Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/23301
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWaltenberg, Liz Magalhães-
dc.date.accessioned2025-09-26T18:36:23Z-
dc.date.available2025-09-26T18:36:23Z-
dc.date.issued2025-02-28-
dc.identifier.citationWALTENBERG, Liz Magalhães. Avaliação da atividade in vitro do cinamaldeído e do seu efeito combinado com diferentes ectoparasiticidas sintéticos frente a pulgas e carrapatos. 2025. 92 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/23301-
dc.description.abstractCarrapatos e pulgas são os ectoparasitos mais prevalentes no mundo. No Brasil, destacam-se Rhipicephalus sanguineus (s.l) e Ctenocephalides felis felis. O controle desses artrópodes hematófagos tem sido feito predominantemente através do uso de ectoparasiticidas sintéticos há décadas. Seu uso indiscriminado gera uma enorme pressão seletiva, o que acelera o surgimento de populações resistentes às classes dos ativos químicos disponíveis. Além disso, em sua maioria, possuem a característica de perdurarem no ambiente e causarem efeitos tóxicos em animais e homens. Alguns ativos naturais oriundos de plantas possuem efeito no controle de ectoparasitos e têm demonstrado enorme valia como alternativa ao uso de produtos sintéticos, sendo promissores candidatos à atuação de forma associada aos ativos químicos. Desta forma aumenta-se a segurança, mantém-se a eficácia e diminui-se o uso de moléculas sintéticas, assim como seus resíduos ambientais. Ainda não existem trabalhos publicados sobre o efeito do cinamaldeído e do efeito da sua combinação com outras moléculas sintéticas frente à C. felis felis e R. sanguineus (s.l.). O objetivo deste trabalho, foi avaliar atividade acaricida e inseticida in vitro do cinamaldeído frente às formas imaturas e adultas de C. felis felis e R. sanguineus (s.l), além do efeito da combinação deste fenilpropanóide com a cipermetrina, clorpirifós e o fipronil frente à adultos das mesmas espécies de pulga e carrapato. Todas as formas evolutivas de C. felis felis e R. sanguineus foram obtidas de colônias laboratoriais. Inicialmente foi realizada a avaliação da atividade do cinamaldeido in vitro frente aos estágios adultos e imaturos de C. felis felis e R. sanguineus. Para a determinação do percentual de mortalidade, as diferentes formas evolutivas foram expostas a um papel filtro impregnado com seis concentrações de cinamaldeído diluídos em acetona. Todos os testes foram realizados com seis repetições e em paralelo foram realizados os controles negativo, placebo e positivo. A avaliação da mortalidade foi realizada após 24 horas de exposição para todos os estágios desafiados, com exceção de ovos e pupas de C. felis que a avaliação da mortalidade foi realizada nos tempos após 3 e 15 dias pós exposição. Com os resultados de mortalidade obtido, foram realizados os cálculos para estimativa de concentrações letais 50 e 90 para cada forma evolutiva. Em sequência, foram realizados novos desafios, somente com indivíduos adultos, para determinar o percentual de mortalidade e as CL50 para a cipermetrina, clorpirifós e fipronil. Com base nas CL50 obtidas para cada parasito e cada substância, foi realizada as combinações do cinamaldeído com as moléculas sintéticas na proporção de 1:1. As estimativas das CL50 e CL90 foram realizadas através da análise em Probit pelo programa RStudio Team® e para determinar o índice de combinação entre o cinamaldeído com a cipermetrina, clorpirifós e fipronil foi utilizado o programa CompuSyn versão 1.0. Para pulgas as CL50 obtidas foram de 8,1; 15,7; 20,5; e 128,1 μg/cm2 .para os estágios de ovo, larva, pupa e adultos, respectivamente. Já para R. sanguineus sl. as CL50 foram de 57,4; 374,9; 709,4 μg/cm2 . Na avaliação do efeito combinatório do cinamaldeído com a cipermetrina, foi possível notar efeito aditivo / sinergismo para pulgas e carrapatos, enquanto para a combinação do cinamaldeído com o clorpirifós demonstrou efeito antagônico para os mesmos parasitos. Para a combinação do fipronil com o cinamaldeído foi possível observar um efeito sinérgico para pulgas e antagônico para carrapatos. Com base nos resultados obtidos neste estudo, é possível concluir que o cinamaldeído possui atividade inseticida e acaricida frente aos estágios imaturos e adultos de C. felis felis e R. sanguineus sl., assim como foi possível perceber um efeito sinérgico da associação do cinamaldeído com a cipermetrina para pulgas e carrapatos e com o fipronil somente para C. felis felis.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectfito insumospt_BR
dc.subjectCtenocephalides felis felispt_BR
dc.subjectRhipicephalus sanguineuspt_BR
dc.subjectfipronilpt_BR
dc.subjectcipermetrinapt_BR
dc.subjectclorpirifóspt_BR
dc.subjectplant-based inputspt_BR
dc.subjectcypermethrinpt_BR
dc.subjectchlorpyrifospt_BR
dc.titleAvaliação da atividade in vitro do cinamaldeído e do seu efeito combinado com diferentes ectoparasiticidas sintéticos frente a pulgas e carrapatospt_BR
dc.title.alternativeIn vitro evaluation of cinnamaldehyde activity and its combined effect with different synthetic ectoparasiticides against fleas and ticksen
dc.typeDissertaçãopt_BR
dc.description.abstractOtherTicks and fleas are the most prevalent ectoparasites in the world. In Brazil, Rhipicephalus sanguineus (s.l.) and Ctenocephalides felis felis stand out. The control of these blood-sucking arthropods has predominantly been carried out through the use of chemical ectoparasiticides for decades. Their indiscriminate use generates enormous selective pressure, which accelerates the emergence of resistant populations to the available chemical classes. Moreover, most of these chemicals persist in the environment and cause toxic effects in animals and humans. Some natural compounds from plants have been shown to be effective in the control of ectoparasites and have demonstrated significant potential as an alternative to synthetic products, being promising candidates for combined use with chemical agents. This way, safety is increased, efficacy is maintained, and the use of synthetic molecules, as well as their environmental residues, is reduced. There are still no published studies on the effect of cinnamaldehyde and its combination with other synthetic molecules against C. felis felis and R. sanguineus (s.l.). The objective of this study was to evaluate the acaricidal and insecticidal activity of cinnamaldehyde in vitro against the immature and adult forms of C. felis felis and R. sanguineus (s.l.), as well as the effect of combining this phenylpropanoid with cypermethrin, chlorpyrifos, and fipronil against adults of the same flea and tick species. All developmental stages of C. felis felis and R. sanguineus were obtained from laboratory colonies. Initially, the activity of cinnamaldehyde in vitro was evaluated against the adult and immature stages of C. felis felis and R. sanguineus. To determine the mortality percentage, the different developmental forms were exposed to a filter paper impregnated with six concentrations of cinnamaldehyde diluted in acetone. All tests were performed with six repetitions, and parallel negative, placebo, and positive controls were carried out. The mortality evaluation was performed after 24 hours of exposure for all challenged stages, except for C. felis eggs and pupae, for which mortality was evaluated at 3 and 15 days post-exposure. With the mortality results obtained, lethal concentrations 50 and 90 were calculated for each developmental form. Following this, new challenges were performed, only with adult individuals, to determine the mortality percentage and the CL50 for cypermethrin, chlorpyrifos, and fipronil. Based on the CL50 values obtained for each parasite and each substance, cinnamaldehyde combinations with synthetic molecules in a 1:1 ratio were made. The CL50 and CL90 estimates were obtained through Probit analysis using the RStudio Team® program, and to determine the combination index between cinnamaldehyde with cypermethrin, chlorpyrifos, and fipronil, the CompuSyn version 1.0 program was used. For fleas, the CL50 obtained were 8.1; 15.7; 20.5; and 128.1 μg/cm2 for the egg, larva, pupa, and adult stages, respectively. For R. sanguineus s.l., the CL50 were 57.4; 374.9; and 709.4 μg/cm2. In the evaluation of the combined effect of cinnamaldehyde with cypermethrin, additive/synergistic effects were observed for fleas and ticks, while the combination of cinnamaldehyde with chlorpyrifos showed antagonistic effects for the same parasites. For the combination of fipronil with cinnamaldehyde, a synergistic effect was observed for fleas and an antagonistic effect for ticks. Based on the results obtained in this study, it can be concluded that cinnamaldehyde has insecticidal and acaricidal activity against the immature and adult stages of C. felis felis and R. sanguineus s.l., and that a synergistic effect was observed with the combination of cinnamaldehyde with cypermethrin for fleas and ticks, and with fipronil only for C. felis felis.en
