Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/23289Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Santos, Karine Falcão dos | - |
| dc.date.accessioned | 2025-09-25T19:08:07Z | - |
| dc.date.available | 2025-09-25T19:08:07Z | - |
| dc.date.issued | 2025-06-18 | - |
| dc.identifier.citation | SANTOS, Karine Falcão dos. Influência do butirato em processos relacionados ao metabolismo autofágico em células de saccharomyces cerevisiae. 2025. 122 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/23289 | - |
| dc.description.abstract | O butirato é um metabólito gerado a partir da fermentação de fibras alimentares por bactérias intestinais, podendo ser utilizado em diferentes em vias metabólicas de células eucarióticas. A autofagia é uma das principais vias de degradação intracelular e consiste no processo de remoção de componentes citoplasmáticos prejudiciais às células, e disfunções nessa via estão correlacionadas ao surgimento e à progressão de diversas patologias, como o câncer e doenças neurodegenerativas. Neste estudo buscou-se avaliar a influência do butirato em etapas do processo autofágico usando células de Saccharomyces cerevisiae deficientes em proteínas importantes para a manutenção da autofagia (∆atg8, ∆gcn4 e ∆pep4). A análise da toxicidade do butirato na cepa controle demonstrou através de curvas de crescimento e viabilidade celular que entre 50 μM e 200 μM não houve qualquer efeito tóxico. Nos ensaios com cepas mutantes na concentração de 100 μM de butirato, as células das cepas ∆gcn4 e ∆pep4 tiveram uma redução da atividade metabólica. Com a indução de autofagia por privação de nitrogênio, observou-se que após 4 h não houve alteração da viabilidade celular com a exposição ao butirato. Entretanto, após 24 h, as cepas ∆gcn4 e ∆pep4 apresentaram uma redução na viabilidade celular, comportamento associado ao aumento da frequência de colônias pequenas (petite) e dos níveis elevados de oxidação intracelular. Esses resultados demonstraram que, embora o butirato não seja citotóxico para S. cerevisiae em condições nutricionais adequadas, sua metabolização sob estresse nutricional revela o papel essencial de proteínas-chave como a Gcn4p e Pep4p. Essa observação ressalta a importância das vias de regulação de estresse e de degradação autofágica para a resposta adaptativa e sobrevivência celular da levedura em condições nutricionais adversas | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Autofagia | pt_BR |
| dc.subject | Butirato | pt_BR |
| dc.subject | Disfunção | pt_BR |
| dc.subject | Estresse oxidativo | pt_BR |
| dc.subject | Saccharomyces cerevisiae | pt_BR |
| dc.subject | Autophagy | pt_BR |
| dc.subject | Butyrate | pt_BR |
| dc.subject | Dysfunction | pt_BR |
| dc.subject | Oxidative stress | pt_BR |
| dc.title | Influência do butirato em processos relacionados ao metabolismo autofágico em células de saccharomyces cerevisiae | pt_BR |
| dc.title.alternative | Influence of butyrate on processes related to autophagic metabolism in saccharomyces cerevisiae cells | en |
| dc.type | Dissertação | pt_BR |
| dc.description.abstractOther | Butyrate is a metabolite generated from the fermentation of dietary fibers by intestinal bacteria, and can be used in different metabolic pathways of eukaryotic cells. Autophagy is one of the main pathways of intracellular degradation, consisting of the process of removing cellular components that are harmful to cells. Dysfunctions in this pathway are correlated with the onset and progression of various diseases, such as cancer and neurodegenerative disorders. In this study, we sought to evaluate the influence of butyrate on steps of the autophagic process using Saccharomyces cerevisiae cells deficient in proteins important for the maintenance of autophagy (∆atg8, ∆gcn4, and ∆pep4). Analysis of butyrate toxicity in the control strain demonstrated through growth curves and cell viability that concentrations between 50 μM and 200 μM had no toxic effect. In assays with the mutant strains at a concentration of 100 μM of butyrate, cells of the ∆gcn4 and ∆pep4 strains showed a reduction in metabolic activity. When autophagy was induced by nitrogen starvation, it was observed that after 4 h, there was no change in cell viability with butyrate exposure. However, after 24 h, the ∆gcn4 and ∆pep4 strains showed a reduction in cell viability, a behavior associated with an increased frequency of petite colonies and high levels of intracellular oxidation. These results demonstrated that, although butyrate is not cytotoxic to S. cerevisiae under adequate nutritional conditions, its metabolism under nutritional stress reveals the essential role of key proteins such as Gcn4p and Pep4p. This observation highlights the importance of stress regulation and autophagic degradation pathways for the adaptive response and cell survival of yeast under adverse nutritional conditions | en |
| dc.contributor.advisor1 | Riger, Cristiano Jorge | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-7579-5958 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/8756160468801705 | pt_BR |
| dc.contributor.advisor-co1 | Souza, Edlene Ribeiro Prudencio de | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0002-8486-3721 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/4073001345884045 | pt_BR |
| dc.contributor.referee1 | Riger, Cristiano Jorge | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-7579-5958 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/8756160468801705 | pt_BR |
| dc.contributor.referee2 | Gomes, Daniela Cosentino | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0001-5690-5413 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/3067190550867881 | pt_BR |
| dc.contributor.referee3 | Gomes, Ana Lúcia Tavares | - |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/2371748267138577 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/6550939980322326 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Química | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Química | pt_BR |
