Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/23314Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Makita, Mário Tatsuo | - |
| dc.date.accessioned | 2025-09-30T14:34:21Z | - |
| dc.date.available | 2025-09-30T14:34:21Z | - |
| dc.date.issued | 2024-12-27 | - |
| dc.identifier.citation | MAKITA, Mário Tatsuo. Diagnóstico da otite externa em cães: comparação entre o microbioma auricular e cultura bacteriana. 2024. 94f. Tese (Doutorado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2024. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/23314 | - |
| dc.description.abstract | A otite externa canina é a doença auricular mais comum em cães, afetando aproximadamente 20% da população, e ocorre quando há desequilíbrio no microambiente da orelha. O uso indiscriminado de antimicrobianos no tratamento das otites contribui para a seleção de cepas resistentes, dificultando a efetividade do tratamento. O objetivo deste estudo foi analisar a microbiota presente em cães com otite externa e compará-la com os dados obtidos nas culturas bacterianas. Foram coletadas amostras de 48 cães diagnosticados com otite externa durante consultas em clínicas particulares, totalizando 106 swabs de orelhas. As amostras foram coletadas em duplicata, com uma destinada para cultura bacteriana, inoculados em Ágar Sangue de Carneiro 5% e Ágar Eosina-Azul de Metileno, e outra para extração de DNA. Após purificação, os isolados foram identificados por métodos fenotípicos, incluindo o MALDI- TOF-MS. Ao todo, foram obtidos 125 isolados, pertencentes a 33 gêneros/espécies bacterianas, e os testes de sensibilidade aos antimicrobianos foram realizados por meio da técnica de disco- difusão. Ao total, 42 amostras atenderam aos critérios de qualidade e puderam ser sequenciadas. A análise de abundância revelou que os gêneros Staphylococcus e Corynebacterium destacaram-se nas populações otológicas. A beta-diversidade indicou uma correlação significativa entre diferentes raças, agrupando pelo menos dois grupos com comunidades microbianas similares. As 40 amostras sequenciadas permitiram a comparação dos dados com os resultados do isolamento bacteriano (55). Comparando os resultados, foi possível observar que 7,27% (4/55) dos isolados bacterianos não apareceram no sequenciamento. Em 30,91% (17/55) das amostras, a cultura foi compatível com o gênero mais abundante no microbioma, e em 61,82% (34/55) dos cultivos, o resultado da cultura não foi compatível com o microrganismo mais abundante no sequenciamento. Deste último, em 50,90% (28/55) dos casos, o sequenciamento mostrou que existiam gêneros cultiváveis mais abundantes do que aqueles encontrados na cultura. Em 29,09% (16/55) das amostras, as bactérias mais abundantes eram anaeróbias. Em metade dos casos, populações de bactérias cultiváveis mais abundantes não foram isoladas, levantando dúvidas sobre a capacidade das culturas em detectar o agente infeccioso real da otite e se são representativas para a análise terapêutica por antibiograma. Dessa forma, podemos concluir que as culturas bacterianas de otite nem sempre conseguem detectar a população bacteriana mais abundante. Além disso, os resultados indicaram evidências de que o microbioma possui uma dinâmica própria e que o tratamento pode impactar a diversidade da comunidade bacteriana. | pt_BR |
| dc.description.sponsorship | Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | diversidade microbiana | pt_BR |
| dc.subject | diagnóstico microbiológico | pt_BR |
| dc.subject | doença otológica | pt_BR |
| dc.subject | dermatologia veterinária | pt_BR |
| dc.subject | microbial diversity | pt_BR |
| dc.subject | microbiological diagnosis | pt_BR |
| dc.subject | otologic disease | pt_BR |
| dc.subject | veterinary dermatology | pt_BR |
| dc.title | Diagnóstico da otite externa em cães: comparação entre o microbioma auricular e cultura bacteriana. | pt_BR |