dc.contributor.advisor1Coumendouros, Katherina-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-9806-2618pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6886641792170591pt_BR
dc.contributor.advisor-co1Campos, Diefrey Ribeiro-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0002-5434-1463pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8547992443497955pt_BR
dc.contributor.referee1Coumendouros, Katherina-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-9806-2618pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6886641792170591pt_BR
dc.contributor.referee2Cid, Yara Peluso-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-0775-0704pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0788912635109182pt_BR
dc.contributor.referee3Carvalho, Lorendane Millena de-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/6931083579144835pt_BR
dc.contributor.referee4Campos, Diefrey Ribeiro-
dc.contributor.referee4IDhttps://orcid.org/0000-0002-5434-1463pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/8547992443497955pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/3809517104820693pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Veterináriapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspt_BR
dc.relation.referencesABINPET. Mercado Pet Brasil 2022. São Paulo. 2022 https://abinpet.org.br/wp-content/uploads/2022/08/abinpet_folder_dados_mercado_202 2_draft3_web.pdf Acesso em: 02 fev. 2025. AHMAD, M et al. Efficacy of insecticide mixtures against pyrethroid‐and organophosphate‐resistant populations of Spodoptera litura (Lepidoptera: Noctuidae). Pest Management Science: formerly Pesticide Science, v. 65, n. 3, p. 266-274, 2009. ALJAAFARI, M. N. et al. An overview of the potential therapeutic applications of essential oils. Molecules, v. 26, n. 3, p. 628, 2021. https://doi.org/10.3390/molecules26030628. Acesso em 03 fev. 2025. ALVES, N. D. "Pain in pets." Ciência Veterinária nos Trópicos 18.2: 81-84, 2015. http://www.rcvt.org.br/volume18_2/volume18_numero_2.pdf. Acesso em: 09 out. 2024. ANDREOTTI, R, et al. Carrapatos na cadeia produtiva de bovinos. Ed. 1, Brasília: Embrapa, 2019. Disponível em: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1107092. Acesso em: 03 dez. 2024. ARAFA, W. M. et al. Control of Rhipicephalus annulatus resistant to deltamethrin by spraying infested cattle with synergistic eucalyptus essential oil-thymol-deltamethrin combination. Veterinary Parasitology, v. 290, p. 109346, 2021. https://doi.org/10.1016/j.vetpar.2021.109346. Acesso em 07 jan. 2025. ARMSTRONG, R. D. et al. Flea (Ctenocephalides felis) control efficacy of topical indoxacarb on dogs subsequently bathed with a chlorhexidine–ketoconazole shampoo. Australian Veterinary Journal, v. 93, n. 8, p. 293-294, 2015. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1111/avj.12347. Acesso em: 05 dez. 2024. ASCHER, K. R. S. et al. Synergism of pyrethroid—Organophosphorus insecticide mixtures in insects and their toxicity against Spodoptera littoralis larvae. Phytoparasitica, v. 14, p. 101-110, 1986. 53 ASSADPOUR, E et al. Application of essential oils as natural biopesticides; recent advances. Critical Reviews in Food Science and Nutrition, v. 64, n. 19, p. 6477-6497, 2024. https://doi.org/10.1080/10408398.2023.2170317. Acesso em: 03 fev. 2024. HARADWAJ, A., et al. Efficacy and environmental persistence of nootkatone for the control of the blacklegged tick (Acari: Ixodidae) in residential landscapes. Journal of medical entomology, v. 49, n. 5, p. 1035-1044, 2014. https://doi.org/10.1603/ME11251. Acesso em: 02 fev. 2025. BAKKALI, F.; et al. Biological effects of essential oils – a review. Food Chemistry, v. 62, n. 2, p. 468-482, 2008. DOI: 10.1016/j.foodchem.2007.06.049. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0278691507004541. Acesso em 14 dez. 2024. BARROS-BATTESTI, D. M.; ARZUA, M.; BECHARA, G. H. Carrapatos de importância médico-veterinária da região neotropical: um guia ilustrado para identificação de espécies. ICTTD-3; Instituto Butantan, 2006. 223p. Disponível em: https://repositorio.butantan.gov.br/handle/butantan/3153. Acesso em: 10 dez. 2024. BECKER, S. et al. Resistance to deltamethrin, fipronil and ivermectin in the brown dog tick, Rhipicephalus sanguineus sensu stricto, Latreille (Acari: Ixodidae). Ticks and tick-borne diseases, v. 10, n. 5, p. 1046-1050, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1877959X19300329. Acesso em: 20 nov. 2024. BENELLI, G.; PAVELA, R. Beyond mosquitoes—Essential oil toxicity and repellency against bloodsucking insects. Industrial crops and products, v. 117, p. 382-392, 2018. Acesso em: 12 dez.2024.benelli BENELLI, G.; PAVELA, R. Repellence of essential oils and selected compounds against ticks—A systematic review. Acta tropica, v. 179, p. 47-54, 2018. Disponível em https://www.sciencedirect.com/science/article/abs/pii/S0001706X17314407. Acesso em 04 nov. 2024. BATISTA, L. C. S. O. et al. Eficácia in vitro de uma formulação aerossol de piriproxifen e ciflutrina no controle de Ctenocephalides felis felis (Bouché, 1835) (Siphonaptera: Pulicidae). Brazilian Journal of Veterinary Medicine, v. 34, n. Supl. 1, 54 p. 41-45, 2012. Disponível em: https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11938/3/2013%20-%20Lilian%20Cris tina%20de%20Sousa%20Oliveira%20Batista.pdf. Acesso em 04 nov. 2024 BEUGNET, F.; MARIÉ, J. L. Emerging arthropod-borne diseases of companion animals in Europe. Veterinary Parasitology, v. 163, n. 4, p. 298-305, 2009. DOI:10.1016/j.vetpar.2009.03.028. Acesso em 13 dez. 24 BEUGNET, F. et al. Comparative efficacy of two oral treatments for dogs containing either afoxolaner or fluralaner against Rhipicephalus sanguineus sensu lato and Dermacentor reticulatus. Veterinary Parasitology, v. 209, n. 1-2, p. 142-145, 2015. Disponível em https://www.sciencedirect.com/science/article/pii/S0304401715000473. Acesso em: 06 nov. 2024. BFG (The Brazil Flora Group). Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 2021 p. 1–28. https://doi.org/10.47871/jbrj2021001. Acesso em 12 dez. 2024. BLAGBURN, B. L.; DRYDEN, M. W. Biology, treatment, and control of flea and tick infestations. Veterinary Clinics: Small Animal Practice, v. 39, n. 6, p. 1173-1200, 2009. Disponível em: https://www.vetsmall.theclinics.com/article/S0195-5616(09)00118-1/abstract. Acesso em: 06 nov. 2024. BLAGBURN, B. L. et al. Effects of orally administered spinosad (Comfortis®) in dogs on adult and immature stages of the cat flea (Ctenocephalides felis). Veterinary parasitology, v. 168, n. 3-4, p. 312-317, 2010. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0304401709007018. Acesso em: 13 nov. 2024. BICKERS, D. et al. A toxicologic and dermatologic assessment of cinnamyl alcohol, cinnamaldehyde and cinnamic acid when used as fragrance ingredients: The RIFM expert panel. Food and chemical toxicology, v. 43, n. 6, p. 799-836, 2005. Disponível em: https://fragrancematerialsafetyresource.elsevier.com/sites/default/files/GS5-cinnamyl_al cohol.pdf. Acesso em: 11 dez. 2024. 55 BRAYDEN, D. J. Novel drug delivery strategies in veterinary medicine. Irish Veterinary Journal, v. 56, n. 6, p. 310-316, 2003. Disponível em: https://www.cabidigitallibrary.org/doi/full/10.5555/20043125274. Acesso em 04 nov. 2024. BROADHURST, C. L.; POLANSKY, M. M.; ANDERSON, R. A. Insulin potentiation by cinnamon extract in vitro. Journal of the American College of Nutrition, v. 20, n. 3, p. 327-336, 2000. BORGES, L. M. F. et al. Resistência acaricida em larvas de Rhipicephalus sanguineus (Acari: Ixodidae) de Goiânia-GO, Brasil. Revista de Patologia Tropical, v. 36, n.1, 2007. Disponível em: https://pesquisa.bvsalud.org/portal/resource/pt/lil-464605. Acesso em 08 nov. 2024. BOSSARD, R. L. et al. Insecticide susceptibilities of cat fleas (Siphonaptera: Pulicidae) from several regions of the United States. Journal of medical entomology, v. 39, n. 5, p. 742-746, 2002.Acesso em: 04 fev. 2024. BOTELHO, M. C. D. S. N. Eficácia e segurança de uma coleira com deltametrina propoxur no controle de Rhipicephalus sanguineus e Ctenocephalides felis felis em cães. 2014. Tese (Doutorado em Ciências Veterinárias). Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2014. Disponível em: https://tede.ufrrj.br/jspui/bitstream/jspui/2260/2/2014%20-%20Maria%20Clara%20da% 20Silva%20Negreiros%20Botelho.pdf . Acesso em 11 nov. 2024 BOWERS, W. S. Phytochemical resources for plant protection. Symposium on recent advances in the chemistry of insect control. 1985. p. 272-292. Disponível em: https://link.springer.com/chapter/10.1007/978-1-4899-2584-8_10. Acesso em: 07 out. 2024. BURGIO, F. et al. A comparative laboratory trial evaluating the immediate efficacy of fluralaner, afoxolaner, sarolaner and imidacloprid+ permethrin Against adult Rhipicephalus sanguineus (sensu lato) ticks attached to dogs. Parasites & Vectors, v.9, n. 1, p. 626, 2016. Disponível emhttps://link.springer.com/article/10.1186/s13071-016-1900-z. Acesso em 06 nov. 2024. 56 CAMPBELL, C. W. History of avermectin and ivermectin, with notes on the history of Other macrocyclic lactone antiparasitic agents. Current pharmaceutical biotechnology, v. 13, n. 6, p. 853-865, 2012. Disponível em: https://europepmc.org/article/med/22039784. Acesso em: 20 nov. 2024. CANTET, Juan M. et al. A cinnamaldehyde feed additive improved feed use-efficiency in lactating dairy cows. Livestock Science, v. 272, p. 105236, 2023. https://doi.org/10.1016/j.livsci.2023.105236. Acesso em 02 fev. 2025. CHANG, K.S., et al. Repellency of Cinnamomum cassia bark compounds and cream containing cassia oil to Aedes aegypti (Diptera: Culicidae) under laboratory and indoor conditions. Pest Manag Sci 62:1032–1038. 2006. CHENG, S et al. Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresource Technology, v. 100, n. 1, p. 457-464, 2009. https://doi.org/10.1016/j.biortech.2008.02.030. Acesso em 04 dez. 2024. CHITIMIA-DOBLER, L. et al. A remarkable assemblage of ticks from mid-Cretaceous Burmese amber. Parasitology, v. 149, n. 6, p. 820-830, 4 mar. 2022. Disponível em: https://doi.org/10.1017/S0031182022000269. Acesso em: 10 dez. 2024. COCHET, P. et al. Skin distribution of fipronil by microautoradiography following topical administration to the beagle dog. European Journal of Drug Metabolism and Pharmacokinetics, v. 22, n. 3, p. 211-216, 1997. Disponível em: https://link.springer.com/article/10.1007/BF03189809. Acesso em 11 nov. 2024. COLA, D. F et al. Sistemas carreadores lipídicos nanoestruturados para ivermectina e metopreno visando controle de parasitas. Química Nova, v. 39, p. 1034-1043, 2016. https://doi.org/10.21577/0100-4042.20160123. Acesso em: 04 fev. 2025. COLES, T. B.; DRYDEN, M. W.. Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasites & Vectors, 7(1), 8. 2014. http://dx.doi.org/10.1186/1756-3305-7-8. PMid:24393426. Acesso em 12 dez. 2024. CONDER, G.A.; CAMPBELL, W.C. Chemotherapy of nematode infections of veterinary importance, with special reference to drug resistance. Advances in 57 Parasitology, v. 35, p. 1-83, 1995. Disponível em: https://doi.org/10.1016/S0065-308X(08)60069-X. Acesso em: 15 dez. 2024. CONWAY, G. R.; COMINS, H. N. Resistance to pesticides. Lessons in strategy from mathematical models. 1979. Disponível em: https://www.cabidigitallibrary.org/doi/full/10.5555/19790565291. Acesso em 05 jan. 2025. CORREIA, T. R. et al. Eficácia de uma formulação para aplicação ambiental contendo o piretróide ciflutrina e o regulador de crescimento de insetos piriproxifen no controle de Ctenocephalides felis felis (Bouché, 1835) (Siphonaptera: Pulicidae). Revista. Brasileira de Medicina Veterinária. v. 32, n. Supl 1, p. 17-20, 2010. CRUZ, L. C. Compostos majoritários presentes em óleos essenciais: caracterização microbiana, toxicológica e antioxidante. Universidade Federal do Paraná, 2021. Disponível em: http://repositorio.utfpr.edu.br/jspui/handle/1/27775. Acesso em 14 nov. 2024. CVEJIĆ, D. et al. The sustained speed of kill of ticks (Rhipicephalus sanguineus) and fleas (Ctenocephalides felis felis) on dogs by a spot-on combination of fipronil and permethrin (Effitix®) compared with oral afoxolaner (NexGard®). Veterinary Parasitology, v. 243, n. June, p. 52–57, 2017. Acesso 09 out. 2024. DA SILVA TEMPERINI, M. B., et al. Insecticidal activity in vitro of the essential oil of Pogostemon cablin against Ctenocephalides felis felis. Brazilian Journal of Veterinary Medicine, v. 44, 2022. acesso em: 02 jan. 2025. DANTAS-TORRES, F. Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasites & Vectors, v. 3, n. 1, p. 26, 2010. Disponível em: https://parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-3-26. Acesso em 20 dez. 2024. DANTAS-TORRES, F. et al. Efficacy of an imidacloprid/flumethrin collar against fleas, ticks and tick-borne pathogens in dogs. Parasites & Vectors, v. 6, n. 1, p. 245, 2013. Disponível em: https://link.springer.com/article/10.1186/1756-3305-6-245. Acesso em 13 out. 2024 58 DANTAS-TORRES, F. et al. Genetic characterization of Rhipicephalus sanguineus (sensu lato) ticks from dogs in Portugal. Parasites Vectors, v. 10, n. 1, p. 1-5, 13 mar. 2017. Disponível em: https://doi.org/10.1186/s13071-017-2072-1. Acesso em: 10 dez. 2024. DANTAS-TORRES, F. et al. Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: Updated species checklist and taxonomic keys. Ticks Tick Borne Dis, v. 10, n. 6, p. 101252, oct. 2019. DOI: 10.1016/j.ttbdis.2019.06.012. Disponível em: https://doi.org/10.1016/j.ttbdis.2019.06.012. Acesso em: 10 dez. 2024. DE ALMEIDA, R. F. C. et al. Ixodid fauna and zoonotic agents in ticks from dogs: first report of Rickettsia rickettsii in Rhipicephalus sanguineus in the state of Mato Grosso do Sul, mid-western Brazil. Exp Appl Acarol, v. 60, p. 63-72, 11 dec. 2012. DOI 10.1007/s10493- 012-9641-y. Disponível em: https://link.springer.com/article/10.1007/s10493-012-9641-y. Acesso em: 22 out. 2024. DE OLIVEIRA, P. R. et al. Potential of the insect growth regulator, fluazuron, in the control of Rhipicephalus sanguineus nymphs (Latreille, 1806) (Acari: Ixodidae): Determination of the LD95 and LD50. Experimental Parasitology, v. 131, n. 1, p. 35-39, 2012. Disponível em: https://www.sciencedirect.com/science/article/pii/S001448941200077X. Acesso em 12 nov. 2024. DE OLIVEIRA, P. R. et al. Fluazuron-induced morphophysiological changes in the cuticle formation and midgut of Rhipicephalus sanguineus Latreille, 1806 (Acari: Ixodidae) nymphs. Parasitology Research, v. 112, n. 1, p. 45-58, 2013. Disponível em: https://link.springer.com/article/10.1007/s00436-012-3103-7. Acesso em: 11 nov. 2024. DE SILVA, H. J. et al. Toxicity due to organophosphorus compounds: what about chronic exposure? Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 100, n. 9, p. 803–806, set. 2006. Disponível em: https://academic.oup.com/trstmh/article/100/9/803/1935584?login=false. Acesso em: 04 nov. 2024. 59 DELCOMBEL, R et al. Synergy between dinotefuran and fipronil against the cat flea (Ctenocephalides felis): improved onset of action and residual speed of kill in adult cats. Parasites & Vectors, v. 10, p. 1-10, 2017. DIDRY, N. et al. Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm Acta Helv, v. 69, p. 25–28, 1994. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/0031686594900272. Acesso em 14 nov. 2024. DRYDEN, et al. The cat flea: biology, ecology and control. Veterinary Parasitology, v. 52, n. 1-2, p. 1-19, 1994.Disponível em: https://www.sciencedirect.com/science/article/abs/pii/0304401794900310. Acesso em 10 dez. 2024 DRYDEN, M. et al. Efficacy of indoxacarb applied to cats against the adult cat flea, Ctenocephalides felis, flea eggs and adult flea emergence. Parasites & Vectors, v. 6, n. 1, p. 126, 2013. Disponível em: https://link.springer.com/article/10.1186/1756-3305-6-126. Acesso em: 05 dez. 2024. DOLAN, M. C. et al. Biocidal activity of three wood essential oils against Ixodes scapularis (Acari: Ixodidae), Xenopsylla cheopis (Siphonaptera: Pulicidae), and Aedes aegypti (Diptera: Culicidae). Journal of economic entomology, v. 100, n. 2, p. 622-625, 2014. https://doi.org/10.1093/jee/100.2.622. Acesso em 03 jan. 2025. DOS SANTOS, D. S. et al. Nanostructured cinnamon oil has the potential to control Rhipicephalus microplus ticks on cattle. Experimental and Applied Acarology, v. 73, p. 129-138, 2017. https://link.springer.com/article/10.1007/s10493-017-0171-5. Acesso em: 02 fev.2025. DOS SANTOS, F. C. C. et al. Efeito do óleo essencial de manjericão (Ocimum basilicum L.) sobre o carrapato bovino Rhipicephalus (Boophilus) microplus em ensaios in vitro. Semina: Ciências Agrárias, v. 33, n. 3, p. 1133-1140, 2012. https://doi.org/10.5433/1679-0359.2012v33n3p1133. Acesso em 12 dez. 2024. 