| dc.relation.references | ABDEL-LATIF, H. M. et al. Benefits of dietary butyric acid, sodium butyrate, and their protected forms in aquafeeds: a review. Reviews in Fisheries Science & Aquaculture, v. 28, n. 4, p. 421-448, 2020. DOI: Disponível em: 10.1080/23308249.2020.1758899. ADOM, D.; NIE, D. Regulation of Autophagy by Short Chain Fatty Acids in Colon Cancer Cells. In: Autophagy - A Double-Edged Sword - Cell Survival or Death? [S. l.]: IntechOpen, 2013. DOI: 10.5772/54999. ALAO, J. P. et al. Interplays of AMPK and TOR in Autophagy Regulation in Yeast. Cells, Basel, v. 12, n. 4, p. 519, 4 fev. 2023. DOI: 10.3390/cells12040519. ALBRECHT, G. et al. Monitoring the Gcn4 protein-mediated response in the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, v. 273, n. 21, p. 12696-702, 22 maio 1998. DOI: 10.1074/jbc.273.21.12696. ALERS, S. et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Molecular and Cellular Biology, v. 32, n. 1, p. 2-11, jan. 2012. DOI: 10.1128/MCB.06159-11. ALUGOJU, P. et al. Quercetin Protects Yeast Saccharomyces cerevisiae pep4 Mutant from Oxidative and Apoptotic Stress and Extends Chronological Lifespan. Current Microbiology, v. 75, p. 519-530, 2018. DOI: 10.1007/s00284-017-1412-x. AN, Z. et al. Autophagy is required for G1/G0 quiescence in response to nitrogen starvation in Saccharomyces cerevisiae. Autophagy, v. 10, n. 10, p. 1702-11, 2014. DOI: 10.4161/auto.32122. ARAN, K. R.; SINGH, S. Mitochondrial dysfunction and oxidative stress in Alzheimer's disease–A step towards mitochondria based therapeutic strategies. Aging and Health Research, v. 3, n. 4, p. 100169, 2023. DOI: 10.1016/j.ahr.2023.100169. ASLANTÜRK, Ö. S. In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. In: Genotoxicity - A Predictable Risk to Our Actual World. IntechOpen, 2018. v. 2, p. 64-80. DOI: 10.5772/intechopen.71923. ASSAD, M.; JACKSON, N. Biocompatibility Evaluation of Orthopedic Biomaterials and Medical Devices: A Review of Safety and Efficacy Models. In: 96 Encyclopedia of Biomedical Engineering. Elsevier, 2019. p. 281-309. DOI: 10.1016/B978-0-12-801238-3.11104-3. ATICI, A. E.; CROTHER, T. R.; NOVAL RIVAS, M. Mitochondrial quality control in health and cardiovascular diseases. Frontiers in Cell and Developmental Biology, v. 11, p. 1290046, 6 nov. 2023. DOI: 10.3389/fcell.2023.1290046. AUFSCHNAITER, A. et al. The Coordinated Action of Calcineurin and Cathepsin D Protects Against α-Synuclein Toxicity. Frontiers in Molecular Neuroscience, v. 10, p. 207, 2017. DOI: 10.3389/fnmol.2017.00207. AYER, A.; GOURLAY, C. W.; DAWES, I. W. Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae. FEMS Yeast Research, v. 14, n. 1, p. 60-72, 2014. DOI: 10.1111/1567-1364.12114. BAKULA, D.; SCHEIBYE-KNUDSEN, M. MitophAging: Mitophagy in Aging and Disease. Frontiers in Cell and Developmental Biology, v. 8, p. 239, 15 abr. 2020. DOI: 10.3389/fcell.2020.00239. BHARADWAJ, P. R.; MARTINS, R. N. Autophagy modulates Aβ accumulation and formation of aggregates in yeast. Molecular and Cellular Neuroscience, v. 104, p. 103466, abr. 2020. DOI: 10.1016/j.mcn.2020.103466. BHAT, A. H. et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomedicine & Pharmacotherapy, v. 74, p. 101-110, 2015. DOI: 10.1016/j.biopha.2015.07.025. BHATIA, S. Chapter 2 – Plant Tissue Culture. In: BHATIA, S.; KADAM, D. (ed.). Modern Applications of Plant Biotechnology in Pharmaceutical Sciences. [S. l.]: Academic Press, 2015. p. 31-107. DOI: 10.1016/B978-0-12-802221-4.00002-9. BIRBEN, E. et al. Oxidative stress and antioxidant defense. World Allergy Organization Journal, v. 5, n. 1, p. 9-19, jan. 2012. DOI: 10.1097/WOX.0b013e3182439613. BOUTOUJA, F. et al. Vps10-mediated targeting of Pep4 determines the activity of the vacuole in a substrate-dependent manner. Scientific Reports, v. 9, n. 1, p. 10557, 2019. DOI: 10.1038/s41598-019-47184-7. 97 BUTTON, R. W. et al. Accumulation of autophagosomes confers cytotoxicity. Journal of Biological Chemistry, v. 292, n. 33, p. 13599-13614, 2017. DOI: 10.1074/jbc.M117.782276. CARMONA-GUTIERREZ, D. et al. Apoptosis in yeast: triggers, pathways, subroutines. Cell Death & Differentiation, v. 17, p. 763-773, 2010. DOI: 10.1038/cdd.2009.219. CARMONA-GUTIÉRREZ, D. et al. The propeptide of yeast cathepsin D inhibits programmed necrosis. Cell Death & Disease, v. 2, n. 5, p. 161, 2011. DOI: 10.1038/cddis.2011.43. CARRETTA, M. D. et al. Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor. Veterinary Immunology and Immunopathology, v. 176, p. 18-27, 2016. DOI: 10.1016/j.vetimm.2016.05.002. CARRETTA, M. D. et al. Participation of Short-Chain Fatty Acids and Their Receptors in Gut Inflammation and Colon Cancer. Frontiers in Physiology, v. 12, p. 662739, 8 abr. 2021. DOI: 10.3389/fphys.2021.662739. CASTRO, P. R. et al. GPR43 regulates sodium butyrate-induced angiogenesis and matrix remodeling. American Journal of Physiology - Heart and Circulatory Physiology, v. 320, n. 3, p. H1066-H1079, 1 mar. 2021. DOI: 10.1152/ajpheart.00515.2019. CAZZANELLI, G. et al. The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. Cells, Basel, v. 7, n. 2, p. 14, 2018. DOI: 10.3390/cells7020014. CEBOLLERO, E.; REGGIORI, F. Regulation of autophagy in yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, v. 1793, n. 9, p. 1413-21, set. 2009. DOI: 10.1016/j.bbamcr.2009.01.008. CHAKRABARTI, M. et al. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo. Apoptosis, v. 21, n. 3, p. 312-28, 2016. DOI: 10.1007/s10495-015-1198-x. 98 CHALHOUB, N.; BAKER, S. J. PTEN and the PI3-Kinase Pathway in Cancer. Annual Review of Pathology: Mechanisms of Disease, v. 4, p. 127-150, 2009. DOI: 10.1146/annurev.pathol.4.110807.092311. CHANG, N. C. Autophagy and Stem Cells: Self-Eating for Self-Renewal. Frontiers in Cell and Developmental Biology, v. 8, p. 138, 2020. DOI: 10.3389/fcell.2020.00138. CHEN, J. et al. Role of ATG7-dependent non-autophagic pathway in angiogenesis. Frontiers in Pharmacology, v. 14, p. 1266311, 2023. DOI: 10.3389/fphar.2023.1266311. CHEN, J.; VITETTA, L. The Role of Butyrate in Attenuating Pathobiont-Induced Hyperinflammation. Immune Network, v. 20, n. 2, p. e15, 4 fev. 2020. DOI: 10.4110/in.2020.20.e15. CHEN, Y. et al. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death & Differentiation, v. 16, n. 7, p. 1040-52, 2009. DOI: 10.1038/cdd.2009.49. CHIANG, C. J. et al. In situ delivery of biobutyrate by probiotic Escherichia coli for cancer therapy. Scientific Reports, v. 11, n. 1, p. 18172, 2021. DOI: 10.1038/s41598-021-97457-3. CHILD, H. T. et al. Distinct roles for different autophagy-associated genes in the virulence of the fungal wheat pathogen Zymoseptoria tritici. Fungal Genetics and Biology, v. 163, p. 103748, nov. 2022. DOI: 10.1016/j.fgb.2022.103748. CLARK, A.; MACH, N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Frontiers in Physiology, v. 8, p. 319, 19 maio 2017. DOI: 10.3389/fphys.2017.00319. COCCETTI, P.; NICASTRO, R.; TRIPODI, F. Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae. Microbial Cell, v. 5, n. 11, p. 482-494, 29 set. 2018. DOI: 10.15698/mic2018.11.655. COLLIER, J. J. et al. Developmental Consequences of Defective ATG7- Mediated Autophagy in Humans. New England Journal of Medicine, v. 384, n. 25, p. 2406-2417, 24 jun. 2021. DOI: 10.1056/NEJMoa1915722. 99 COLOMBO, A. V. et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. eLife, v. 10, p. e59826, 13 abr. 2021. DOI: 10.7554/eLife.59826. CORTHALS, A. P. Multiple sclerosis is not a disease of the immune system. The Quarterly Review of Biology, v. 86, n. 4, p. 287-321, dez. 2011. DOI: 10.1086/662453. DAS, S. et al. ATP Citrate Lyase Regulates Myofiber Differentiation and Increases Regeneration by Altering Histone Acetylation. Cell Reports, v. 21, n. 11, p. 3003-3011, 12 dez. 2017. DOI: 10.1016/j.celrep.2017.11.038. DATAN, E. et al. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death & Disease, v. 7, n. 3, p. e2127, 2016. DOI: 10.1038/cddis.2015.409. DE GAETANO, A. et al. Mitophagy and Oxidative Stress: The Role of Aging. Antioxidants, Basel, v. 10, n. 5, p. 794, 2021. DOI: 10.3390/antiox10050794. DE MENDOZA, A.; SEBÉ-PEDRÓS, A.; RUIZ-TRILLO, I. The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity. Genome Biology and Evolution, v. 6, n. 3, p. 606-19, mar. 2014. DOI: 10.1093/gbe/evu038. DEGENHARDT, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, v. 10, n. 1, p. 51-64, 2006. DOI: 10.1016/j.ccr.2006.06.001. DELORME-AXFORD, E. et al. The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression. Methods, v. 75, p. 3-12, 2015. DOI: 10.1016/j.ymeth.2014.12.008. DEMARQUOY, J.; LE BORGNE, F. Crosstalk between mitochondria and peroxisomes. World Journal of Biological Chemistry, v. 6, n. 4, p. 301-9, 26 nov. 2015. DOI: 10.4331/wjbc.v6.i4.301. DETER, R. L.; BAUDHUIN, P.; DE DUVE, C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. Journal of Cell Biology, v. 35, n. 2, p. C11-6, nov. 1967. DOI: 10.1083/jcb.35.2.c11. 100 DING, Y. et al. Sodium Butyrate Induces Mitophagy and Apoptosis of Bovine Skeletal Muscle Satellite Cells through the Mammalian Target of Rapamycin Signaling Pathway. International Journal of Molecular Sciences, Basel, v. 24, n. 17, p. 13474, 2023. DOI: 10.3390/ijms241713474. DO NASCIMENTO, R. P. et al. Microbiologia Industrial: Bioprocessos. Rio de Janeiro, RJ: Elsevier, 2018. DOBLADO, L. et al. Mitophagy in Human Diseases. International Journal of Molecular Sciences, Basel, v. 22, n. 8, p. 3903, 2021. DOI: 10.3390/ijms22083903. DONOHOE, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metabolism, v. 13, n. 5, p. 517-26, 4 maio 2011. DOI: 10.1016/j.cmet.2011.02.018. DONOHOE, D. R. et al. The Warburg effect dictates the mechanism of butyrate- mediated histone acetylation and cell proliferation. Molecular Cell, v. 48, n. 4, p. 612- 26, 30 nov. 2012. DOI: 10.1016/j.molcel.2012.08.033. ECKER, N. et al. Induction of autophagic flux by amino acid deprivation is distinct from nitrogen starvation-induced macroautophagy. Autophagy, v. 6, n. 7, p. 879-90, 2010. DOI: 10.4161/auto.6.7.12753. EPHRUSSI, B.; SLONIMSKI, P. Yeast Mitochondria: Subcellular Units involved in the Synthesis of Respiratory Enzymes in Yeast. Nature, v. 176, p. 1207-1208, 1955. DOI: 10.1038/1761207b0. EPSTEIN, C. B. et al. Genome-wide responses to mitochondrial dysfunction. Molecular Biology of the Cell, v. 12, n. 2, p. 297-308, 2001. DOI: 10.1091/mbc.12.2.297. ERUSLANOV, E.; KUSMARTSEV, S. Identification of ROS Using Oxidized DCFDA and Flow-Cytometry. In: ARMSTRONG, D. (ed.). Advanced Protocols in Oxidative Stress II. Totowa, NJ: Humana Press, 2010. v. 594, p. 43-52. (Methods in Molecular Biology). DOI: 10.1007/978-1-60761-411-1_4. EVANS, M. et al. Combined effects of starvation and butyrate on autophagy- dependent gingival epithelial cell death. Journal of Periodontal Research, v. 52, n. 3, p. 522-531, jun. 2017. DOI: 10.1111/jre.12418. 101 FAI, P. B. et al. A rapid resazurin bioassay for assessing the toxicity of fungicides. Chemosphere, v. 74, n. 9, p. 1165-70, 2009. DOI: 10.1016/j.chemosphere.2008.11.078. FARRÉ, J. C.; SUBRAMANI, S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nature Reviews Molecular Cell Biology, v. 17, n. 9, p. 537-52, set. 2016. DOI: 10.1038/nrm.2016.74. FARRUGIA, G.; BALZAN, R. Oxidative stress and programmed cell death in yeast. Frontiers in Oncology, v. 2, p. 64, 20 jun. 2012. DOI: 10.3389/fonc.2012.00064. FEHER, J. J. ATP Production III: Fatty Acid Oxidation and Amino Acid Oxidation. In: FEHER, J. J. Quantitative Human Physiology: An Introduction. Burlington, MA: Academic Press, 2012. p. 191-201. DOI: 10.1016/B978-0-12-800883- 6.00022-7. FENG, Y. et al. The machinery of macroautophagy. Cell Research, v. 24, n. 1, p. 24-41, jan. 2014. DOI: 10.1038/cr.2013.168. FRAIBERG, M.; ELAZAR, Z. Genetic defects of autophagy linked to disease. Progress in Molecular Biology and Translational Science, v. 172, p. 293-323, 2020. DOI: 10.1016/bs.pmbts.2020.04.001. FRANSEN, M.; LISMONT, C.; WALTON, P. The Peroxisome-Mitochondria Connection: How and Why? International Journal of Molecular Sciences, Basel, v. 18, n. 6, p. 1126, 24 maio 2017. DOI: 10.3390/ijms18061126. GALLIS, J. L. et al. A metabolic link between mitochondrial ATP synthesis and liver glycogen metabolism: NMR study in rats re-fed with butyrate and/or glucose. Nutrition & Metabolism (London), v. 8, p. 38, 2011. DOI: 10.1186/1743-7075-8-38. GAO, Y.; TIAN, T. mTOR Signaling Pathway and Gut Microbiota in Various Disorders: Mechanisms and Potential Drugs in Pharmacotherapy. International Journal of Molecular Sciences, Basel, v. 24, n. 14, p. 11811, 2023. DOI: 10.3390/ijms241411811. GEORGE, M. D. et al. Apg5p functions in the sequestration step in the cytoplasm-to-vacuole targeting and macroautophagy pathways. Molecular Biology of the Cell, v. 11, n. 3, p. 969-82, mar. 2000. DOI: 10.1091/mbc.11.3.969. 102 GERHAUSER, C. Impact of dietary gut microbial metabolites on the epigenome. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 373, p. 20170359, 2018. DOI: 10.1098/rstb.2017.0359. GIAMPIERI, F. et al. Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. Antioxidants & Redox Signaling, v. 30, p. 577-634, 2019. DOI: 10.1089/ars.2017.7234. GIANNATTASIO, S. et al. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Frontiers in Microbiology, v. 4, p. 33, 20 fev. 2013. DOI: 10.3389/fmicb.2013.00033. GIORGI, C. et al. Mitochondria and Reactive Oxygen Species in Aging and Age- Related Diseases. In: International Review of Cell and Molecular Biology. London: Academic Press, 2018. v. 340, p. 209-344. GIROMINI, C. et al. Role of short chain fatty acids to counteract inflammatory stress and mucus production in human intestinal HT29-MTX-E12 cells. Foods, Basel, v. 11, n. 13, p. 1983, 2022. DOI: 10.3390/foods11131983. GLICK, D.; BARTH, S.; MACLEOD, K. F. Autophagy: cellular and molecular mechanisms. The Journal of Pathology, v. 221, n. 1, p. 3-12, maio 2010. DOI: 10.1002/path.2697. GOFFEAU, A. et al. Life with 6000 Genes. Science, v. 274, p. 546-567, 1996. DOI: 10.1126/science.274.5287.546. GUARIENTI, C.; BERTOLIN, T. E.; COSTA, J. A. V. Capacidade antioxidante da microalga Spirulina platensis em células da levedura Saccharomyces cerevisiae submetidas ao estressor paraquat. Revista do Instituto Adolfo Lutz, São Paulo, v. 69, n. 1, p. 106-111, 2010. DOI: 10.53393/rial.2010.v69.32682. GUILLOTEAU, P. et al. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition Research Reviews, v. 23, n. 2, p. 366-384, 2010. DOI: 10.1017/S0954422410000247. GUINN, L.; LO, E.; BALÁZSI, G. Drug-dependent growth curve reshaping reveals mechanisms of antifungal resistance in Saccharomyces cerevisiae. Communications Biology, v. 5, p. 292, 2022. DOI: 10.1038/s42003-022-03228-9. 