| dc.title.alternative | Diagnosis of otitis externa in dogs: comparison between ear microbiome and bacterial culture. | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | Canine otitis externa is the most common ear disease in dogs, affecting approximately 20% of the population, and occurs when there is an imbalance in the ear's microenvironment. The indiscriminate use of antimicrobials in the treatment of otitis contributes to the selection of resistant strains, hindering the effectiveness of treatment. The aim of this study was to analyze the microbiota present in dogs with otitis externa and compare it with the data obtained from bacterial cultures. Samples were collected from 48 dogs diagnosed with otitis externa during consultations at private clinics, totaling 106 ear swabs. The samples were collected in duplicate, with one destined for bacterial culture, inoculated on 5% Sheep's Blood Agar and Eosin- Methylene Blue Agar, and the other for DNA extraction. After purification, the isolates were identified using phenotypic methods, including MALDI-TOF-MS. A total of 125 isolates were obtained, belonging to 33 bacterial genera/species, and antimicrobial sensitivity tests were carried out using the disk-diffusion technique. In total, 42 samples met the quality criteria and could be sequenced. The abundance analysis revealed that the genera Staphylococcus and Corynebacterium stood out in the otologic populations. Beta-diversity indicated a significant correlation between different breeds, grouping at least two groups with similar microbial communities. The 40 sequenced samples made it possible to compare the data with the bacterial culture results. Comparing the results, it was possible to see that 7.27% (4) bacterial isolates did not appear in the sequencing. In 30.91% (17) of the samples, the culture was compatible with the most abundant genus in the microbiome, and in 61.82% (34) of the cultures, the culture result was not compatible with the most abundant microorganism in the sequencing. Of the latter, in 49.09% (27) of the cases, sequencing showed that there were more abundant cultivable genera than those found in the culture. In 29.09% (16) samples, the most abundant bacteria were anaerobic. In half of the cases, more abundant culturable bacterial populations were not isolated, raising doubts about the ability of cultures to detect the actual infectious agent of otitis and whether they are representative for therapeutic analysis by antibiogram. Thus, we can conclude that bacterial cultures of otitis are not always able to detect the most abundant bacterial population. In addition, the results provided evidence that microbiomes have their own dynamics, and that treatment can have an impact on the diversity of the bacterial community. | en |
| dc.contributor.advisor1 | Souza, Miliane Moreira Soares de | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0001-8325-9322 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/0865211214618618 | pt_BR |
| dc.contributor.advisor-co1 | Coelho, Irene da Silva | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0003-1357-2529 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/2191695584157582 | pt_BR |
| dc.contributor.referee1 | Souza, Miliane Moreira Soares de | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0001-8325-9322 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/0865211214618618 | pt_BR |
| dc.contributor.referee2 | Fernandes, Julio Israel | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0002-6936-1774 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/9221592908532393 | pt_BR |
| dc.contributor.referee3 | Coelho, Shana de Mattos de Oliveira | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0003-4165-5735 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/3212438357088121 | pt_BR |
| dc.contributor.referee4 | Melo, Dayanne Araujo de | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0002-3634-7220 | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/1205965922491865 | pt_BR |
