Por favor, use este identificador para citar o enlazar este ítem:
http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/23264Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Lima, Aloizio Lemos | - |
| dc.date.accessioned | 2025-09-22T13:01:07Z | - |
| dc.date.available | 2025-09-22T13:01:07Z | - |
| dc.date.issued | 2024-06-24 | - |
| dc.identifier.citation | LIMA, Aloizio Lemos. Bioconservantes contendo potenciais pós-bióticos como alternativa para o controle de Listeria monocytogenes e deteriorantes em embutidos cárneos cozidos embalados a vácuo. 2024. 97 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2024. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/23264 | - |
| dc.description.abstract | Os produtos à base de carne são altamente suscetíveis à ação microbiana devido às suas características intrínsecas e riqueza de nutrientes. Além disso, são frequentemente expostos a variáveis de risco após saírem da indústria, como o fracionamento no varejo e o abuso de temperatura durante o transporte e estocagem. Listeria monocytogenes (Lm) é o agente patogênico causador de listeriose, uma doença grave com altas taxas de hospitalização e mortalidade. Esta patologia está estreitamente associada ao consumo de alimentos processados prontos para consumo, e os produtos cárneos têm se destacado pelo número de ocorrências. Neste trabalho, dois bioconservantes contendo potenciais pós-bióticos (BCPP_SP e BCPP_YE), produzidos por fermentação com Lacticaseibacillus paracasei DTA 83, foram investigados in vitro quanto à sua ação antilisterial. Nisina, lactato de sódio e outros quatro conservantes comerciais foram incluídos no estudo para comparação. Os bioconservantes também foram testados in situ em amostras de linguiça cozida embalada a vácuo (LCEV). O BCPP_YE foi aplicado por imersão de curta duração (1 minuto) em LCEV intencionalmente contaminadas com Lm. O BCPP_SP foi testado in vitro e in situ contra a microbiota natural de LCEV, tendo lactato de sódio como comparação. Neste teste, a aplicação do bioconservante foi realizada na massa (como ingrediente) ou adicionada dentro da embalagem antes do selamento a vácuo (superfície). Nos dois testes in situ, o software de modelagem preditiva, MicroLab_Shelf-Life, foi utilizado para estimar a vida de prateleira das LCEV em diferentes perfis de temperatura. Os resultados in vitro revelaram que os bioconservantes foram igualmente eficientes (p > 0,05) em sua ação antilisterial, apresentando uma concentração inibitória mínima e uma concentração listericida mínima de 1,00%. Entretanto, perderam a ação antilisterial em concentrações de até 10% quando foram submetidos a neutralização dos ácidos orgânicos; mas não foram afetados por tratamento com tripsina e apresentaram forte estabilidade ao calor. Os tratamentos por imersão em BCPP_YE apresentaram efeito bactericida, sendo capazes de reduzir carga microbiana inicial das LCEV. Todavia, não foram capazes de impedir o crescimento de Lm, bactérias ácido láticas e contagem total de bactérias em temperaturas mais elevadas. Os resultados preditivos revelaram que a manutenção da temperatura de refrigeração a 7oC foi um fator de barreira eficiente para controlar a população de Lm por mais de 180 dias e estender a vida de prateleira das LCEV por até 135 dias. A adição de 1,00% de BCPP_SP na massa das LCEV foi tão eficaz quanto a adição de 2,00% de lactato de sódio para controlar a microbiota natural de LCEV. As mesmas concentrações aplicadas dentro das embalagens não apresentaram resultados eficazes em comparação com branco e controle. Estes resultados apontam para a importância de se avaliar a forma de aplicação de conservantes em produtos cárneos. O perfil de temperatura inserido no modelo preditivo influenciou no resultado de crescimento da microbiota natural das LCEV. A durabilidade foi inversamente proporcional ao aumento da temperatura. Este estudo demostrou que os bioconservantes BCPP_SP e BCPP_YE podem ser uma alternativa natural promissora para uso em produtos cárneos quando associados a outras medidas de controle. Todavia, mais pesquisas são necessárias, sobretudo para avaliar o melhor método de aplicação e realizar testes em outros produtos cárneos. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | listeriose | pt_BR |