60 DOS SANTOS, J.V.B., et al. In vitro activity of essential oils against adult and immature stages of Ctenocephalides felis felis. Parasitology 147:340–347. 2020. Acesso em : 09 out. 2024. DU MARCHIE SARVAAS, C. Global Trends in the Animal Health Sector. International Animal Health Journal, v. 10, n. 1, 2023. EBANI, V. V.; MANCIANTI, F. Entomopathogenic fungi and bacteria in a veterinary perspective. Biology, v. 10, n. 6, p. 479, 28 may 2021. DOI: 10.3390/biology10060479. Disponível em: https://doi.org/10.3390/biology10060479. Acesso em: 27 dez. 2024. ELFASSY, O. J. et al. Efficacy of an amitraz-impregnated collar in preventing transmission of Borrelia burgdorferi by adult Ixodes scapularis to dogs. Journal of the American Veterinary Medical Association, v. 219, n. 2, p. 185-189, 2001. Disponível em: https://avmajournals.avma.org/view/journals/javma/219/2/javma.2001.219.185.xml Acesso em: 03 dez. 2024. Disponível em: https://avmajournals.avma.org/view/journals/javma/219/2/javma.2001.219.185.xml. Acesso em 02 nov. 2024. ENSLEY, S. M. Pyrethrins and Pyrethroids. Veterinary Toxicology. Elsevier, 2018a. p. 515–520. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/B9780128114100000398. Acesso em 22 dez. 2024. EPE, C.; COATI, N.; STANNECK, D. Efficacy of the compound preparation imidacloprid 10%/permethrin 50% spot-on against ticks (I. ricinus, R. sanguineus) and fleas (C. felis) on dogs. Parasitology Research, v. 90, n. 3, p. 122-124, 2003. Disponível em: https://link.springer.com/article/10.1007/s00436-003-0911-9. Acesso em: 28 dez. 2024. ESTRADA-PENA, A.; ASCHER, F. Comparison of an amitraz-impregnated collar with topical administration of fipronil for prevention of experimental and natural infestations by the brown dog tick (Rhipicephalus sanguineus). Journal of the American Veterinary Medical Association, v. 214, n. 12, p. 1799-1803, 1999. Disponível em: https://avmajournals.avma.org/view/journals/javma/214/12/javma.1999.214.12.1799.xm l . Acesso em: 03 dez. 2024. 61 FAO. Resistance management and integrated parasite control in ruminants: guidelines, pp. 25–77. Module 1. Animal Production and Health Division, 2004. 53 p. FERNANDES, F. F. In vitro activity of permethrin, cipermethrin and deltamethrin on larvae of Rhipicephalus sanguineus (Latreille, 1806) (Acari, Ixodidae). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 52, n. 6, p. 621-626, 2000. Disponível em: https://www.proquest.com/openview/3ea4f7530b33a6a48fdceb41f5ccb811/1?pq-origsit e=gscholar&cbl=1796426. Acesso em 22 dez. 2024. FERNANDES, F. F. et al. Efeitos toxicológicos e ineficiência in vitro de deltametrina sobre larvas de Rhipicephalus sanguineus, de Goiânia, Goiás, Brasil. Rev Soc Bras Med Trop, v. 34, p. 159-165, apr. 2001. Disponível em: https://doi.org/10.1590/S0037-86822001000200002. Acesso em: 09 dez. 2024. FERREIRA, T. P. et al. In vitro acaricidal activity of Ocimum gratissimum essential oil on Rhipicephalus sanguineus, Amblyomma sculptum and Rhipicephalus microplus larvae. Rev. Virtual De Quim, v. 1604-1613, 2019. http://static.sites.sbq.org.br/rvq.sbq.org.br/pdf/v11n5a16.pdf. Acesso em 07 jan. 2025. FLÓRIO, J. C.; SOUZA, A, B, S. Farmacocinética. Em. SPINOSA, H.S. Farmacologia aplicada à medicina veterinária. 6aed. Guanabara Koogan, p 27-46. Rio de Janeiro, 2016. FOLZ, S. D. et al. Amitraz: a tick and flea repellent and tick detachment drug. Journal of Veterinary Pharmacology and Therapeutics, v. 9, n. 2, p. 150-156, 1986. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2885.1986.tb00024.x. Acesso em: 03 dez. 2024. FOURIE, J. J. et al. Prevention of transmission of Ehrlichia canis by Rhipicephalus sanguineus ticks to dogs treated with a combination of fipronil, amitraz and (S)-methoprene (CERTIFECT®). Vet Parasitol, v. 193, p. 223-228, 31 mar. 2013. DOI: 10.1016/j.vetpar.2012.12.009. Disponível em: https://doi.org/10.1016/j.vetpar.2012.12.009. Acesso em: 11 out. 2024. 62 FRANC, M.; CADIERGUES, M. C. Activity of a deltamethrin shampoo against Ctenocephalides felis and Rhipicephalus sanguineus in dogs. Veterinary Parasitology, v. 81, n. 4, p. 341-346, 1999. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S030440179800257X. Acesso em 03 dez. 2024 FRANC, M.; BOUHSIRA, E. Evaluation of speed and duration of efficacy of spinosad tablets for treatment and control of Ctenocephalides canis (Siphonaptera: Pulicidae) infestations in dogs. Parasite, v. 16, n. 2, p. 125-128, 2009. Disponível em: https://www.parasite-journal.org/articles/parasite/abs/2009/02/parasite2009162p125/par asite2009162p125.html. Acesso em 04 nov. 2024. FUKUTO, T. R.. Mecanismo de ação de inseticidas organofosforados e carbamatos. Environmental health perspectives , v. 87, p. 245-254, 1990. FURLONG, J. et al. O carrapato dos bovinos e a resistência: temos o que comemorar? 2007. http://www.alice.cnptia.embrapa.br/alice/handle/doc/595316. Acesso em: 05 dez. 2024. GARCIA, M. V. et al. Caracterização química e efeito acaricida do óleo essencial de Tagetes minuta Linnaeus (Asteraceae) em carrapatos. Revista Brasileira de Parasitologia Veterinária, v. 21, p. 405-411, 2012. georgehttps://doi.org/10.1590/S1984-29612012000400011 GASSEL, M. et al. The novel isoxazoline ectoparasiticide fluralaner: Selective inhibition of arthropod γ-aminobutyric acid-and L-glutamate-gated chloride channels and insecticidal/acaricidal activity. Insect Biochemistry and Molecular Biology, v. 45, p. 111124, 2014. Disponível em: https://www.sciencedirect.com/science/article/pii/S0965174813002105. Acesso em: 11 nov. 2024. GEORGE, D. R. et al. Present and future potential of plant-derived products to control arthropods of veterinary and medical significance. Parasites & vectors, v. 7, p. 1-12, 2014. Disponível em: https://www.cabidigitallibrary.org/doi/full/10.5555/19790565291. Acesso em: 04 jan. 2025. 63 GHAVAMI, M. B. et al. Repellency effect of essential oils of some native plants and synthetic repellents against human flea, Pulex irritans (Siphonaptera: Pulicidae). Journal of arthropod-borne diseases, v. 11, n. 1, p. 105, 2017. https://pmc.ncbi.nlm.nih.gov/articles/PMC5629292/. Acesso em: 03 jan. 2025. GONZAGA, B. C. F. et al. Essential oils and isolated compounds for tick control: advances beyond the laboratory. Parasites & Vectors, v. 16, n. 1, p. 415, 2023. GUPTA, R. C. Classification and Uses of Organophosphates and Carbamates. Toxicology of Organophosphate & Carbamate Compounds. Elsevier, 2006. p. 5–24. Acesso em 12 dez. 2024. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/B978012088523750003X. Acesso em: 04 dez. 2024. GUPTA, R. C.; ANADÓN, A. Fipronil. Veterinary toxicology. Academic press, 2018. p. 533-538. HAN, R et al. Cinnamaldehyde: Pharmacokinetics, anticancer properties and therapeutic potential. Molecular Medicine Reports, v. 30, n. 3, p. 1-14, 2024. https://www.spandidos-publications.com/mmr/30/3/163. Acesso em 03 fev. 2025. HEKİMOĞLU, O. An update on the phylogeny and biogeographical history of Rhipicephalus sanguineus complex. Turk Zool Derg, v. 48, n. 1, p. 21-35, 2024. DOI: 10.55730/1300- 0179.3157. Disponível em: https://journals.tubitak.gov.tr/zoology/vol48/iss1/4/. Acesso em: 10 dez. 2024. HOLZMER, S. et al. Efficacy of a novel formulation of metaflumizone for the control of fleas (Ctenocephalides felis) on cats. Veterinary Parasitology, v. 150, n. 3, p. 219-224, 2007. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S030440170700444X. Acesso em: 11 out 2024. HONMA, M et al. In vivo and in vitro mutagenicity of perillaldehyde and cinnamaldehyde. Genes and Environment, v. 43, p. 1-11, 2021. https://link.springer.com/article/10.1186/s41021-021-00204-3. Acesso em 04 fev. 2025. 