| dc.contributor.referee5 | Motta, Cássia Couto da | - |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/7817008068360464 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/2695238386212786 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Veterinária | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Ciências Veterinárias | pt_BR |
| dc.relation.references | AALBAEK, B.; BEMIS, D.A.; SCHJAERFF, M.; KANIA, S.A.; FRANK, L.A.; GUARDABASSI, L. Coryneform bacteria associated with canine otitis externa. Veterinary Microbiology. v. 145, p. 292-298, 2010. ADKINS, N.L., HALL, J.A.; GEORGEL, P.T. The use of Quantitative Agarose Gel Electrophoresis for rapid analysis of the integrity of protein-DNA complexes. Journal of Biochemical and Biophysical Methods. v.70, n. 5, p. 721–726, 2007. AHMED, I.; YOKOTA, A.; YAMAZOE, A.; FUJIWARA, T. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. International Journal of Systematic and Evolutionary Microbiology. v. 57, n. 5, p. 1117-1125, 2007. ANDRADE-OLIVEIRA, A.L.; ROSSI, C.C.; SOUZA-SILVA, T.; GIAMBIAGI- DEMARVAL, G.; Staphylococcus nepalensis, a commensal of the oral microbiota of domestic cats, is a reservoir of transferrable antimicrobial resistance. Microbiology. v. 166, p. 727-734, 2020. ANGUS, J.C. Otic cytology in health and disease. Veterinary Clinics of North America: Small Animal Practice. v.34, p.411-424, 2004. AUGUST, J.R. Otitis Externa. Veterinary Clinics of North America: Small Animal Practice. v. 18, n. 4, p.731-742, 1988. BAJWA, J. Canine otitis externa – treatment and complications. The Canadian Veterinary Journal. v. 60, n. 1, p. 97-99, 2019. 42 BEASLEY, S.S.; MANNINEN, T.J.K.; SARIS, P.E.J. Lactic acid bacteria isolated from canine faeces, Journal of Applied Microbiology. v. 101, n. 1, p. 131–38, 2006. BLONDEAU, J.M. Antimicrobial resistance e ‘Man’s Best Friend’: what they give to us we might be giving right back. Future Microbiology. v. 12, p. 549-553, 2017. BOLGER, A.M.; LOHSE, M.; USADEL, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. v. 30, n. 15, p. 2114-2120, 2014. BORRIELO, G.; PARADISO, R.; CATOZZI, C; BRUNETTI, R.; ROCCABIANCA, P.; RICCARDI, M.G.; CECERE, B.; LECCHI, C.; FUSCO, G.; CECILIANI, F.; GALIERO, G. Cerumen microbial community shifts between healthy and otitis affectes dogs. PLOS ONE. v.15, n.11, 2020. BRADLEY, C.W.; LEE, F.F.; RANKIN, S.C.; KALANT, L.R.; HORWINSKI, J.; MORRIS, D.O.; GRICE, E.A.; CAIN, C.L. The otic microbiota and mycobiota in a referral population of dogs in eastern USA with otitis externa. Veterinary Dermatology. v.31, p.225-e49, 2020. BRCAST – Guia de Leitura – método de disco-difusão para teste de sensibilidade aos antimicrobianos do BRCAST-EUCAST. versão 10.0 (março de 2023). BRCAST - Método de Disco-Difusão EUCAST. versão 6.0 (agosto de 2018). BRCAST – Orientações do EUCAST para detecção de mecanismos de resistência e resistências específicas de importância clínica e/ou epidemiológica. versão 2.0 (julho de 2017). BRCAST – Tabelas de ponto de corte para interpretação de CIMs e diâmetros de halos. versão 13.0 (março de 2023). BUGDEN, D.L. Identification and antibiotic susceptibility of bacterial isolates from dogs with otitis externa in Australia. Australian Veterinary Journal. v. 91, p. 43-46, 2013. CAPORASO, J.G.; KUCZYNSKI, J.; STOMBAUGH, J. ET AL. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. v. 7, p. 335-336, 2010. CHAN, W.Y.; HICKEY, E.E.; PAGE, S.W.; TROTT, D.J.; HILL, P.B. Biofilm production by pathogens associated with canine otitis externa, and the antibiofilm activity of ionophores and antimicrobial adjuvants. Journal of Veterinary Pharmacology and Therapeutics. v. 42, p. 682-692, 2019. CHONG, J.; LIU, P.; ZHOU, G.; XIA, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols. v. 15, n. 3, p. 799–821, 2020. CLINICAL AND LABORATORY STANDARDS INSTITUTE. Performance standards for antimicrobial disk and dilution susceptibility test for bacteria isolated from animals. 