| dc.subject | bactérias láticas | pt_BR |
| dc.subject | doenças transmitidas por alimentos | pt_BR |
| dc.subject | microbiologia preditiva | pt_BR |
| dc.subject | listeriosis | pt_BR |
| dc.subject | lactic acid bacteria | pt_BR |
| dc.subject | foodborne illness | pt_BR |
| dc.subject | predictive microbiology | pt_BR |
| dc.title | Bioconservantes contendo potenciais pós-bióticos como alternativa para o controle de listeria monocytogenes e deteriorantes em embutidos cárneos cozidos embalados a vácuo. | pt_BR |
| dc.title.alternative | Biopreservatives containing potential postbiotics as an alternative for controlling listeria monocytogenes and spoilage organisms in vacuum-packaged cooked meat products. | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | Meat-based products are highly susceptible to microbial action due to their intrinsic characteristics and nutrient richness. Additionally, they are often exposed to risk variables after leaving the industry, such as retail fractionation and temperature abuse during transport and storage. Listeria monocytogenes (Lm) is the pathogenic agent causing listeriosis, a severe disease with high hospitalization and mortality rates. This pathology is closely associated with the consumption of ready-to-eat processed foods, and meat products have stood out due to the number of occurrences. In this study, two biopreservatives containing potential postbiotics (BCPP_SP and BCPP_YE), produced by fermentation with Lacticaseibacillus paracasei DTA 83, were investigated in vitro for their antilisterial capacity. Nisin, sodium lactate, and four other commercial preservatives were included in the study for comparison. The biopreservatives were also tested in situ in samples of vacuum-packed cooked sausage (VPCS). BCPP_YE was applied by short-term immersion (1 minute) in VPCS intentionally contaminated with Lm. BCPP_SP was tested in vitro and in situ against the natural microbiota of VPCS, with sodium lactate as a comparison. In this test, the biopreservative was applied in the mass (as an ingredient) or added inside the packaging before vacuum sealing (surface). In both in situ tests, the predictive modeling software, MicroLab_Shelf-Life, was used to estimate the shelf life of VPCS under different temperature profiles. The in vitro results revealed that the biopreservatives were equally efficient (p > 0.05) in their antilisterial action, presenting a minimum inhibitory concentration and a minimum listericidal concentration of 1.00%. However, they lost antilisterial action at concentrations of up to 10% when subjected to organic acid neutralization; but were not affected by trypsin treatment and showed strong heat stability. The immersion treatments with BCPP_YE showed a bactericidal effect, capable of reducing the initial microbial load of VPCS. However, they were unable to prevent the growth of Lm, lactic acid bacteria, and total bacterial count at higher temperatures. Predictive results revealed that maintaining refrigeration temperature at 7°C was an effective barrier factor to control the population of Lm for more than 180 days and to extend the shelf life of VPCS up to 135 days. The addition of 1.00% BCPP_SP in the mass of VPCS was as effective as the addition of 2.00% sodium lactate to control the natural microbiota of VPCS. The same concentrations applied inside the packages did not yield effective results compared to the blank and control. These results point to the importance of evaluating the application form of preservatives in meat products. The temperature profile inserted into the predictive model influenced the growth result of the natural microbiota of VPCS. Durability was inversely proportional to the temperature increase. This study demonstrated that the biopreservatives BCPP_SP and BCPP_YE can be a promising natural alternative for use in meat products when combined with other control measures. However, further research is necessary, especially to evaluate the best application method and conduct tests on other meat products. | en |