103 GULIAS, J. F. et al. Gcn4 impacts metabolic fluxes to promote yeast chronological lifespan. PLoS ONE, v. 18, n. 10, p. e0292949, 13 out. 2023. DOI: 10.1371/journal.pone.0292949. HAMPE, J. et al. Genome-Wide Association Scan of Nonsynonymous Snps Identifies a Susceptibility Variant for Crohn Disease in Atg16l1. Nature Genetics, v. 39, p. 207-211, 2007. DOI: 10.1038/ng1954. HARDIE, D. G.; ROSS, F. A.; HAWLEY, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology, v. 13, n. 4, p. 251-62, 22 mar. 2012. DOI: 10.1038/nrm3311. HATAYAMA, H. et al. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochemical and Biophysical Research Communications, v. 356, n. 3, p. 599-603, 11 maio 2007. DOI: 10.1016/j.bbrc.2007.03.025. HE, L. et al. Autophagy: The Last Defense against Cellular Nutritional Stress. Advances in Nutrition, v. 9, n. 4, p. 493-504, 1 jul. 2018. DOI: 10.1093/advances/nmy011. HECHT, K. A.; O’DONNELL, A. F.; BRODSKY, J. L. The proteolytic landscape of the yeast vacuole. Cellular Logistics, v. 4, n. 1, p. e28023, 1 jan. 2014. DOI: 10.4161/cl.28023. HESS, D. C. et al. Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis. PLoS Genetics, v. 5, n. 3, p. e1000407, mar. 2009. DOI: 10.1371/journal.pgen.1000407. HILL, J. M. et al. The gastrointestinal tract microbiome and potential link to Alzheimer's disease. Frontiers in Neurology, v. 5, p. 43, 2014. DOI: 10.3389/fneur.2014.00043. HINNEBUSCH, A. G.; NATARAJAN, K. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryotic Cell, v. 1, n. 1, p. 22-32, fev. 2002. DOI: 10.1128/EC.01.1.22-32.2002. HO, L. et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer's disease-type beta-amyloid neuropathological mechanisms. 104 Expert Review of Neurotherapeutics, v. 18, p. 83-90, 2018. DOI: 10.1080/14737175.2018.1400909. HONG, Y. et al. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants, Basel, v. 13, n. 3, p. 312, 1 mar. 2024. DOI: 10.3390/antiox13030312. HOUTEN, S. M. et al. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annual Review of Physiology, v. 78, p. 23-44, 2016. DOI: 10.1146/annurev-physiol-021115-105045. HU, S. et al. Acetate and Butyrate Improve β-cell Metabolism and Mitochondrial Respiration under Oxidative Stress. International Journal of Molecular Sciences, Basel, v. 21, n. 4, p. 1542, 24 fev. 2020. DOI: 10.3390/ijms21041542. HUANG, W. et al. Sodium butyrate induces autophagic apoptosis of nasopharyngeal carcinoma cells by inhibiting AKT/mTOR signaling. Biochemical and Biophysical Research Communications, v. 514, n. 1, p. 64-70, 18 jun. 2019. DOI: 10.1016/j.bbrc.2019.04.111. HUANG, W. P.; KLIONKSY, D. J. Autophagy in yeast: a review of the molecular machinery. Cell Structure and Function, v. 27, n. 6, p. 409-20, dez. 2002. DOI: 10.1247/csf.27.409. IACONO, K. T. et al. CD147 immunoglobulin superfamily receptor function and role in pathology. Experimental and Molecular Pathology, v. 83, n. 3, p. 283-95, dez. 2007. DOI: 10.1016/j.yexmp.2007.08.014. ICHIMIYA, T. et al. Autophagy and Autophagy-Related Diseases: A Review. International Journal of Molecular Sciences, Basel, v. 21, n. 23, p. 8974, 2020. DOI: 10.3390/ijms21238974. IKSEN; POTHONGSRISIT, S.; PONGRAKHANANON, V. Targeting the PI3K/AKT/mTOR Signaling Pathway in Lung Cancer: An Update Regarding Potential Drugs and Natural Products. Molecules, Basel, v. 26, n. 13, p. 4100, 5 jul. 2021. DOI: 10.3390/molecules26134100. INOUE, Y.; KLIONSKY, D. J. Regulation of macroautophagy in Saccharomyces cerevisiae. Seminars in Cell & Developmental Biology, v. 21, n. 7, p. 664-70, set. 2010. DOI: 10.1016/j.semcdb.2010.03.009. 105 IRNIGER, S.; BRAUS, G. H. Controlling transcription by destruction: the regulation of yeast Gcn4p stability. Current Genetics, v. 44, p. 8-18, 2003. DOI: 10.1007/s00294-003-0422-3. JEWELL, J. L.; RUSSELL, R. C.; GUAN, K. L. Amino acid signalling upstream of mTOR. Nature Reviews Molecular Cell Biology, v. 14, n. 3, p. 133-9, mar. 2013. DOI: 10.1038/nrm3522. JIANG, M.; LI, Z.; ZHU, G. The role of autophagy in the pathogenesis of periodontal disease. Oral Diseases, v. 26, n. 2, p. 259-269, mar. 2020. DOI: 10.1111/odi.13045. JIANG, W. et al. Dual effects of sodium butyrate on hepatocellular carcinoma cells. Molecular Biology Reports, v. 39, n. 5, p. 6235-42, maio 2012. DOI: 10.1007/s11033-011-1443-5. JOHNSON, S. C.; RABINOVITCH, P. S.; KAEBERLEIN, M. mTOR is a key modulator of ageing and age-related disease. Nature, v. 493, n. 7432, p. 338-45, 17 jan. 2013. DOI: 10.1038/nature11861. JONES, E. W.; ZUBENKO, G. S.; PARKER, R. R. PEP4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae. Genetics, v. 102, n. 4, p. 665-77, dez. 1982. DOI: 10.1093/genetics/102.4.665. JUÁREZ-MONTIEL, M. et al. Vacuolar proteases and autophagy in phytopathogenic fungi: A review. Frontiers in Fungal Biology, v. 3, p. 948477, 26 out. 2022. DOI: 10.3389/ffunb.2022.948477. KAMİLOĞLU BEŞTEPE, S. et al. Guidelines for cell viability assays. Food Frontiers, v. 1, n. 3, p. 332-349, 2020. DOI: 10.1002/fft2.44. KAUSHIK, S.; CUERVO, A. M. Protein Homeostasis and Aging. In: MASORO, E. J.; AUSTAD, S. N. (ed.). Handbook of the Biology of Aging. 7. ed. Waltham, MA, USA: Academic Press, 2011. cap. 13, p. 297-317. DOI: 10.1016/b978-0-12-378638- 8.00013-0. KAŹMIERCZAK-SIEDLECKA, K. et al. Sodium butyrate in both prevention and supportive treatment of colorectal cancer. Frontiers in Cellular and Infection Microbiology, v. 12, p. 1023806, 26 out. 2022. DOI: 10.3389/fcimb.2022.1023806. 106 KERSTENS, W.; VAN DIJCK, P. A Cinderella story: how the vacuolar proteases Pep4 and Prb1 do more than cleaning up the cell's mass degradation processes. Microbial Cell, v. 5, n. 10, p. 438-443, 18 ago. 2018. DOI: 10.15698/mic2018.10.650. KHANDIA, R. et al. A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells, Basel, v. 8, n. 7, p. 674, 3 jul. 2019. DOI: 10.3390/cells8070674. KIM, K. et al. O-GlcNAc modification of leucyl-tRNA synthetase 1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine. Nature Communications, v. 13, n. 1, p. 2904, 25 maio 2022. DOI: 10.1038/s41467- 022-30696-8. KIM, M. et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. eLife, v. 5, p. e12245, 26 jan. 2016. DOI: 10.7554/eLife.12245. KIM, M. S. et al. Expressional and mutational analyses of ATG5 gene in prostate cancers. APMIS, v. 119, n. 11, p. 802-7, nov. 2011. DOI: 10.1111/j.1600- 0463.2011.02812.x. KING, J. S. Autophagy across the eukaryotes: is S. cerevisiae the odd one out? Autophagy, v. 8, n. 7, p. 1159-62, 1 jul. 2012. DOI: 10.4161/auto.20527. KITADA, M.; KOYA, D. Autophagy in metabolic disease and ageing. Nature Reviews Endocrinology, v. 17, n. 11, p. 647-661, nov. 2021. DOI: 10.1038/s41574- 021-00551-9. KLIONSKY, D. J. et al. A unified nomenclature for yeast autophagy-related genes. Developmental Cell, v. 5, n. 4, p. 539-45, out. 2003. DOI: 10.1016/s1534- 5807(03)00296-x. KLIONSKY, D. J. et al. Autophagy in major human diseases. The EMBO Journal, v. 40, n. 19, p. e108863, 1 out. 2021. DOI: 10.15252/embj.2021108863. KLIONSKY, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy, v. 17, n. 1, p. 1-382, 2021. DOI: 10.1080/15548627.2020.1797280. 