64 HORAK, I. G. et al. Efficacy of slow-release collar formulations of imidacloprid/flumethrin and deltamethrin and of spot-on formulations of fipronil/ (s)methoprene, dinotefuran/ pyriproxyfen/ permethrin and (s)–methoprene/ amitraz/ fipronil against Rhipicephalus sanguineus and Ctenocephalides felis felis on dogs. Parasites & Vectors, v. 5, n. 1, p. 79, 2012. Disponível em : https://link.springer.com/article/10.1186/1756-3305-5-79. Acesso em: 03 dez. 2024. HOVDA, L. R.; HOOSER, S. B. Toxicology of newer pesticides for use in dogs and cats. Veterinary Clinics of North America: Small Animal Practice, v. 32, n. 2, p. 455-467, 2002. Disponível em: https://www.vetsmall.theclinics.com/article/S0195-5616(01)00013-4/abstract. Acesso em: 05 dez. 2024. HUANG, Z. et al. Synergistic effects of cinnamaldehyde and cinnamic acid in cinnamon essential oil against S. pullorum. Industrial Crops and Products, v. 162, p. 113296, 2021. Acesso em 02 dez. 2024. HUANG, Y. et al. Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch.(Coleoptera: Curculionidae) and Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). Journal of Stored Products Research, v. 38, n. 5, p. 403-412, 2002. Acesso em 02 dez. 2024. JARVILL-TAYLOR, K. J.; ANDERSON, R. A.; GRAVES, D. J. A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. Journal of the American College of Nutrition, v. 20, p. 327-336, 2001. JAYAPRAKASHA, G. K.; RAO, L. J. M.; SAKARIAH, K. K. Volatile constituents from Cinnamomum zeylanicum fruit stalks and their antioxidant activities. Journal of Agricultural and Food Chemistry, v. 51, p. 4344-4348, 2003. Disponível em: Acesso em: JERNIGAN, A. D. et al. Efficacy of selamectin against experimentally induced tick (Rhipicephalus sanguineus and Dermacentor variabilis) infestations on dogs. Veterinary Parasitology, v. 91, n. 3-4, p. 359-375, 2000. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0304401700003058. Acesso em:22 nov. 2024. 65 JESCHKE, P; NAUEN, R. Neonicotinoids-from zero to hero in insecticide chemistry. Pest Management Science: Pesticide Science , v. 64, n. 11, p. 1084-1098, 2008. Disponível em: https://pubmed.ncbi.nlm.nih.gov/18712805/. Acesso em 04 nov. 2024. JESSER, Emiliano et al. Optimization and characterization of essential oil nanoemulsions using ultrasound for new ecofriendly insecticides. ACS Sustainable Chemistry & Engineering, v. 8, n. 21, p. 7981-7992, 2020. https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.0c02224. Acesso em: 02 fev. 2025. JEON, Y. et al. Insecticidal activities of their components derived from the essential oils of Cinnamomum sp. barks and against Ricania sp. (Homoptera: Ricaniidae), a newly recorded pest. Pest management science, v. 73, n. 10, p. 2000-2004, 2017. https://doi.org/10.1002/ps.4627. Acesso em: 07 jan. 2025. JONGEJAN, F. et al. The prevention of transmission of Babesia canis canis by Dermacentor reticulatus ticks to dogs using a novel combination of fipronil, amitraz and (S)- methoprene. Veterinary Parasitology, v. 179, n. 4, p. 343-350, 2011. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0304401711002330. Acesso em: 04 dez. 2024. KILLICK‐KENDRICK, R. et al. Protection of dogs from bites of phlebotomine sandflies bydeltamethrin collars for control of canine leishmaniasis. Medical and veterinary entomology, United Kingdom. v. 11, n. 2, p. 105-111, 1997. Disponível em: https://resjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2915.1997.tb00298.x. Acesso em 20 out. 2024 KISS, T et al. Tick prevention at a crossroad: new and renewed solutions. Veterinary parasitology, v. 187, n. 3-4, p. 357-366, 2012. Disponível em: https://doi.org/10.1016/j.vetpar.2012.02.010. Acesso em: 04 dez. 2024. KUMAR, S, et al. Insecticidal and acaricidal activities of cinnamon essential oil and its major compound, cinnamaldehyde. Journal of Pest Science, v. 85, n. 2, p. 261-270, 2012. DOI: 10.1007/s10340-011-0369-5. Acesso em: 12 dez. 2024. KUNKLE, B. N. et al. Assessment of the onset of action of afoxolaner against existing adult flea (Ctenocephalides felis) infestations on dogs. Veterinary Parasitology, v. 201, 66 n. 3-4, p. 204-206, 2014.Disponível em: https://www.sciencedirect.com/science/article/pii/S030440171400096X. Acesso em: 07 nov. 2024. KUNTZ, E. A.; KAMMANADIMINTI, S. Safety evaluation of lotilaner in dogs after oral administration as flavoured chewable tablets (CredelioTM). Parasites & Vectors, v. 10, n. 1, p. 538, 2017. Disponível em https://link.springer.com/article/10.1186/s13071-017-2468-y. Acesso em: 03 nov. 2024. KUROKAWA, M.; KUMEDA, C. A.; YAMAMURA, J.; KAMIYAMA, T.; SHIRAKI, K. Antipyretic activity of cinnamyl derivatives and related compounds in influenza virus-infected mice. European Journal of Pharmacology, v. 348, p. 45-51, 1998. LAVAN, R. P. et al. Assessment of dog owner adherence to veterinarians’ flea and tick prevention recommendations in the United States using a cross-sectional survey. Parasites & vectors, v. 10, n. 1, p. 1-7, 2017. Disponível em: https://link.springer.com/article/10.1186/s13071-017-2217-2. Acesso em 10 dez. 2024. LEE, H. S.; AHN, Y. J. Growth-inhibiting effects of Cinnamomum cassia bark-derived materials on human intestinal bacteria. Journal of Agricultural and Food Chemistry, v. 46, p. 8-12, 1998. LEE, R.; BALICK, M. J. Sweet wood — cinnamon and its importance as a spice and medicine. Explore: the Journal of Science and Healing, v. 1, p. 61-64, 2005. LEONOVICH, S. A. On the Origin of Hard Ticks (Parasitiformes, Ixodidae). Entomol Rev, v. 103, n. 3, p. 362-371, 26 oct. 2023. DOI: 10.1134/S0013873823030144. Disponível em: https://doi.org/10.1134/S0013873823030144. Acesso em: 10 dez. 2024. LINARDI, P. M; DE MÁRIA, M.; BOTELHO, J. R. Effects of larval nutrition on the postembryonic development of Ctenocephalides felis felis (Siphonaptera: Pulicidae). Journal of medical entomology, v. 34, n. 4, p. 494-497, 1997. Disponível em https://academic.oup.com/jme/article-abstract/34/4/494/2221628. Acesso em: 20 dez. 2024. LINARDI, P. M. Checklist dos siphonaptera do Estado do Mato Grosso do Sul. Iheringia. Série Zoologia, v. 107, p. e2017148, 2017. Acesso em 20 jan. 25 67 LINARDI, P.M & GUIMARÃES, L.R. Sifonápteros do Brasil. In: Sifonápteros do Brasil. 2000. p. x, 291-x, 291. Disponivel em : https://repositorio.inpa.gov.br/bitstream/1/40263/1/CAP35%20Siphonaptera.pdf . Acesso em: 20 jan. 2025. LINARDI, P.M. & M.P. VALIM 2022. Siphonaptera. Catálogo Taxonômico da Fauna do Brasil. http://fauna.jbrj.gov.br/fauna/faunadobrasil/273. Acesso em: 20 jan. 2025. LÓPEZ, M.D.; PASCUAL-VILLALOBOS, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Industrial Crops and Products, v. 31, p. 284-288, 2010. https://doi.org/10.1016/j.indcrop.2009.11.005. Acesso em 14 dez. 2024. LOULY, C. C. B. et al. Seasonal dynamics of Rhipicephalus sanguineus (Acari: Ixodidae) in dogs from a police unit in Goiania, Goias, Brazil. Cienc Rural, v. 37, n. 2, p. 464-469, mar./apr. 2007. DOI: 10.1590/S0103-84782007000200026. Disponível em: https://doi.org/10.1590/S0103- 84782007000200026. Acesso em: 12 out. 2024. LORENZETTI, L, et al. Efficacy of essential oils from Cinnamomum zeylanicum and its major compound, cinnamaldehyde, against urban pests. Journal of Economic Entomology, v. 110, n. 3, p. 994-1001, 2017. DOI: 10.1093/jee/tow365. Acesso em: 04 dez. 2024. MA, W. B. et al. Fumigant activity of 6 selected essential oil compounds and combined effect of methyl salicylate and trans-cinnamaldehyde against Culex pipiens pallens. Journal of the American Mosquito Control Association, v. 30, n. 3, p. 199-203, 2014. DOI: 10.2987/14-6412R.1. Acesso em 02 fev.2025. MADUREIRA, J. E.; et al. Efficacy of cinnamon (Cinnamomum zeylanicum) essential oil and cinnamaldehyde against Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, v. 272, p. 50-55, 2019. DOI: 10.1016/j.vetpar.2019.05.017. Acesso em: 12 dez. 2024. MAGALHÃES, J. Z. et al. Fipronil: usos, características farmacológicas e toxicológicas. Revinter, São Paulo. v. 11, n. 01, p. 67-83, fev. 2017. Disponível em: https://link.springer.com/article/10.1007/BF03189809. Acesso em: 20 nov. 2024. 