| dc.contributor.advisor1 | Luchese, Rosa Helena | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-2059-1368 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7341531211426066 | pt_BR |
| dc.contributor.advisor-co1 | Guerra, André Fioravante | - |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/4426970348820801 | pt_BR |
| dc.contributor.referee1 | Luchese, Rosa Helena | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-2059-1368 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/7341531211426066 | pt_BR |
| dc.contributor.referee2 | Garcia, Sandra | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0003-3704-9222 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/6040080684084312 | pt_BR |
| dc.contributor.referee3 | Silva, Douglas Roberto Guimarães | - |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/2381932149842462 | pt_BR |
| dc.contributor.referee4 | Valadão, Romulo Cardoso | - |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/4333132041093499 | pt_BR |
| dc.contributor.referee5 | Pereira, Eliezer Menezes | - |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/7345853757710468 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/7896836800697441 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Tecnologia | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | pt_BR |
| dc.relation.references | 1. Mozzi, F. Lactic Acid Bacteria. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F.B.T.-E., Eds.; Academic Press: Oxford, UK, 2016; pp. 501–508. ISBN 978-0-12-384953-3. 2. Ruiz Rodríguez, L.G.; Mohamed, F.; Bleckwedel, J.; Medina, R.; De Vuyst, L.; Hebert, E.M.; Mozzi, F. Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in northern Argentina. Front. Microbiol. 2019, 10, 1091. [CrossRef] [PubMed] 3. Tarrah, A.; da Silva Duarte, V.; de Castilhos, J.; Pakroo, S.; Lemos Junior, W.J.F.; Luchese, R.H.; Fioravante Guerra, A.; Rossi, R.C.; Righetto Ziegler, D.; Corich, V.; et al. Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces. J. Funct. Foods 2019, 54, 489–497. [CrossRef] 4. Laureano-Melo, R.; Caldeira, R.F.; Guerra, A.F.; Conceição, R.R.D.; Souza, J.S.D.; Giannocco, G.; Marinho, B.G.; Luchese, R.H.; Côrtes, W.S. Maternal supplementation with Lactobacillus paracasei DTA 83 alters emotional behavior in Swiss mice offspring. PharmaNutrition 2019, 8, 100148. [CrossRef] 5. Silva, L.C.; Lago, H.S.; Rocha, M.O.T.; Oliveira, V.S.; Laureano-Melo, R.; Stutz, E.T.G.; Paula, B.P.; Martins, J.F.P.; Luchese, R.H.; Guerra, A.F.; et al. Craft beers fermented by potential probiotic yeast or lacticaseibacilli strains promote antidepressant-like behavior in Swiss Webster mice. Probiotics Antimicrob. Proteins 2021, 13, 698–708. [CrossRef] 6. Food Safety Authority of Ireland. Guidance Note, No. 18 Validation of Products Shelf-Life, 4th ed.; Food Safety Authority of Ireland: Dublin, Ireland, 2019; ISBN 904465-33. 7. Smet, C.; Baka, M.; Steen, L.; Fraeye, I.; Walsh, J.L.; Valdramidis, V.P.; Van Impe, J.F. Combined effect of cold atmospheric plasma, intrinsic and extrinsic factors on the microbial behavior in/on (food) model systems during storage. Innov. Food Sci. Emerg. Technol. 2019, 53, 3–17. [CrossRef] 8. Horita, C.N.; Baptista, R.C.; Caturla, M.Y.R.; Lorenzo, J.M.; Barba, F.J.; Sant’Ana, A.S. Combining reformulation, active packaging and non-thermal post-packaging decontamination technologies to increase the microbiological quality and safety of cooked ready-to-eat meat products. Trends Food Sci. Technol. 