertação (Mestrado em Fitotecnia). Instituto de Agronomia, Departamento de Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2011. 62 ONDZIGHI-ASSOUME, C.; CHAKRABORTY, S.; HARRIS, J. M. Environmental nitrate stimulates abscisic acid accumulation in arabidopsis root tips by releasing it from inactive stores. The Plant Cell, v. 28, p. 729-745, 2016. OONO, Y.; OOURA, C.; RAHMAN, A.; ASPURIA, E. T.; HAYASHI, K.-I.; TANAKA, A.; UCHIMIYA, H. p-Chlorophenoxyisobutyric acid impairs auxin response in arabidopsis root. Plant Physiology, v. 133, p. 1135-1147, 2003. ORMAN-LIGEZA; B.; PARIZOT, B.; DE RYCKE, R.; FERNANDEZ, A.; HIMSCHOOT, E.; VAN BREUSEGEM, F.; BENNETT, M. J.; PÉRILLEUX, C.; BEECKMAN, T.; DRAYE, X. RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development, v. 143, p. 3328-3339, 2016. POSTIGLIONE, A. E.; MUDAY, G. K. The Role of ROS homeostasis in ABA-induced guard cell signaling. Frontiers in Plant Science, v. 11, p. 1-9, 2020. PÉREZ-PÉREZ, M. E.; LEMAIRE, S. D.; CRESPO, J. L. Reactive oxygen species and autophagy in plants and algae. Plant Physiology, v. 160, p. 156-164, 2012. PICCOLO, A.; CONTE, P.; COZZOLINO, A. Chromatographic and spectrophotometric properties of dissolved humic substances as compared to macromolecular polymers. Soil Science, v. 166, p. 174-185, 2001. PINTO, E.; SIGAUD-KUTNER, T.; LEITAO, M. A.; OKAMOTO, O. K.; MORSE, D.; COLEPICOLO, P. Heavy metal-induced oxidative stress in algae. Journal of Phycology, v. 39, p. 1008-1018, 2003. RAMOS, A. C.; DOBBSS, L. B.; SANTOS, L. A.; FERNANDES, M. S.; OLIVARES, F. L.; AGUIAR, N. O.; CANELLAS, L. Humic matter elicits proton and calcium fluxes and signaling dependent on Ca2+‐dependent protein kinase (CDPK) at early stages of lateral plant root development. Chemical and Biological Technologies in Agriculture, v. 2, p. 1-12, 2015. RANGEL, R. P. Arquitetura radicular e tolerância à seca em plantas de arroz com elevada expressão de citocinina oxidase nas raízes. 2018. 82f. Tese (Doutorado em Ciência do Solo). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. 2018. ROOMI, S.; MASI, A.; CONSELVAN, G. B.; TREVISAN, S.; QUAGGIOTTI, S.; PIVATO, M.; ARRIGONI, G.; YASMIN, T.; CARLETTI, P. Protein profiling of arabidopsis roots treated with humic substances: insights into the metabolic and interactome networks. Frontiers in Plant Science, v. 9, p. 1-11, 2018. ROSE, M. T.; PATTI, A. F.; LITTLE, K. R.; BROWN, A. L.; JACKSON, W. R.; CAVAGNARO, T. R. A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Advances in Agronomy, v. 124, p. 37-89, 2014. ROSSIELLO, R. O. P.; ARAÚJO, A. P.; MANZATTO, C. V.; FERNANDES, M. S. Comparação dos métodos fotoelétrico e da interseção na determinação de área, comprimento e raio médio radicular. Pesquisa Agropecuária Brasileira, v. 30, p. 633-638, 1995. 63 ROUPHAEL, Y.; SPÍCHAL, L.; PANZAROVÁ, K.; CASA, R.; COLLA, G. High-throughput plant phenotyping for developing novel biostimulants: from lab to field or from field to lab? Frontiers in Plant Science, v. 9, p. 1-6, 2018. ROUPHAEL, Y.; COLLA, G. Editorial: Biostimulants in agriculture. Frontiers in Plant Science, v. 11, p. 1-7, 2020. SÁNCHEZ-ROMERA, B.; RUIZ-LOZANO, MANUEL, JUAN; LI, GUOWEI; LUU, D.-T.; MARTÍNEZ-BALLESTA, M. C.; CARVAJAL, M.; ZAMARREÑO, A. M.; GARCÍA-MINA, J. M.; MAUREL, C.; AROCA, R. Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant, Cell and Environment, v. 37, p. 995-1008, 2014. SANTOS, G. A.; CAMARGO, F. A. O. (Eds). Fundamentos da Matéria Orgânica do Solo: Ecossistemas Tropicais e Subtropicais. Porto Alegre: Gênesis, 1999. 102p. SCHIAVON, M.; ERTANI, A.; NARDI, S. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. Journal of Agricultural and Food Chemistry, v. 56, p.11800- 11808, 2008. SDG. Sustainable Development Goals. Web Site. 2015. Disponível em: https://sdgs.un.org/goals Acessado em: 04 set. 2020. SNELL, F. D.; SNELL, C. T. Colorimetric methods of analysis. Van Nostrand Reinhold, v. 4, p. 7-145, 1971. SONG, G.; NOVOTNY, E. H.; SIMPSON, A. J.; CLAPP, C. E.; HAYES, M. H. B. Sequential exhaustive extraction of a Mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. European Journal of Soil Science, v. 59, p. 505-516, 2008. SOUZA, A. C.; OLIVARES, F. L.; PERES, L. E. P.; PICCOLO, A.; CANELLAS, L. P. Plant hormone crosstalk mediated by humic acids. Chemical and Biological Technologies in Agriculture, v. 9, p. 1-25, 2022. SOUZA, C. C. B.; OLIVEIRA, D. F.; SOUZA, R. S.; SOUZA, A. F. F.; COSTA, T. G. A.; LIMA, B. R.; SOUZA, W. S.; SANTOS, O. A. Q.; PINHEIRO JÚNIOR, C. R. P.; LEITE, F. F. G. D.; MOURA, O. V. T.; AGUIAR, T. C.; LÁZARO, M. L.; LIMA, A. C. B. P.; GARCÍA, A. C. Diferenciação de ácidos húmicos de diferentes origens mediante RMN de 13C via CP/MAS e ATR-FTIR aliado a quimiometria. Revista Virtual de Química, v. 13, p. 371-382, 2021. SOUZA, A. F. F. Contribuição do transportador OsNRT2.4 para a absorção de nitrato e modulação da arquitetura radicular em arroz sob baixa disponibilidade de nitrogênio. 2018. 64f. Dissertação (Mestrado em Agronomia – Ciência do Solo). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. 2018. SUTTON, R.; SPOSITO, G. Molecular structure in soil humic substances: the new view. Environmental Science and Technology, v. 39, p. 9009-9015, 2005. 64 SWIFT, R. S. Organic matter characterization. In: SPARKS, D. L.; PAGE, A. L.; HELMKE, P. A.; LOEPPERT, R. H.; SOLTANPOUR, P. N.; TABATABAI, M. A.; JOHNSTON, C. T.; SUMNER, M. E. (Eds). Methods of Soil Analysis Part 3 - Chemical Methods. 2. ed. Madison: Soil Science Society of America, 1996, cap. 35, p.1018-1020. TAVARES, O. C. H.; SANTOS, L. A.; FERREIRA, L. M.; SPERANDIO, M. V. L.; ROCHA, J. G.; GARCÍA, A. C.; DOBBSS, L. B.; BERBARA, R. L. L.; SOUZA, S. R.; FERNANDES, M. S. Humic acid differentially improves nitrate kinetics under low and high-affinity systems and alters the expression of plasma membrane H+ -ATPases and nitrate transporters in rice. Annals of Applied Biology, v. 170, p. 89-103, 2017. TOPP, C. N. Hope in change: the role of root plasticity in crop yield stability. Plant Physiology, v.172, p. 5-6, 2016. TRACY, S. R.; NAGEL, K. A.; POSTMA, J. A.; FASSBENDER, H.; WASSON, A.; WATT, M. Crop improvement from phenotyping roots: highlights reveal expanding opportunities. Trends in Plant Science, v. 25, p. 105-118, 2020. TREVISAN, S.; PIZZEGHELLO, D.; RUPERTI, B.; FRANCIOSO, O.; SASSI, A.; PALME, K.; QUAGGIOTTI, S.; NARDI, S. Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biology, v. 12, p. 604-614, 2010. TREVISAN, S.; BOTTON, A.; VACCARO, S.; VEZZARO, A.; QUAGGIOTTI, S.; NARDI, S. Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environmental and Experimental Botany, v. 74, p. 45-55, 2011. TRIPATHY, B.C.; OELMÜLLER, R. Reactive oxygen species generation and signaling in plants. Plant Signaling & Behavior, v. 7, p. 1621-1633, 2012. TSUKAGOSHI, H. Control of root growth and development by reactive oxygen species. Current Opinion in Plant Biology, v. 29, p. 57-63, 2016. TURANO, F. J.; DASHNER, R.; UPADHYAYA, A.; CALDWELL, C. R. Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings. Plant Physiology, v. 112, p. 1357-1364, 1996. VACCARO, S.; ERTANI, A.; NEBBIOSO, A.; MUSCOLO, A.; QUAGGIOTTI, S.; PICCOLO, A.; NARDI, S. Humic substances stimulate maize nitrogen assimilation and amino acid metabolism at physiological and molecular level. Chemical and Biological Technologies in Agriculture, v. 2, p. 1-12, 2015. WAN, J. Genetic crop improvement: a guarantee for sustainable agricultural production. Engineering, v. 4, p. 431-432, 2018. WANDER, A. L. A cultura. In: BORÉM, A.; RANGEL, P. H. N. Arroz do plantio a colheita. 1 ed. Viçosa: Universidade Federal de Viçosa, p. 9-26, 2015. WANG, G.; XIAO, Y.; DENG, X.; ZHANG, H.; LI, T.; CHEN, H. Exogenous hydrogen peroxide contributes to heme oxygenase-1 delaying programmed cell death in isolated aleurone 65 layers of rice subjected to drought stress in a cGMP-dependent manner. Frontiers in Plant Science, v. 9, p. 1-14, 2018. WANG, H.; LI, Y.; HOU, J.; HUANG, J.; LIANG, W. Nitrate reductase-mediated nitric oxide production alleviates Al-induced inhibition of root elongation by regulating the ascorbate- glutathione cycle in soybean roots. Plant Soil, v. 410, p. 453-465, 2017. WASSMANN, R.; JAGADISH, S.V.K.; HEUER, S.; ISMAIL, A.; REDONA, E.; SERRAJ, R.; SINGH, R.K.; HOWELL, G.; PATHAK, H.; SUMFLETH, K. Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy, v. 101, n. 1, p. 59-122, 2009. WORLD POPULATION PROSPECTS. United Nations Department of Economic and Social Affairs, Population Division: Summary of Results, 2022. YANG, W.; ZHU, C.; MA, X.; LI, G.; GAN, L.; NG, D.; XIA, K. Hydrogen peroxide is a second messenger in the salicylic acid-triggered adventitious rooting process in mung bean seedlings. Plos One, v. 8, e84580, 2013. YEMM, E. W.; COCKING, E. C. The determination of amino-acid with ninhydrin. Analitical Biochemical, v. 80, p. 209-213, 1955. YEMM, E. W.; WILLIS, A. J. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, v. 57, p. 508-514, 1954. ZANDONADI, D. B.; SANTOS, M. P.; DOBBSS, L. B.; OLIVARES, F. L.; CANELLAS, L. P.; BINZEL, M. L.; OKOROKOVA-FAÇANHA, A. L.; FAÇANHA, A. R. Nitric Oxide Mediates Humic Acids-Induced Root Development and Plasma Membrane H+ -ATPase Activation. Planta, v. 231, p. 1025-1036, 2010. ZHANG, S.; HUANG, G.; ZHANG, Y.; LV, X.; WAN, K.; LIANG, J.; FENG, Y.; DAO, J.; WU, S.; ZHANG, L.; YANG, X.; LIAN, X.; HUANG, L.; SHAO, L.; ZHANG, J.; QIN, S.; TAO, D.; CREWS, T. E.; SACKS, E. J.; LYU, J.; WADE, L. J.; HU, F. Sustained productivity and agronomic potential of perennial rice. Nature Sustainability, 2022. ZHANG, Z.; GAO, S.; CHU, C. Improvement of nutrient use efficiency in rice: current toolbox and future perspectives. Theoretical and Applied Genetics, v.0, p. 1-21, 2020. ZHOU, B.; GUO, Z.; XING, J.; HUANG, B. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. Journal of Experimental Botany, v. 56, p. 3223-3228, 2005. | pt_BR |
| dc.subject.cnpq | Agronomia | pt_BR |
| Appears in Collections: | Doutorado em Agronomia - Ciência do Solo | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2022 - Andressa Fabiane Faria de Souza.pdf | 4.86 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