68 MAZZANTI, C. M.; GOLLNER, A. M. Essential Oils: Composition and Biological Activities. Natural Product Communications, v. 15, n. 8, p. 1-9, 2020. DOI: 10.1177/1934578X20966805.Acesso em 14 dez. 2024. MATSUDA, et al. Inseticidas neonicotinoides: alvos moleculares, resistência e toxicidade. Annual review of pharmacology and toxicology , v. 60, n. 1, p. 241-255, 2020. Disponível em: https://www.annualreviews.org/content/journals/10.1146/annurev-pharmtox-010818-02 1747#page=1.00&gsr=0. Acesso em 07 dez. 2024 MARSELLA, R. Advances in flea control, Veterinary Clinics of North America - Small Animal Practice, v. 29, n. 6, p.1407-1424, 1999. Disponível em https://www.sciencedirect.com/science/article/abs/pii/S0195561699501356. Acesso 04 dez. 2024 MARTINS, J.R.S., et al. Controle de carrapatos. Carrapatos de importância médico veterinária da região neotropical: um guia ilustrado para identificação de espécies (ed.by D.M. Barros-Battesti, M. Arzua & G.H. Bechara), pp. 155–164.Vox/ICTTD-3/ Butantan, São Paulo, 2006. MARTINS, T. F. et al. Geographical distribution of Amblyomma cajennense (sensu lato) ticks (Parasitiformes: Ixodidae) in Brazil, with description of the nymph of A. cajennense (sensu stricto). Parasites Vectors, v. 9, p. 1-14, 31 mar. 2016. DOI: 10.1186/s13071-016-1460-2. Disponível em: https://doi.org/10.1186/s13071-016-1460-2. Acesso em: 27 dez. 2024. MCTIER, T. L. et al. Efficacy of selamectin against adult flea infestations Ctenocephalides felis felis and Ctenocephalides canis) on dogs and cats. Veterinary Parasitology, v. 91, n. 34, p. 187-199, 2000. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0304401700002910. Acesso em: 21 nov. 2024. MEHLHORN, H. et al. In vitro and in vivo studies on the effect of a combination containing 10% imidacloprid and 50% permethrin against Ixodes ricinus ticks. Parasitology Research v. 89, n. 4, p. 323-325, 2003. Disponível em: https://link.springer.com/article/10.1007/s00436-002-0809-y. Acesso em 03 dez. 2024. 69 MELO, R. M. P. S. et al. Avaliação in vitro de uma formulação contendo o piretróide ciflutrina e o IGR piriproxifen no controle de Ctenocephalides felis felis (Bouché, 1835) (Siphonaptera: Pulicidae). Revista. Brasileira de Medicina Veterinária, v. 32, n. Supl 1, p. 35-39, 2010. Disponível em: https://bdtd.ibict.br/vufind/Record/UFRRJ-1_3afc9df2170aad6a67dca75491487baf. Acesso em: 21 nov. 2024. MILLER, R. J. et al. Characterization of acaricide resistance in Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae) collected from the Corozal army veterinary quarantine center, Panama. Journal of medical entomology, v. 38, n. 2, p. 298-302, 2001. Acesso em: 03 fev. 2025. MILLS, C et al. Inhibition of acetylcholinesterase by tea tree oil. Journal of Pharmacy and Pharmacology, v. 56, n. 3, p. 375-379, 2004. https://doi.org/10.1211/0022357022773. Acesso em: 12 nov. 2024. MYERS, S. et al. Multiple species of canine Rhipicephalus complex detected in Canada. Veterinary Parasitology: Regional Studies and Reports, v. 48, p. 100976, feb. 2024. DOI: 10.1016/j.vprsr.2023.100976. Disponível em: https://doi.org/10.1016/j.vprsr.2023.100976. Acesso em: 09 nov. 2024. MORAES-FILHO, J. et al. Comparative evaluation of the vector competence of four South American populations of the Rhipicephalus sanguineus group for the bacterium Ehrlichia canis, the agent of canine monocytic ehrlichiosis. PLoS One, v. 10, n. 9, p. e0139386, 28 sep. 2015. Disponível em: https://doi.org/10.1371/journal.pone.0139386. Acesso em: 20 nov. 2024. NAVA, S. et al. The taxonomic status of Rhipicephalus sanguineus (Latreille, 1806). Vet Parasitol, v. 208, n. 1-2, p. 2-8, feb. 2015. DOI: 10.1016/j.vetpar.2014.12.021. Disponível em: https://doi.org/10.1016/j.vetpar.2014.12.021. Acesso em: 11 dez. 2024. NCBI. PubChem Database. Cinnamaldehyde, CID=637511. Disponível em: https://pubchem.ncbi.nlm.nih.gov/compound/Cinnamaldehyde. Acesso em: 09 out. 2024. NOGUEIRA, B. C. F. et al. Soft and hard ticks (Parasitiformes: Ixodida) on humans: a review of Brazilian biomes and the impact of environmental change. Acta Trop, p. 70 106598, oct. 2022. DOI: 10.1016/j.actatropica.2022.106598. Disponível em: https://doi.org/10.1016/j.actatropica.2022.106598. Acesso em: 10 dez. 2024. NOLAN, J. T.; LOK, B. J. Macrocyclic lactones in the treatment and control of parasitism in small companion animals. Current Pharmaceutical Biotechnology, v. 13, n. 6, p. 10781094, 2012. Disponível em: https://pubmed.ncbi.nlm.nih.gov/22039798/. Acesso em: 06 dez. 2024. NOPPUN V, et al. Penetração cuticular de S-fenvalerato em linhagens resistentes e suscetíveis a fenvalerato da traça-das-crucíferas, Plutella xylostella (L.). Pestic Biochem Physiol 1989; 33(1): 83-87. http://dx.doi.org/10.1016/0048-3575(89)90079-5. Acesso em 04 jan. 2025. NOVATO, T et al,. In vitro assessment of the acaricidal activity of carvacrol, thymol, eugenol and their acetylated derivatives on Rhipicephalus microplus (Acari: Ixodidae). Veterinary Parasitology. 260, 1–4. 2018 https://doi.org/10.1016/j.vetpar.2018.07.009. Acesso em 03 fev. 2025. NUNES, C. N. O.; SALTIVA, E. R.; ALVES, N. F. A. G; LIMA, P. H. S; MIYAMOTO, C. A. Interações medicamentosas. Revista Conexão Eletrônica. Três Lagoas, v. 14, n. 1, p. 112-121. 2017. OBAID, M. K. et al. Acaricides resistance in ticks: selection, diagnosis, mechanisms, and mitigation. Front Cell Infect Microbiol, p. 885, 6 jul. 2022. Disponível em: ttps://doi.org/10.3389/fcimb.2022.941831. Acesso em: 27 dez. 2024. OLIVEIRA, L. M. et al. Ocimum gratissimum essential oil and eugenol against Ctenocephalides felis felis and Rhipicephalus sanguineus: In vitro activity and residual efficacy of a eugenol-based spray formulation. Veterinary Parasitology, v. 309, p. 109771, 2022.https://doi.org/10.1016/j.vetpar.2022.109771. Acesso em 03 fev. 2025. ORTEGA-MORALES, A. I. et al. Detection of Rickettsia spp. in Rhipicephalus sanguineus (sensu lato) collected from free-roaming dogs in Coahuila state, against 19 Mexico. Parasites Vectors, v. 12, n. 1, p. 1-7, 26 mar. 2019. DOI: 10.1186/s13071-019-3377-z. Disponível em: https://doi.org/10.1186/s13071-019-3377-z. Acesso em: 12 ago. 2024. 71 OTRANTO, D. et al. World Association for the Advancement of Veterinary Parasitology (WAAVP) guidelines for studies evaluating the efficacy of parasiticides in reducing the risk of vector-borne pathogen transmission in dogs and cats. Vet Parasitol, v. 290, p. 109369, feb. 2021. DOI: 10.1016/j.vetpar.2021.109369. Disponível em: https://doi.org/10.1016/j.vetpar.2021.109369. Acesso em: 12 nov. 2024. PAJUABA NETO, A. A. et al. Influence of microhabitat use and behavior of Amblyomma sculptum and Amblyomma dubitatum nymphs (Acari: Ixodidae) on human risk for tick exposure, with notes on Rickettsia infection. Ticks Tick Borne Dis, v. 9, n. 1, p. 67-71, jan. 2018. Disponível em: https://doi.org/10.1016/j.ttbdis.2017.10.007. Acesso em: 27 dez. 2024. PARK, I. K., et al. Insecticidal and fumigant activities of Cinnamomum cassia bark-derived materials against Mechoris ursulus (Coleoptera: Attelabidae). J Agric Food Chem 48:2528–2531, 2000. PARK, I. K., et al. Insecticidal and fumigant activities of Cinnamomum cassia bark-derived materials against Mechoris ursulus (Coleoptera: Attelabidae). J Agric Food Chem 48:2528–2531, 2000. Acesso em 09 nov. 2024. PAVELA, R. et al. Application of ethnobotanical repellents and acaricides in prevention, control and management of livestock ticks: A review. Research in veterinary science, v. 109, p. 1-9, 2016. https://doi.org/10.1016/j.rvsc.2016.09.001. Acesso em: 20 dez. 2024. PAVELA, R.; BENELLI, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends in plant science, v. 21, n. 12, p. 1000-1007, 2016. https://www.cell.com/trends/plant-science/abstract/S1360-1385(16)30164-9. Acesso em: 03 fev. 2025. PEACH, D. A. H. et al. Lemongrass and cinnamon bark: plant essential oil blend as a spatial repellent for mosquitoes in a field setting. Journal of Medical Entomology, v. 56, n. 5, p. 1346-1352, 2019. DOI: 10.1093/jme/tjz078. Acesso em: 07 jan. 2025 PERES, L. E. P. Metabolismo Secundário 2004 (Apostila). Acesso em 03 jan. 2025. 72 PRAKASH, B. K. et al. Detection of Babesia spp. in dogs and their ticks from Peninsular Malaysia: emphasis on Babesia gibsoni and Babesia vogeli infections in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae). J Med Entomol, v. 55, n. 5, p. 1337-1340, 2018. Disponível em: https://doi.org/10.1093/jme/tjy072. Acesso em: 12 out. 2024. PUBCHEM, 2020. Disponível em: https://pubchem.ncbi.nlm.nih.gov/compound/637511. Acesso em: 08 nov. 2024. QIN, B.; NAGASAKI, M.; REN, M.; BAJOTTO, G.; OSHIDA, Y.; SATO, Y. Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Research and Clinical Practice, v. 62, p. 139-148, 2003. REGNAULT-ROGER, C.; VINCENT, C; ARNASON, J. Essential oils in insect control: low-risk products in a high-stakes world. Annual review of entomology, v. 57, n. 1, p. 405-424, 2012. https://doi.org/10.1146/annurev-ento-120710-100554. Acesso em: 20 dez. 2024. RODRIGUEZ-VIVAS, R. I. et al. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitology research, v. 117, p. 3-29, 2018. https://link.springer.com/article/10.1007/s00436-017-5677-6. Acesso em: 02 fev. 2025. ROUSH, Richard; TABASHNIK, Bruce E. (Ed.). Resistência a pesticidas em artrópodes . Springer Science & Business Media, 2012 RUGG, D.; HAIR, J. A. Dose determination of a novel formulation of metaflumizone plus amitraz for control of cat fleas (Ctenocephalides felis felis) and brown dog ticks (Rhipicephalus sanguineus) on dogs. Veterinary Parasitology, v. 150, n. 3, p. 203-208, 2007. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0304401707004426. Acesso em: 05 dez. 2024. RUST, M. K. Advances in the control of Ctenocephalides felis (cat flea) on cats and dogs. Trends in Parasitology, v. 21, n. 5, p. 232-236, 2005. Disponível em: https://www.cell.com/ajhg/abstract/S1471-4922(05)00075-9. Acesso em: 12 nov. 2024. 73 RUST, M. K. et al. Susceptibility of cat fleas (Siphonaptera: Pulicidae) to Fipronil and Imidacloprid using adult and larval bioassays, Journal of Medical Entomology, v. 51, n. 3, p. 638-643, 2014. Disponível em: https://academic.oup.com/jme/article/51/3/638/901111?login=false. Acesso em: 06 dez. 2024. RUST, M. K. Insecticide resistance in fleas, Insects, v. 7, n. 1 ,2016. Disponível em: https://pubmed.ncbi.nlm.nih.gov/26999217/. Acesso em: 20 dez. 2024. RUST, M. K. The Biology and Ecology of Cat Fleas and Advancements in Their Pest Management: A Review. Insects, v. 8, n. 4, p. 118, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29077073/. Acesso em: 20 dez. 24 RUST, M K.; HEMSARTH, W. L. H. Synergism of adulticides and insect growth regulators against larval cat fleas (Siphonaptera: Pulicidae). Journal of medical entomology, v. 56, n. 3, p. 790-795, 2019. https://doi.org/10.1093/jme/tjy239. Acesso em 23 nov. 2024. RUST, M. K. Recent advancements in the control of cat fleas, Insects, v. 11, n. 668, 2020. Disponivel em: https://www.mdpi.com/2075-4450/11/10/668. Acesso em 13 nov. 2024. RODRIGUEZ-VIVAS, R. I. et al. First documentation of ivermectin resistance in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae). Veterinary parasitology, v. 233, p. 9-13, 2017a. RODRIGUEZ‐VIVAS, R. I. et al. First report of amitraz and cypermethrin resistance in Rhipicephalus sanguineus sensu lato infesting dogs in Mexico. Medical and Veterinary Entomology, v. 31, n. 1, p. 72-77, 2017b. SALGADO, V. L. Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pesticide Biochemistry and Physiology, v. 60, n. 2, p. 91-102, 1998. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S004835759892332X. Acesso em 12 nov. 2024. 74 SALGADO, V. L.; HAYASHI, J. H. Metaflumizone is a novel sodium channel blocker insecticide. Veterinary Parasitology, v. 150, n. 3, p. 182-189, 2007. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0304401707004396. Acesso em: 04 nov. 2024. SAMISH, M.; GINSBERG, H.; GLAZER, I. Biological control of ticks. Parasitology, v. 129, n. S1, p. S389-S403, oct. 2004. DOI: 10.1017/S0031182004005219. Disponível em: https://doi.org/10.1017/S0031182004005219. Acesso em: 27 dez. 2024. SÁNCHEZ-MONTES, S. et al. Rhipicephalus sanguineus complex in the Americas: systematic, genetic diversity, and geographic insights. Pathogens, v. 10, n. 9, p. 1118, 1 sep. 2021. DOI: 10.3390/pathogens10091118. Disponível em: https://doi.org/10.3390/pathogens10091118. Acesso em: 26 jan. 2024. SANTOS, A. V. et al. Efeito in vitro do extrato de nim (Azadirachta indica) e do óleo essencial de cravo (Syzygium aromatium) em Rhipicephalus (Boophilus) microplus. Revista Brasileira de Medicina Veterinária , [S. l.] , v. 2, pág. 111–115, 2012. Disponível em: https://bjvm.org.br/BJVM/article/view/702. Acesso em: 03 jan. 2025. SANTOS, G. C. M. Perfil farmacocinético e eficácia contra Ctenocephalides felis felis e Rhipicephalus sanguineus do fipronil administrado pela via oral na forma de comprimidos em cães. Tese (doutorado) Universidade Federal Rural do Rio de Janeiro, Programa de Pós-Graduação em Ciências Veterinárias. 2021. SANTOS, F. C. C.; VOGEL, F. S. F. Avaliação in vitro da ação do óleo essencial de capim limão (Cymbopogon citratus) sobre o carrapato bovino Rhipicephalus (Boophilus) microplus. Revista Brasileira de Plantas Medicinais, v. 14, p. 712-716, 2012. https://doi.org/10.1590/S1516-05722012000400020 SANTOS, E. D, et al. Efficacy of cinnamaldehyde against Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae). Veterinary Parasitology, v. 284, p. 109193, 2020. DOI: 10.1016/j.vetpar.2020.109193 SANTOS, G. C. M. Desenvolvimento de comprimidos de fipronil para cães: farmacocinética e eficácia ectoparasiticida. 2018. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Departamento de Química, Universidade 75 Federal Rural do Rio de Janeiro, Seropédica - RJ, 2018. Disponível em: https://rima.ufrrj.br/jspui/handle/20.500.14407/14600. Acesso em 06 dez. 2024. SCHRECK, C. E.; POSEY, K.; SMITH, D. Durability of permethrin as a potential clothing treatment to protect against blood-feeding arthropods. Journal of economic entomology, v. 71, n. 3, p. 397-400, 1978. Disponível em: https://academic.oup.com/jee/article-abstract/71/3/397/2212567?login=false. Acesso em: 03 dez. 2024. SELZER, Paul M.; EPE, Christian. Antiparasitics in animal health: quo vadis?. Trends in parasitology, v. 37, n. 1, p. 77-89, 2021. SENRA, T. O. S. et al. Investigation of activity of monoterpenes and phenylpropanoids against immature stages of Amblyomma cajennense and Rhipicephalus sanguineus (Acari: Ixodidae). Parasitology research, v. 112, p. 3471-3476, 2013. Disponível em: https://link.springer.com/article/10.1007/s00436-013-3527-8. Acesso em: 20 dez. 2024. SHOOP, W. L. et al. Discovery and mode of action of afoxolaner, a new isoxazoline parasiticide for dogs. Veterinary Parasitology, v. 201, n. 3, p. 179-189, 2014. Disponível em: https://www.sciencedirect.com/science/article/pii/S0304401714000934. Acesso em 10 nov. 2024. SIDDIQUI, J.A et al. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Frontiers in Physiology, v. 13, p. 1112278, 2023. SILVER, K. S. et al. Mechanism of action of sodium channel blocker insecticides (SCBIs) on insect sodium channels. Pesticide Biochemistry and Physiology, v. 97, n. 2, p. 87-92, 2010. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0048357509001242. Acesso em: 05 dez. 2024. SINDAN. Compêndio de produtos veterinários. Sind. Nac. da Indústria Prod. para Saúde Anim. 2022. https://mapa-indicadores.agricultura.gov.br/publico/single/?appid=a3e9ce67-d63b-43ff- a295-20123996ead7&sheet=4c2ec12f-be27-47f2-8136-e2fd18cbb54a&lang=pt-BR&op t=ctxmenu&select=clearall Acesso em 02 fev. 2025. 76 SITTICHOK, S. et al. Synergistic Larvicidal and Pupicidal Toxicity and the Morphological Impact of the Dengue Vector (Aedes aegypti) Induced by Geranial and trans-Cinnamaldehyde. Insects, v. 15, n. 9, p. 714, 2024. DOI:10.3390/insects15090714. Acesso em: 25 jan. 2025. SIX, R. H. et al. Comparative speed of kill of sarolaner (SimparicTM) and fluralaner (Bravecto®) against induced infestations of Ctenocephalides felis on dogs. Parasites & Vectors, v. 9, n. 1, p. 92, 2016. Disponível em: https://link.springer.com/article/10.1186/s13071-016-1373-0. Acesso em 06 nov. 2024. ŠLAPETA, J.; CHANDRA, S.; HALLIDAY, B. The “tropical lineage” of the brown dog tick Rhipicephalus sanguineus sensu lato identified as Rhipicephalus linnaei (Audouin, 1826). Int J Parasitol, v. 51, n. 6, p. 431-436, may 2021. DOI: 10.1016/j.ijpara.2021.02.001. Disponível em: https://doi.org/10.1016/j.ijpara.2021.02.001. Acesso em: 10 dez. 2024. ŠLAPETA, J. et al. Rhipicephalus linnaei (Audouin, 1826) recognised as the “tropical lineage” of the brown dog tick Rhipicephalus sanguineus sensu lato: Neotype designation, redescription, and establishment of morphological and molecular reference. Ticks and Tickborne Diseases, v. 13, n. 6, p. 102024, nov. 2022. DOI: 10.1016/j.ttbdis.2022.102024. Disponível em: https://doi.org/10.1016/j.ttbdis.2022.102024. Acesso em: 01 out. 2024 SNYDER, D. E. et al. Speed of kill efficacy and efficacy of flavored spinosad tablets administered orally to cats in a simulated home environment for the treatment and prevention of cat flea (Ctenocephalides felis) infestations. Veterinary Parasitology, v. 196, n. 3-4, p. 492-496, 2013. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0304401713001350. Acesso em 04 nov. 2024. SPINOSA, H. S.; GÓRNIAK, S. L.; BERNARDI, M. M. Farmacologia aplicada à medicina veterinária. 6aed. Guanabara Koogan. Rio de Janeiro, 2016. STANNECK, D. et al. Efficacy of an imidacloprid/flumethrin collar against fleas, ticks, mites and lice on dogs. Parasites & Vectors, v. 5, p. 1-17, 2012. Disponível em: 77 https://parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-5-102. Acesso em 07 dez. 2024. SOARES, R. L. et al. Molecular detection of Cercopithifilaria bainae and again tick-borne pathogens in Rhipicephalus sanguineus sl isolated from dogs in Midwest Brazil. Rev Bras Parasitol Vet, v. 29, p. e018019, jan. 2020. DOI: 10.1590/S1984-29612019109. Disponivel em: https://doi.org/10.1590/S1984-29612019109. Acesso em: 12 out. 2024. TAENZLER, J. et al. Efficacy of fluralaner against Otodectes cynotis infestations in dogs and cats. Parasites & Vectors, v. 10, n. 1, p. 30, 2017. Disponível em: https://link.springer.com/article/10.1186/s13071-016-1954-y. Acesso em 05 nov. 2024. TAVARES, C. P. Efeitos de Carvacrol e Timol livres ou em combinação com cipermetrina sobre o carrapato Rhipicephalus microplus. Universidade federal do Maranhão. São Luís 67p. 2022. TAYLOR, M. A. Recent developments in ectoparasiticides. The Veterinary Journal, v. 161, n. 3, p. 253-268, 2001. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1090023300905495. Acesso em 05 nov. 2024. TAIZ, L; ZEIGER, E. Fisiologia vegetal. Artmed, IV edição. 2009. UJIHARA, K. The history of extensive structural modifications of pyrethroids. Journal of pesticide science, v. 44, n. 4, p. 215-224, 2019. Disponível em: https://www.jstage.jst.go.jp/article/jpestics/44/4/44_D19-102/_article/-char/ja/. Acesso em 10 nov. 2024. USAI, F.; DI SOTTO, A. Trans-cinnamaldehyde as a novel candidate to overcome bacterial resistance: an overview of in vitro studies. Antibiotics, v. 12, n. 2, p. 254, 2023. https://doi.org/10.3390/antibiotics12020254. Acesso em: 04 jan. 2025. VAN DEN BOS, R. H. C.; CURTIS, R. J. The use of a 4% (w/w) deltamethrin collar (Scalibor® ProtectorBand) in the extended control of ticks on dogs. Experimental and Applied Acarology. v. 28, n. 4), 297-303, 2002. Disponível em: 78 https://link.springer.com/chapter/10.1007/978-94-017-3526-1_31. Acesso em: 03 dez. 2024. VERDÚ, J. R. et al. Nontoxic effects of thymol, carvacrol, cinnamaldehyde, and garlic oil on dung beetles: A potential alternative to ecotoxic anthelmintics. Plos one, v. 18, n. 12, p. e0295753, 2023. https://doi.org/10.1371/journal.pone.0295753. Acesso em: 03 jan. 2025. VILLARREAL, Z.; STEPHENSON, N.; FOLEY, J. Possible northward introgression of a tropical lineage of Rhipicephalus sanguineus ticks at a site of emerging Rocky Mountain spotted fever. J Parasitol, v. 104, n. 3, p. 240-245, 1 jun. 2018. DOI: 10.1645/18-10. Disponível em: https://doi.org/10.1645/18-10. Acesso em: 23 nov. 2024. VILELA, V.L.R., et al. Multiple acaricide-resistant Rhipicephalus microplus in the semi-arid region of Paraíba State, Brazil. Ticks Tick. Borne. Dis. 11, 101413. 2020. São Luís 67p. 2022. Acesso em: 09 out. 2024. VOLMER, P. A. et al. Warning against use of some permethrin products in cats. Journal of the American Veterinary Medical Association, v. 213, n. 6, p. 800-801, 1998. Disponível em: https://pubmed.ncbi.nlm.nih.gov/9743715/. Acesso em: 12 nov. 2024. WANG, H. et al. Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids. Bioorganic & medicinal chemistry letters, v. 26, n. 3, p. 809-813, 2016. Acesso em 09 nov. 2024. WANG, X. et al. Fipronil insecticide toxicology: oxidative stress and metabolism. Critical Reviews in Toxicology, v. 46, n. 10, p. 876–899, 2016. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/10408444.2016.1223014. Acesso em: 14 nov. 2024. WILLIAMS, T. et al. Is the naturally derived insecticide Spinosad® compatible with insect natural enemies? Biocontrol science and technology, v. 13, n. 5, p. 459-475, 2003. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/0958315031000140956. Acesso em 11 nov. 2024. 79 WING, K. D. et al. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Protection, v. 19, n. 8-10, p. 537-545, 2000. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0261219400000703. Acesso em: 23 dez. 2024. WHITTEM, T. Pyrethrin and pyrethroid insecticide intoxication in cats. The Compendium on Continuing Education for the Practicing Veterinarian (USA), v. 17, n.3, p. 489-492, 1995. YANG, Y.C, et al. Ovicidal and adulticidal activities of Cinnamomum zeylanicum bark essential oil compounds and related compounds against Pediculus humanus capitis (Anoplura: Pediculicidae). International journal for parasitology, v. 35, n. 14, p. 1595-1600, 2005.10.1016/j.ijpara.2005.08.005. Acesso em 03 fev. 2025. YANG, W. Z. et al. Cinnamaldehyde in feedlot cattle diets: intake, growth performance, carcass characteristics, and blood metabolites. Journal of animal science, v. 88, n. 3, p. 1082-1092, 2010. https://doi.org/10.2527/jas.2008-1608. Acesso em: 03 fev. 2025. YU, H. S.; LEE, S. Y.; JANG, C. G. Involvement of 5-HT1A and GABAA receptors in the anxiolytic-like effects of Cinnamomum cassia in mice. Pharmacology Biochemistry and Behavior, v. 87, p. 164-170, 2007. ZALUSKI, R. et al. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses. Environmental toxicology and chemistry, v. 34, n.5, p. 1062-1069, 2015. Disponível em: https://setac.onlinelibrary.wiley.com/doi/abs/10.1002/etc.2889. Acesso em 06 nov. 2024. ZARDO, V.I.L., et al. Segurança, eficácia e praticidade dos ectoparasiticidas para pulgas e carrapatos de cães e gatos. Revisão em clínica médica de pequenos animais, Investigação, v. 18, n. 4, p. 22–31, 2019. Acesso em 09 nov. 2025. 80 ZHANG, B. et al. Interactions of Fipronil within Fish and Insects: Experimental and Molecular Modeling Studies. Journal of agricultural and food chemistry, v.66, p. 5756–5761, 2018. Disponível em: https://pubs.acs.org/doi/abs/10.1021/acs.jafc.8b00573. Acesso em: 20 dez. 2024. ZHENG, Y. et al. RdlDv, a novel GABA-gated chloride channel gene from the American dog tick Dermacentor variabilis. Insect Biochemistry and Molecular Biology, v. 33, n. 6, p. 595-599, 2003. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0965174803000389. Acesso em 04 nov. 2024. ZHAO, X. et al. Differential actions of fipronil and dieldrin insecticides on GABA-gated chloride channels in cockroach neurons. Journal of Pharmacology and Experimental Therapeutics, v. 306, n. 3, p. 914-924, 2003. Disponível em: https://www.scholars.northwestern.edu/en/publications/differential-actions-of-fipronil-a nd-dieldrin-insecticides-on-gab. Acesso em 05 dez. 2024 ZHAO, X. et al. Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons. Journal of Pharmacology and Experimental Therapeutics, v. 310, n. 1, p. 192-201, 2004.Disponível em: https://www.scholars.northwestern.edu/en/publications/fipronil-is-a-potent-open-channe l-blocker-of-glutamate-activated-. Acesso em: 20 dez. 2024 ZHAO, X. et al. Voltage-dependent block of sodium channels in mammalian neurons by the oxadiazine insecticide indoxacarb and its metabolite. Neurotoxicology, v. 24, n. 1, p. 83-96, 2003. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0161813X02001122. Acesso em 06 dez. 2024. ZHOU Y. et al. Repellent effects of Chinese cinnamon oil on nymphal ticks of Haemaphysalis longicornis, Rhipicephalus haemaphysaloides, and Hyalomma asiaticum. Exp Appl Acarol. 2023;91(3):497-507. doi:10.1007/s10493-023-00855-7. Acesso em: 03. Jan 2025. 81 ZHU, R. et al. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacological research, v. 122, p. 78-89, 2017. https://doi.org/10.1016/j.phrs.2017.05.019. Acesso em 04 fev. 2025.pt_BR
dc.subject.cnpqMedicina Veterináriapt_BR
Appears in Collections:Doutorado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
LIZ MAGALHÃES WALTENBERG.pdf3.9 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.