2018, 72, 45–61. [CrossRef] 9. Jaramillo, L.; Santos, D.; Borges, E.; Dias, D.; Pereira, N. Low-cost effective culture medium optimization for d-lactic acid production by Lactobacillus coryniformis subsp. torquens under oxygen-deprived condition. Ann. Microbiol. 2018, 68, 547–555. [CrossRef] 10. Göransson, M.; Nilsson, F.; Jevinger, Å. Temperature performance and food shelf-life accuracy in cold food supply chains—Insights from multiple field studies. Food Control 2018, 86, 332–341. [CrossRef] 11. Opara, U.L.; Caleb, O.J.; Belay, Z.A. 7—Modified atmosphere packaging for food preservation. In Food Quality and Shelf Life; Galanakis, C.M., Ed.; Academic Press: Oxford, UK, 2019; pp. 235–259, ISBN 978-0-12-817190-5. 12. Kolbeck, S.; Ludwig, C.; Meng, C.; Hilgarth, M.; Vogel, R.F. Comparative Proteomics of Meat Spoilage Bacteria Predicts Drivers for Their Coexistence on Modified Atmosphere Packaged Meat. Front. Microbiol. 2020, 11, 209. [CrossRef] 13. Brewer, M.S.; Mckeith, F.; Martin, S.E.; Dallmier, A.W.; Meyer, J. Sodium lactate effects on shelf-life, sensory, and physical characteristics of fresh pork sausage. J. Food Sci. 1991, 56, 1176–1178. [CrossRef] 14. Feng, Q.; Yang, Z.; May, M.; Tsoi, K.K.; Ingle, S.; Lee, E.K.; Wong, S.Y.; Kim, J.H. The role of body mass index in the association between dietary sodium intake and blood pressure: A mediation analysis with Nhanes. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3335–3344. [CrossRef] [PubMed] 15. Castellano, P.; Pérez Ibarreche, M.; Blanco Massani, M.; Fontana, C.; Vignolo, G.M. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: A focus on meat ecosystems and industrial environments. Microorganisms 2017, 5, 38. [CrossRef] [PubMed] 16. Martín, I.; Rodríguez, A.; Delgado, J.; Córdoba, J.J. Strategies for biocontrol of Listeria monocytogenes using lactic acid bacteria and their metabolites in ready-to-eat meat- and dairy-ripened products. Foods 2022, 11, 542. [CrossRef] [PubMed] 17. Hernández-Aquino, S.; Miranda-Romero, L.A.; Fujikawa, H.; Maldonado-Simán, E.M.A.D.E.J.; Alarcón-Zuñiga, B. Antibacterial activity of lactic acid bacteria to improve shelf life of raw meat. Biocontrol Sci. 2019, 24, 185–192. [CrossRef] Fermentation 2022, 8, 106 14 of 14 18. Oliveira, W.A.; Rodrigues, A.R.P.; Oliveira, F.A.; Oliveira, V.S.; Laureano-Melo, R.; Stutz, E.T.G.; Lemos Junior, W.J.F.; Paula, B.P.; Esmerino, E.A.; Corich, V.; et al. Potentially probiotic or postbiotic pre-converted nitrite from celery produced by an axenic culture system with probiotic lacticaseibacilli strain. Meat Sci. 2021, 174, 108408. [CrossRef] 19. Silva, L.C.; Schmidt, G.B.; Alves, L.G.O.; Oliveira, V.S.; Laureano-Melo, R.; Stutz, E.; Martins, J.F.P.; Paula, B.P.; Luchese, R.H.; Guerra, A.F.; et al. Use of probiotic strains to produce beers by axenic or semi-separated co-culture system. Food Bioprod. Process. 2020, 124, 408–418. [CrossRef] 20. Lemos Junior, W.J.F.; Guerra, A.F.; Tarrah, A.; Duarte, V.S.; Giacomini, A.; Luchese, R.H.; Corich, V. Safety and stability of two potentially probiotic Lactobacillus strains after in vitro gastrointestinal transit. Probiotics Antimicrob. Proteins 2019, 12, 657–666. [CrossRef] 21. Guerra, A.F.; Lemos Junior, W.J.F.; Santos, G.O.; Andrighetto, C.; Giacomini, A.; Corich, V.; Luchese, R.H. Lactobacillus paracasei probiotic properties and survivability under stress-induced by processing and storage of ice cream bar or ice-lolly. Ciência Rural 2018, 48, 9. [CrossRef] 22. Lemos Junior, W.J.F.; Guerra, A.F.; Duarte, V.S.; Treu, L.; Tarrah, A.; Campanaro, S.; Luchese, R.H.; Giacomini, A.; Corich, V. Draft genome sequence data of Lactobacillus paracasei strain DTA83 isolated from infant stools. Data Br. 2019, 22, 1064–1067. [CrossRef] 23. Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2005. 24. ISO 18787:2017; Foodstuffs—Determination of Water Activity. ISO: Geneva, Switzerland, 2017. 25. ISO 2917:1999(E); Meat and Meat Products—Measurement of pH—Reference Method. ISO: Geneva, Switzerland, 1999. 26. ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique—Reference Method. ISO: Geneva, Switzerland, 2013. 27. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [CrossRef] 28. Tsilingiri, K.; Barbosa, T.; Penna, G.; Caprioli, F.; Sonzogni, A.; Viale, G.; Rescigno, M. Probiotic and postbiotic activity in health and disease: Comparison on a novel polarised ex-vivo organ culture model. Gut 2012, 61, 1007–1015. [CrossRef] [PubMed] 29. Taverniti, V.; Guglielmetti, S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: Proposal of paraprobiotic concept). Genes Nutr. 2011, 6, 261–274. [CrossRef] [PubMed] 30. Shenderov, B.A. Metabiotics: Novel idea or natural development of probiotic conception. Microb. Ecol. Heal. Dis. 2013, 24, 20399. [CrossRef] [PubMed] 31. Food and Agriculture Organization. FAO/WHO Guidelines for the Evaluation of Probiotics in Food; FAO: Rome, Italy, 2002; p. 11. 32. Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [CrossRef] [PubMed] 33. Cebrián, G.; Condón, S.; Mañas, P. Physiology of the inactivation of vegetative bacteria by thermal treatments: Mode of action, influence of environmental factors and inactivation kinetics. Foods 2017, 6, 107. [CrossRef] [PubMed] 34. EFSA Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Off. J. Eur. Union 2008, 336, 16–33. 35. Bouju-Albert, A.; Pilet, M.-F.; Guillou, S. Influence of lactate and acetate removal on the microbiota of French fresh pork sausages. Food Microbiol. 2018, 76, 328–336. [CrossRef] 36. Peleg, M. The Hurdle Technology Metaphor Revisited. Food Eng. Rev. 2020, 12, 309–320. [CrossRef] 37. Frank, D.; Zhang, Y.; Li, Y.; Luo, X.; Chen, X.; Kaur, M.; Mellor, G.; Stark, J.; Hughes, J. Shelf life extension of vacuum packaged chilled beef in the Chinese supply chain. A feasibility study. Meat Sci. 2019, 153, 135–143. [CrossRef] 38. Habib, I.; Coles, J.; Fallows, M.; Goodchild, S. Human campylobacteriosis related to cross-contamination during handling of raw chicken meat: Application of quantitative risk assessment to guide intervention scenarios analysis in the Australian context. Int. J. Food Microbiol. 2020, 332, 108775. [CrossRef] 39. Grispoldi, L.; Karama, M.; Hadjicharalambous, C.; Stefani, F.; Ventura, G.; Ceccarelli, M.; Revoltella, M.; Sechi, P.; Crotti, C.; D’Innocenzo, A.; et al. Bovine lymph nodes as a source of Escherichia coli contamination of the meat. Int. J. Food Microbiol. 2020, 331, 108715. [CrossRef] [PubMed] 40. Huang, L.; Zeng, X.; Sun, Z.; Wu, A.; He, J.; Dang, Y.; Pan, D. Production of a safe cured meat with low residual nitrite using nitrite substitutes. Meat Sci. 2020, 162, 108027. [CrossRef] [PubMed] 41. Hashem, A.; Tabassum, B.; Fathi Abd_Allah, E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [CrossRef] [PubMed] 42. Kim, D.H.; Cho, W.I.; Lee, S.J. Fault tree analysis as a quantitative hazard analysis with a novel method for estimating the fault probability of microbial contamination: A model food case study. Food Control 2020, 110, 107019. [CrossRef] 43. ISO 7218; Microbiology of Food and Animal Feeding Stuffs—General Requirements and Guidance for Microbiological Examina- tions. ISO: Geneva, Switzerland, 2007. 44. Hunt, M.; King, A. Meat Color Measurement Guidelines; American Meat Science Association: Savoy, IL, USA, 2012. | pt_BR |
| dc.subject.cnpq | Ciência e Tecnologia de Alimentos | pt_BR |
| Aparece en las colecciones: | Doutorado em Ciência e Tecnologia de Alimentos | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| Aloizio Lemos de Lima.Pdf | 6,4 MB | Adobe PDF | ![]() Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.