107 KLIONSKY, D. J.; ESKELINEN, E. L. The vacuole vs. the lysosome: When size matters. Autophagy, v. 10, n. 2, p. 185-187, 2013. DOI: 10.4161/auto.27367. KOURTIS, N.; TAVERNAKRAKIS, N. Autophagy and cell death in model organisms. Cell Death and Differentiation, v. 16, n. 1, p. 21-30, jan. 2009. DOI: 10.1038/cdd.2008.120. KRAFT, C.; REGGIORI, F. Phagophore closure, autophagosome maturation and autophagosome fusion during macroautophagy in the yeast Saccharomyces cerevisiae. FEBS Letters, v. 598, n. 1, p. 73-83, jan. 2024. DOI: 10.1002/1873- 3468.14720. KRASINSKAS, A. M.; GOLDSMITH, J. D. Chapter 14 - Immunohistology of the Gastrointestinal Tract. In: DABBS, D. J. (ed.). Diagnostic Immunohistochemistry. 3. ed. W.B. Saunders, 2011. p. 500-540. ISBN 9781416057666. DOI: 10.1016/B978-1- 4160-5766-6.00018-2. KRISHNAMURTHI, V. R. et al. A new analysis method for evaluating bacterial growth with microplate readers. PLoS ONE, v. 16, n. 1, p. e0245205, 2021. DOI: 10.1371/journal.pone.0245205. KUCHITSU, Y. et al. Rab7 knockout unveils regulated autolysosome maturation induced by glutamine starvation. Journal of Cell Science, v. 131, n. 7, p. jcs215442, 6 abr. 2018. DOI: 10.1242/jcs.215442. LACROUX, J. et al. Proteomics unveil a central role for peroxisomes in butyrate assimilation of the heterotrophic Chlorophyte alga Polytomella sp. Frontiers in Microbiology, v. 13, p. 1029828, 24 out. 2022. DOI: 10.3389/fmicb.2022.1029828. LE BORGNE, F.; DEMARQUOY, J. Interaction between peroxisomes and mitochondria in fatty acid metabolism. Open Journal of Molecular and Integrative Physiology, v. 2, n. 1, p. 27-33, 2012. DOI: 10.4236/ojmip.2012.21005. LEADSHAM, J. E. et al. Loss of cytochrome c oxidase promotes RAS- dependent ROS production from the ER resident NADPH oxidase, Yno1p, in yeast. Cell Metabolism, v. 18, n. 2, p. 279-286, 2013. DOI: 10.1016/j.cmet.2013.07.005. LEARY, K. A. et al. Characterization of Protein-Membrane Interactions in Yeast Autophagy. Cells, Basel, v. 11, n. 12, p. 1876, 2022. DOI: 10.3390/cells11121876. 108 LEE, J. S.; LEE, G. M. Effect of sodium butyrate on autophagy and apoptosis in Chinese hamster ovary cells. Biotechnology Progress, v. 28, n. 2, p. 349-57, mar./abr. 2012. DOI: 10.1002/btpr.1512. LEI, Y. et al. How Cells Deal with the Fluctuating Environment: Autophagy Regulation under Stress in Yeast and Mammalian Systems. Antioxidants, Basel, v. 11, n. 2, p. 304, 2022. DOI: 10.3390/antiox11020304. LEMUS, L. et al. Pep4-dependent microautophagy is required for post-ER degradation of GPI-anchored proteins. Autophagy, v. 18, n. 1, p. 223-225, 2022. DOI: 10.1080/15548627.2021.1971929. LENGGER, B.; JENSEN, M. K. Engineering G protein-coupled receptor signalling in yeast for biotechnological and medical purposes. FEMS Yeast Research, v. 20, n. 1, p. foz087, 1 fev. 2020. DOI: 10.1093/femsyr/foz087. LEVINE, B.; KROEMER, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell, v. 176, n. 1-2, p. 11-42, 10 jan. 2019. DOI: 10.1016/j.cell.2018.09.048. LI, L. et al. Histone deacetylase inhibitor sodium butyrate suppresses DNA double strand break repair induced by etoposide more effectively in MCF-7 cells than in HEK293 cells. BMC Biochemistry, v. 16, p. 2, 2015. DOI: 10.1186/s12858-014- 0030-5. LI, S. J. et al. Wogonin induces Beclin-1/PI3K and reactive oxygen species- mediated autophagy in human pancreatic cancer cells. Oncology Letters, v. 12, n. 6, p. 5059-5067, 2016. DOI: 10.3892/ol.2016.5367. LI, W. et al. Structural changes of gut microbiota in Parkinson's disease and its correlation with clinical features. Science China Life Sciences, v. 60, p. 1223-33, 2017. DOI: 10.1007/s11427-016-9001-4. LI, X. et al. Sodium Butyrate Ameliorates Oxidative Stress-Induced Intestinal Epithelium Barrier Injury and Mitochondrial Damage through AMPK-Mitophagy Pathway. Oxidative Medicine and Cellular Longevity, 2022, p. 3745135, 29 jan. 2022. DOI: 10.1155/2022/3745135. 109 LI, Y. et al. Novel and functional ATG12 gene variants in sporadic Parkinson's disease. Neuroscience Letters, v. 643, p. 22-26, 16 mar. 2017. DOI: 10.1016/j.neulet.2017.02.028. LI, Y. et al. The GCN4 Transcription Factor: A Review of Its Functional Progress in Fungi. Horticulturae, v. 10, p. 1113, 2024. DOI: 10.3390/horticulturae10101113. LIAN, L. et al. GCN4 Regulates Secondary Metabolism through Activation of Antioxidant Gene Expression under Nitrogen Limitation Conditions in Ganoderma lucidum. Applied and Environmental Microbiology, v. 87, n. 14, p. e0015621-21, 25 jun. 2021. DOI: 10.1128/AEM.00156-21. LIPATOVA, Z. et al. Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proceedings of the National Academy of Sciences of the United States of America, v. 109, n. 18, p. 6981-6986, 1 maio 2012. DOI: 10.1073/pnas.1121299109. LIPINSKI, K. A.; KANIAK-GOLIK, A.; GOLIK, P. Maintenance and expression of the S. cerevisiae mitochondrial genome--from genetics to evolution and systems biology. Biochimica et Biophysica Acta - Bioenergetics, v. 1797, n. 6-7, p. 1086- 1098, jun./jul. 2010. DOI: 10.1016/j.bbabio.2009.12.019. LIU, H. et al. Butyrate: A Double-Edged Sword for Health? Advances in Nutrition, v. 9, n. 1, p. 21-29, 1 jan. 2018. DOI: 10.1093/advances/nmx009. LIU, H. et al. Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Science Translational Medicine, v. 5, n. 202, p. 202ra123, 11 set. 2013. DOI: 10.1126/scitranslmed.3005864. LIU, J. et al. Sodium butyrate exerts protective effect against Parkinson's disease in mice via stimulation of glucagon like peptide-1. Journal of the Neurological Sciences, v. 381, p. 176-181, 2017. DOI: 10.1016/j.jns.2017.08.3235. LIU, W. et al. From Saccharomyces cerevisiae to human: The important gene co-expression modules. Biomedical Reports, v. 7, n. 2, p. 153-158, ago. 2017. DOI: 10.3892/br.2017.941. 110 LIU, X. M. et al. Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein. eLife, v. 7, p. e41237, 19 nov. 2018. DOI: 10.7554/eLife.41237. LIU, Y. et al. The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression. International Journal of Biological Macromolecules, v. 164, p. 884-891, 1 dez. 2020. DOI: 10.1016/j.ijbiomac.2020.07.191. LONGO-SORBELLO, G. A. et al. Cytotoxicity and cell growth assays. In: Cell biology. San Diego, CA: Academic Press, 2006. p. 315-324. DOI: 10.1016/B978- 012164730-8/50039-3. LOU, M. et al. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomedicine & Pharmacotherapy, v. 84, p. 1-9, 2016. DOI: 10.1016/j.biopha.2016.08.055. LOUIS, P.; FLINT, H. J. Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, v. 19, n. 1, p. 29-41, jan. 2017. DOI: 10.1111/1462-2920.13589. LU, K.; PSAKHYE, I.; JENTSCH, S. Autophagic Clearance of PolyQ Proteins Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET Protein Family. Cell, v. 158, n. 3, p. 549-563, 2014. DOI: 10.1016/j.cell.2014.05.048. LUO, S. et al. Sodium butyrate induces autophagy in colorectal cancer cells through LKB1/AMPK signaling. Journal of Physiology and Biochemistry, v. 75, n. 1, p. 53-63, fev. 2019. DOI: 10.1007/s13105-018-0651-z. MAEDA, Y.; OKU, M.; SAKAI, Y. Autophagy-independent function of Atg8 in lipid droplet dynamics in yeast. Journal of Biochemistry, v. 161, n. 4, p. 339-348, 1 abr. 2017. DOI: 10.1093/jb/mvw078. MANDIC, M. et al. No energy, no autophagy-Mechanisms and therapeutic implications of autophagic response energy requirements. Journal of Cellular Physiology, v. 239, n. 11, p. e31366, nov. 2024. DOI: 10.1002/jcp.31366. MAO, K. et al. Atg29 phosphorylation regulates coordination of the Atg17-Atg31- Atg29 complex with the Atg11 scaffold during autophagy initiation. Proceedings of 111 the National Academy of Sciences of the United States of America, v. 110, n. 31, p. E2875-E2884, 30 jul. 2013. DOI: 10.1073/pnas.1300064110. MARCHI, S. et al. Mitochondria-ros crosstalk in the control of cell death and aging. Journal of Signal Transduction, 2012, p. 329635, 2012. DOI: 10.1155/2012/329635. MARUYAMA, T. et al. Membrane perturbation by lipidated Atg8 underlies autophagosome biogenesis. Nature Structural & Molecular Biology, v. 28, p. 583- 593, 2021. DOI: 10.1038/s41594-021-00614-5. MASCARENHAS, C. et al. Gcn4 is required for the response to peroxide stress in the yeast Saccharomyces cerevisiae. Molecular Biology of the Cell, v. 19, n. 7, p. 2995-3007, jul. 2008. DOI: 10.1091/mbc.e07-11-1173. MATTHEW, R. G.; GREIG, D. Saccharomyces cerevisiae: a nomadic yeast with no niche? FEMS Yeast Research, v. 15, n. 3, p. fov009, maio 2015. DOI: 10.1093/femsyr/fov009. MAYORGA-RAMOS, A. et al. Protective role of butyrate in obesity and diabetes: New insights. Frontiers in Nutrition, v. 9, p. 1067647, 24 nov. 2022. DOI: 10.3389/fnut.2022.1067647. MCCRORY, C.; LENARDON, M.; TRAVEN, A. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Trends in Microbiology, v. 32, n. 11, p. 1106-1118, nov. 2024. DOI: 10.1016/j.tim.2024.04.004. MEAS, R.; BURAK, M. J.; SWEASY, J. B. DNA repair and systemic lupus erythematosus. DNA Repair, v. 56, p. 174-182, ago. 2017. DOI: 10.1016/j.dnarep.2017.06.020. MELHEM, H. et al. Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease. Cells, Basel, v. 8, n. 5, p. 450, 14 maio 2019. DOI: 10.3390/cells8050450. METUR, S. P. et al. Regulation of autophagy gene expression and its implications in cancer. Journal of Cell Science, v. 136, n. 10, p. jcs260631, 15 maio 2023. DOI: 10.1242/jcs.260631. 112 METUR, S. P.; KLIONSKY, D. J. Nutrient-dependent signaling pathways that control autophagy in yeast. FEBS Letters, v. 598, n. 1, p. 32-47, jan. 2024. DOI: 10.1002/1873-3468.14741. MIZUSHIMA, N. Autophagy: process and function. Genes & Development, v. 21, n. 22, p. 2861-2873, 2007. DOI: 10.1101/gad.1599207. MIZUSHIMA, N. The exponential growth of autophagy-related research: from the humble yeast to the Nobel Prize. FEBS Letters, v. 591, n. 5, p. 681-689, mar. 2017. DOI: 10.1002/1873-3468.12594. MOHAMED, H. N.; EID, A. A. Gut microbiota and mTOR signaling: Insight on a new pathophysiological interaction. Microbial Pathogenesis, v. 118, p. 98-104, 2018. DOI: 10.1016/j.micpath.2018.03.021. MORI, H.; MASAYUKI, H. Cultured stem cells as tools for toxicological assays. Journal of Bioscience and Bioengineering, v. 116, n. 6, p. 647-652, dez. 2013. DOI: 10.1016/j.jbiosc.2013.05.028. MOTA, M. N. et al. Shared and more specific genetic determinants and pathways underlying yeast tolerance to acetic, butyric, and octanoic acids. Microbial Cell Factories, v. 23, p. 71, 2024. DOI: 10.1186/s12934-024-02309-0. MÜLLER, M. et al. The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation. eLife, v. 4, p. e07736, 2015. DOI: 10.7554/eLife.07736. MURPHY, M. P. Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metabolism, v. 18, n. 2, p. 145-146, 6 ago. 2013. DOI: 10.1016/j.cmet.2013.07.006. NADAL, M.; GOLD, S. E. The autophagy genes atg8 and atg1 affect morphogenesis and pathogenicity in Ustilago maydis. Molecular Plant Pathology, v. 11, n. 4, p. 463-478, 2010. DOI: 10.1111/j.1364-3703.2010.00620.x. NGUYEN, L. N. et al. Sodium butyrate inhibits pathogenic yeast growth and enhances the functions of macrophages. Journal of Antimicrobial Chemotherapy, v. 66, n. 11, p. 2573-2580, 2011. DOI: 10.1093/jac/dkr358. 113 NIETO-TORRES, J. L. et al. Beyond Autophagy: The Expanding Roles of ATG8 Proteins. Trends in Biochemical Sciences, v. 46, n. 8, p. 673-686, 2021. DOI: 10.1016/j.tibs.2021.01.004. NISHINO, I. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature, v. 406, n. 6798, p. 906-910, 24 ago. 2000. DOI: 10.1038/35022604. NODA, T. Chapter 2: Viability assays to monitor yeast autophagy. Methods in Enzymology, v. 451, p. 27-32, 2008. DOI: 10.1016/S0076-6879(08)03202-3. NODA, T. Regulation of Autophagy through TORC1 and mTORC1. Biomolecules, v. 7, p. 52, 2017. DOI: 10.3390/biom7030052. OHSUMI, Y. Historical landmarks of autophagy research. Cell Research, v. 24, n. 1, p. 9-23, jan. 2014. DOI: 10.1038/cr.2013.169. OLIVARES-MARIN, I. K. et al. Saccharomyces cerevisiae Exponential Growth Kinetics in Batch Culture to Analyze Respiratory and Fermentative Metabolism. Journal of Visualized Experiments, v. 139, p. 58192, 2018. DOI: 10.3791/58192. OLIVEIRA, C. et al. Cathepsin D protects colorectal cancer cells from acetate- induced apoptosis through autophagy-independent degradation of damaged mitochondria. Cell Death & Disease, v. 6, p. e1788, 2015. DOI: 10.1038/cddis.2015.157. OLSEN, B.; MURAKAMI, C. J.; KAEBERLEIN, M. YODA: Software to facilitate high-throughput analysis of chronological life span, growth rate, and survival in budding yeast. BMC Bioinformatics, v. 11, p. 141, 2010. DOI: 10.1186/1471-2105-11-141. ONODERA, J.; OHSUMI, Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. Journal of Biological Chemistry, v. 280, n. 36, p. 31582-31586, 9 set. 2005. DOI: 10.1074/jbc.M506736200. O'RIORDAN, K. J. et al. Short chain fatty acids: Microbial metabolites for gut- brain axis signalling. Molecular and Cellular Endocrinology, v. 546, p. 111572, 15 abr. 2022. DOI: 10.1016/j.mce.2022.111572. 114 ORNATOWSKI, W. et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biology, v. 36, p. 101679, set. 2020. DOI: 10.1016/j.redox.2020.101679. ÖZ-ARSLAN, D.; DURER, Z. A.; KAN, B. G protein-coupled receptor-mediated autophagy in health and disease. British Journal of Pharmacology, 19 mar. 2024. Publicação eletrônica antes da impressão. DOI: 10.1111/bph.16345. PAKOS-ZEBRUCKA, K. et al. The integrated stress response. EMBO Reports, v. 17, n. 10, p. 1374-1395, out. 2016. DOI: 10.15252/embr.201642195. PALIKARAS, K.; LIONAKI, E.; TAVERNAKRAKIS, N. Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death & Differentiation, v. 22, p. 1399-1401, 2015. DOI: 10.1038/cdd.2015.86. PANDARATHODIYIL, A. K. et al. Autophagy: The "Pac-Man" within Us-Ally or Adversary? Journal of Contemporary Dental Practice, v. 22, n. 10, p. 1079-1081, 1 out. 2021. DOI: 10.5005/jp-journals-10024-3213. PANT, K.; SARAYA, A.; VENUGOPAL, S. K. Oxidative stress plays a key role in butyrate-mediated autophagy via Akt/mTOR pathway in hepatoma cells. Chemico- Biological Interactions, v. 273, p. 99-106, 1 ago. 2017. DOI: 10.1016/j.cbi.2017.06.001. PARK, B. O. et al. The Short-Chain Fatty Acid Receptor GPR43 Modulates YAP/TAZ via RhoA. Molecular Cells, v. 44, n. 7, p. 458-467, 31 jul. 2021. DOI: 10.14348/molcells.2021.0021. PARZYCH, K. R.; KLIONSKY, D. J. Vacuolar hydrolysis and efflux: current knowledge and unanswered questions. Autophagy, v. 15, n. 2, p. 212-227, 2018. DOI: 10.1080/15548627.2018.1545821. PATIL, C. K.; LI, H.; WALTER, P. Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response. PLoS Biology, v. 2, n. 8, p. E246, 2004. DOI: 10.1371/journal.pbio.0020246. PENG, L. et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. Journal of Nutrition, v. 139, n. 9, p. 1619-1625, 2009. DOI: 10.3945/jn.109.104638. 115 PEREIRA, C. et al. Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Molecular Microbiology, v. 76, n. 6, p. 1398-1410, jun. 2010. DOI: 10.1111/j.1365-2958.2010.07122.x. PÉREZ-ESCUREDO, J. et al. Monocarboxylate transporters in the brain and in cancer. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, v. 1863, n. 10, p. 2481-2497, out. 2016. DOI: 10.1016/j.bbamcr.2016.03.013. PETITI, J.; REVEL, L.; DIVIETO, C. Standard Operating Procedure to Optimize Resazurin-Based Viability Assays. Biosensors (Basel), v. 14, n. 4, p. 156, 26 mar. 2024. DOI: 10.3390/bios14040156. PIERZYNOWSKA, K. et al. Autophagy stimulation as a promising approach in treatment of neurodegenerative diseases. Metabolic Brain Disease, v. 33, n. 4, p. 989-1008, ago. 2018. DOI: 10.1007/s11011-018-0214-6. PIRES, J. M. C. Efeito Crabtree em Saccharomyces cerevisiae e sua modulação por nanopartículas de dióxido de titânio. 2017. Tese (Doutorado em Bioquímica) – Universidade de Évora, Évora, 2017. Disponível em: https://dspace.uevora.pt/rdpc/handle/10174/21042. Acesso em: 05 maio 2025. PORTINCASA, P. et al. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International Journal of Molecular Sciences, v. 23, n. 3, p. 1105, 20 jan. 2022. DOI: 10.3390/ijms23031105. POSTNIKOFF, S. D. L.; JOHNSON, J. E.; TYLER, J. K. The integrated stress response in budding yeast lifespan extension. Microbial Cell, v. 4, n. 11, p. 368-375, 24 out. 2017. DOI: 10.15698/mic2017.11.597. QI, Q. et al. An integrated undergraduate laboratory exercise to demonstrate microbial evolution: petite mutants in Saccharomyces cerevisiae. The American Biology Teacher, v. 86, n. 2, p. 101-107, 2024. DOI: 10.1525/abt.2024.86.2.101. RAINA, K. et al. Energy deprivation by silibinin in colorectal cancer cells: a double-edged sword targeting both apoptotic and autophagic machineries. Autophagy, v. 9, n. 5, p. 697-713, 2013. DOI: 10.4161/auto.23960. REGGIORI, F.; KLIONSKY, D. J. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics, v. 194, n. 2, p. 341-361, jun. 2013. DOI: 10.1534/genetics.112.149013. 116 ROGOV, V. et al. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Molecular Cell, v. 53, n. 2, p. 167-178, 23 jan. 2014. DOI: 10.1016/j.molcel.2013.12.014. SALIMI, V. et al. Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment. Lipids in Health and Disease, v. 16, n. 1, p. 208, 2 nov. 2017. DOI: 10.1186/s12944- 017-0593-4. SALVI, P. S.; COWLES, R. A. Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease. Cells, v. 10, n. 7, p. 1775, 14 jul. 2021. DOI: 10.3390/cells10071775. SANDHIR, R. Metabolic pathways | Lipid metabolism. In: ROBINSON, R. K.; BATT, C. A. (ed.). Encyclopedia of Food Microbiology. London: Academic Press, 1999. p. 1298-1312. SCHNEIDER, J. L.; CUERVO, A. M. Autophagy and human disease: emerging themes. Current Opinion in Genetics & Development, v. 26, p. 16-23, jun. 2014. DOI: 10.1016/j.gde.2014.04.003. SHAID, S. et al. Ubiquitination and selective autophagy. Cell Death & Differentiation, v. 20, n. 1, p. 21-30, 2013. DOI: 10.1038/cdd.2012.72. SHEFA, U. et al. Mitophagy links oxidative stress conditions and neurodegenerative diseases. Neural Regeneration Research, v. 14, n. 5, p. 749-756, maio 2019. DOI: 10.4103/1673-5374.249218. SHENTON, D.; GRANT, C. M. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochemical Journal, v. 374, n. 2, p. 513-519, set. 2003. DOI: 10.1042/bj20030508. SHINTANI, T.; KLIONSKY, D. J. Autophagy in health and disease: a double- edged sword. Science, v. 306, n. 5698, p. 990-995, 5 nov. 2004. DOI: 10.1126/science.1099993. SILVA, Y. P.; BERNARDI, A.; FROZZA, R. L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology (Lausanne), v. 11, p. 25, 31 jan. 2020. DOI: 10.3389/fendo.2020.00025. 117 SINGH, S.; SINGH, P. K.; KUMAR, A. Butyrate Ameliorates Intraocular Bacterial Infection by Promoting Autophagy and Attenuating the Inflammatory Response. Infection and Immunity, v. 91, n. 1, p. e0025222, 24 jan. 2023. DOI: 10.1128/iai.00252-22. STANBURY, P. F.; WHITAKER, A.; HALL, S. J. Microbial growth kinetics. In: Principles of Fermentation Technology. 3. ed. [s. l.]: Elsevier, 2017. cap. 2, p. 21- 74. DOI: 10.1016/B978-0-08-099953-1.00002-8. STANLEY, R. E.; RAGUSA, M. J.; HURLEY, J. H. The beginning of the end: how scaffolds nucleate autophagosome biogenesis. Trends in Cell Biology, v. 24, n. 1, p. 73-81, jan. 2014. DOI: 10.1016/j.tcb.2013.07.008. STEFFEN, K. K. et al. Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell, v. 133, n. 2, p. 292-302, 2008. DOI: 10.1016/j.cell.2008.02.037. STEIN, R. A.; RIBER, L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. microLife, v. 4, 2023. DOI: 10.1093/femsml/uqad032. STEIN, S. C. et al. The regulation of AMP-activated protein kinase by phosphorylation. Biochemical Journal, v. 345, n. Pt 3, p. 437-443, 1 fev. 2000. DOI: 10.1042/bj3450437. STODDART, M. J. Mammalian cell viability. In: Methods in Molecular Biology. [S. l.]: Humana Press, 2011. v. 740, p. 1-6. DOI: 10.1007/978-1-61779-108-6. STOVALL, A. K. et al. A conserved Gcn2-Gcn4 axis links methionine utilization and the oxidative stress response in Cryptococcus neoformans. Frontiers in Fungal Biology, v. 2, p. 640678, mar. 2021. DOI: 10.3389/ffunb.2021.640678. STRIJBIS, K.; DISTEL, B. Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryotic Cell, v. 9, n. 12, p. 1809-1815, dez. 2010. DOI: 10.1128/EC.00172-10. STURGEON, C. M. et al. Kinetic assay of starvation sensitivity in yeast autophagy mutants allows for the identification of intermediary phenotypes. BMC Research Notes, v. 12, n. 1, p. 505, 2019. DOI: 10.1186/s13104-019-4545-0. 118 SUDHARSHAN, S. J. et al. Betulinic acid mitigates oxidative stress-mediated apoptosis and enhances longevity in the yeast Saccharomyces cerevisiae model. Free Radical Research, v. 56, n. 11-12, p. 699-712, 2022. DOI: 10.1080/10715762.2023.2166505. SUN, M. et al. Microbiota metabolite short chain fatty acids, GCPR, and inflammatory bowel diseases. Journal of Gastroenterology, v. 52, p. 1-8, 2017. DOI: 10.1007/s00535-016-1242-9. SUN, Q. et al. Defect of mitochondrial respiratory chain is a mechanism of ROS overproduction in a rat model of alcoholic liver disease: role of zinc deficiency. American Journal of Physiology - Gastrointestinal and Liver Physiology, v. 310, n. 3, p. G205-G214, 1 fev. 2016. DOI: 10.1152/ajpgi.00270.2015. SUZUKI, S. W.; ONODERA, J.; OHSUMI, Y. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction. PLoS One, v. 6, n. 2, p. e17412, 25 fev. 2011. DOI: 10.1371/journal.pone.0017412. TANG, Y. et al. Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death. Cell Death & Differentiation, v. 18, n. 4, p. 602-618, abr. 2011. DOI: 10.1038/cdd.2010.117. TORGGLER, R. et al. Assays to monitor autophagy in Saccharomyces cerevisiae. Cells, v. 6, n. 3, p. 23, 2017. DOI: 10.3390/cells6030023. TSOI, B. M. et al. Essential role of one-carbon metabolism and Gcn4p and Bas1p transcriptional regulators during adaptation to anaerobic growth of Saccharomyces cerevisiae. Journal of Biological Chemistry, v. 284, n. 17, p. 11205- 11215, 24 abr. 2009. DOI: 10.1074/jbc.M809225200. TSUKADA, M.; OHSUMI, Y. Isolation and characterization of autophagy- defective mutants of Saccharomyces cerevisiae. FEBS Letters, v. 333, n. 1-2, p. 169- 174, 25 out. 1993. DOI: 10.1016/0014-5793(93)80398-e. TYLER, J. K. et al. The role of autophagy in the regulation of yeast life span. Annals of the New York Academy of Sciences, v. 1418, n. 1, p. 31-43, 2018. DOI: 10.1111/nyas.13549. 119 VÁCHOVÁ, L. et al. Differential stability of Gcn4p controls its cell-specific activity in differentiated yeast colonies. mBio, v. 15, n. 5, p. e0068924, 8 maio 2024. DOI: 10.1128/mbio.00689-24. VAN DER POL, A. et al. Treating oxidative stress in heart failure: past, present and future. European Journal of Heart Failure, v. 21, n. 4, p. 425-435, abr. 2019. DOI: 10.1002/ejhf.1320. VANDERWAEREN, L. et al. Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response. International Journal of Molecular Sciences, v. 23, p. 11665, 2022. DOI: 10.3390/ijms231911665. VASILJEVSKI, E. R. et al. Lipid storage myopathies: Current treatments and future directions. Progress in Lipid Research, v. 72, p. 1-17, out. 2018. DOI: 10.1016/j.plipres.2018.08.001. VIJAY, N.; MORRIS, M. E. Role of monocarboxylate transporters in drug delivery to the brain. Current Pharmaceutical Design, v. 20, n. 10, p. 1487-1498, 2014. DOI: 10.2174/13816128113199990462. VOWINCKEL, J. et al. The metabolic growth limitations of petite cells lacking the mitochondrial genome. Nature Metabolism, v. 3, n. 11, p. 1521-1535, nov. 2021. DOI: 10.1038/s42255-021-00477-6. WANG, F. et al. Sodium butyrate inhibits migration and induces AMPK‐mTOR pathway‐dependent autophagy and ROS‐mediated apoptosis via the miR‐139‐5p/Bmi‐ 1 axis in human bladder cancer cells. The FASEB Journal, 2020. DOI: 10.1096/fj.201902626r. WANG, S. et al. Role of AMPK in autophagy. Frontiers in Physiology, v. 13, p. 1015500, 25 nov. 2022. DOI: 10.3389/fphys.2022.1015500. WANG, X. et al. G protein-coupled receptors expressed and studied in yeast. The adenosine receptor as a prime example. Biochemical Pharmacology, v. 187, p. 114370, 2021. DOI: 10.1016/j.bcp.2020.114370. WEI, H. et al. Effect of Sex and Cross-Sex Hormone Treatment on Renal Monocarboxylate-Transporter Expression in Rats. Pharmaceutics, v. 15, n. 10, p. 2404, 2023. DOI: 10.3390/pharmaceutics15102404. 120 WEIS, W. I.; KOBILKA, B. K. The Molecular Basis of G Protein-Coupled Receptor Activation. Annual Review of Biochemistry, v. 87, p. 897-919, 20 jun. 2018. DOI: 10.1146/annurev-biochem-060614-033910. WEN, J. et al. Sodium butyrate exerts a neuroprotective effect in rats with acute carbon monoxide poisoning by activating autophagy through the mTOR signaling pathway. Scientific Reports, v. 14, p. 4610, 2024. DOI: 10.1038/s41598-024-55198- z. WESCH, N. et al. Atg8-Family Proteins-Structural Features and Molecular Interactions in Autophagy and Beyond. Cells, v. 9, n. 9, p. 2008, 2020. DOI: 10.3390/cells9092008. WHITTAKER, P. A. The petite mutation in yeast. In: Subcellular Biochemistry. [S. l.]: Springer, 1979. v. 6, p. 175-232. DOI: 10.1007/978-1-4615-7945-8_4. WOLLMER, M. A. Cholesterol-related genes in Alzheimer's disease. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, v. 1801, n. 8, p. 762-773, ago. 2010. DOI: 10.1016/j.bbalip.2010.05.009. WRZACZEK, M.; BROSCHÉ, M.; KANGASJÄRVI, J. ROS signaling loops - production, perception, regulation. Current Opinion in Plant Biology, v. 16, n. 5, p. 575-582, out. 2013. DOI: 10.1016/j.pbi.2013.07.002. YANG, Z. et al. Eaten alive: a history of macroautophagy. Nature Cell Biology, v. 12, n. 9, p. 814-822, 2010. DOI: 10.1038/ncb0910-814. YIN, Z. et al. The Roles of Ubiquitin in Mediating Autophagy. Cells, v. 9, n. 9, p. 2025, 2020. DOI: 10.3390/cells9092025. YOU, T. et al. Analysing GCN4 translational control in yeast by stochastic chemical kinetics modelling and simulation. BMC Systems Biology, v. 5, p. 131, 2011. DOI: 10.1186/1752-0509-5-131. YU, L.; CHEN, Y.; TOOZE, S. A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy, v. 14, n. 2, p. 207-215, 2018. DOI: 10.1080/15548627.2017.1378838. YUAN, W. et al. General Control Nonderepressible 2 (GCN2) Kinase Inhibits Target of Rapamycin Complex 1 in Response to Amino Acid Starvation in 121 Saccharomyces cerevisiae. Journal of Biological Chemistry, v. 292, n. 7, p. 2660- 2669, 17 fev. 2017. DOI: 10.1074/jbc.M116.772194. YUN, H. R. et al. Roles of Autophagy in Oxidative Stress. International Journal of Molecular Sciences, v. 21, n. 9, p. 3289, 6 maio 2020. DOI: 10.3390/ijms21093289. ZAFFAGNINI, G. et al. Mechanisms of selective autophagy. Journal of Molecular Biology, v. 428, p. 1714-1724, 2016. DOI: 10.1016/j.jmb.2016.02.004. ZAIATZ-BITTENCOURT, V. et al. Butyrate limits human natural killer cell effector function. Scientific Reports, v. 13, n. 1, p. 2715, 15 fev. 2023. DOI: 10.1038/s41598-023-29731-5. ZHANG, J. et al. ROS and ROS-Mediated Cellular Signaling. Oxidative Medicine and Cellular Longevity, v. 2016, p. 4350965, 2016. DOI: 10.1155/2016/4350965. ZHANG, J. et al. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis. PLoS One, v. 11, n. 1, p. e0147218, 19 jan. 2016. DOI: 10.1371/journal.pone.0147218. ZHANG, L. et al. Butyrate in Energy Metabolism: There Is Still More to Learn. Trends in Endocrinology & Metabolism, v. 32, n. 3, p. 159-169, 2021. DOI: 10.1016/j.tem.2020.12.003. ZHAO, R. Z. et al. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). International Journal of Molecular Medicine, v. 44, n. 1, p. 3- 15, jul. 2019. DOI: 10.3892/ijmm.2019.4188. ZHOU, H. et al. Microbial Metabolite Sodium Butyrate Attenuates Cartilage Degradation by Restoring Impaired Autophagy and Autophagic Flux in Osteoarthritis Development. Frontiers in Pharmacology, v. 12, p. 659597, 9 abr. 2021. DOI: 10.3389/fphar.2021.659597. | pt_BR |
| dc.subject.cnpq | Química | pt_BR |
| dc.subject.cnpq | Química | pt_BR |
| Appears in Collections: | Mestrado em Química | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| KARINE FALCÃO DOS SANTOS.pdf | 2.93 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