6th ed. CLSI supplement VET01S. Wayne, PA, 2023. COLE, L.K.; RAJALA-SCHULTZ, P.J.; LORCH, G. Conductive hearing lossa in four dogs associated with the use of ointment-based otic medications. Veterinary Dermatology. v. 27, n. 43, 2016. 43 DE MARTINO, L.; NOCERA, F.P.; MALLARDO, K.; NIZZA, S.; MASTURZO, E.; FIORITO, F.; IOVANE, G.; CATALANOTTI, P. An update on microbiological causes of canine otitis externa in Campania Region, Italy. Asian Pacific Journal of Tropical Biomedicine. v. 6, p. 384-389, 2016. DUIM, B.; VERSTAPPEN, K.M.; BROENS, E.M.; LAARHOVEN, L.M.; VAN- DUIJKEREN, E.; HORDIJK, J.; DE-HEUS, P.; SPANINKS, M.; TIMMERMAN, A.J.; WAGENAAR, J.A. Changes in the population of methicillin-resistant Staphylococcus pseudintermedius and dissemination of antimicrobial-resistant phenotypes in the Netherlands. Journal of Clinical Microbiology. v.54, p. 283–288, 2016. GAITANIS, G.; MAGIATIS, P.; HANTSCHKE, M.; BASSUKAS, I.D.; VELEGRAKI, A. The Malassezia Genus in Skin and Systemic Diseases. Clinical Microbiology Reviews. v.25, n.1, p.106-141, 2012. GENSEKE, S.; BERISHA, M.; TEERSTEGEN, A.; MEYER, B.; KAASCH, A.J.; FÄBER, J.; SCHALK, E.; ZAUTNER, A.E.; ESSER, T.; KAHLFUß. Lautropia mirabilis sepsis in immunodeficiency: first report and genomic features. Infection. 2024. GHIMIRE, K.; KASARLA, R.R. Staphylococcus nepalensis: a new species from Nepal. Journal of Universal College of Medical Sciences. v. 11, n. 01, p. 69–72, 2023. GRAHAM-MIZE, C.A.; ROSSER, E.J., JR. Comparison of microbial isolates and susceptibility patterns from the external ear canal of dogs with otitis externa. Journal of the American Animal Hospital Association. v. 40, p. 102-108., 2004. GRONO, L.R. Studies of the microclimate of the external auditory ear canal in the dog. 1. Aural temperature. Research in Veterinary Science. v.11, p.307-311, 1970a GRONO, L.R. Studies of the microclimate of the external auditory ear canal in the dog. 3. Relative humidity within the external auditory meatus. Research in Veterinary Science. v.11, p.316-319, 1970b. HARVEY, R.H.; HARARI, J.; DELAUCHE, A.J. Microbiology of the canine external ear canal. In: Ear Disease of the Dog and Cat. Manson. p.35-38, 2005. HAYES, H.M.; PICKLE, L.W.; WILSON, G.P. Effects of ear type and weather on the prevalence of canine otitis externa. Research in Veterinary Science. v.42, p.294-298, 1987. JIN, M.; OSMAN, M.; GREEN, B.A.; YANG, Y.; AHUJA, A.; LU, Z.; CAZER, C.L. Evidence for the transmission of antimicrobial resistant bacteria between humans and companion animals: a scoping review. One Health. v. 17, 2023. KASAI, T.; FUKUI, Y.; AOKI, K.; ISHII, Y.; TATEDA, K. Changes in the ear canal microbiota of dogs with otitis externa. Journal of Applied Microbiology. v. 130, n.4, p.1084- 1091, 2021. KOCH, S.N.; TORRES, S.M.F; PLUMB, D.C. Canine and Feline Dermatology Drug Handbook. USA. Editora: John Wiley & Sons, 2012 44 KONEMAN, E. W.; PROCOP, G. W.; CHURCH, D. L.; HALL, G. S.; JANDA, W. M.; SCHRECKENBERGER, P. C.; WOODS, G. L. Diagnóstico Microbiológico, 7a ed. Rio de Janeiro. Editora: Guanabara Koogan, 1854p, 2018. KORBELIK, J.; SINGH, A.; ROUSSEAU, J.; WEESE, J.S. Analysis of the mycobiota in dogs with otitis externa compared to healthy individuals. Veterinary Dermatology. v.29, p.417- e138, 2018. KORBELIK, J.; SINGH, A.; ROUSSEAU, J.; WEESE, J.S. Characterization of the otic bacterial microbiota in dogs with otitis externa compared to health individuals. Veterinary Dermatology. v.30, p.228-e70, 2019. LARSSON, C.A.; LUCAS, R. Tratado de medicina externa: dermatologia veterinária. 2o ed. São Caetano do Sul. Editora Interbook, 1216 p, 2020. LEE, M.R.; HUANG, Y.T.; LIAO, C.H.; LAI, C.C.; LEE, P.I.; HSUEH, P.R. Bacteraemia caused by Weissella confusa at a university hospital in Taiwan, 1997–2007. Clinical Microbiology and Infecction. v. 17, n. 8, p. 1226-1231, 2011. LEONARD, C.; THIRY, D.; TAMINIAU, B.; DAUBE, G.; FONTAINE, J. External ear canal evaluation in dogs with chronic suppurative otitis externa: comparison of direct cytology, bacterial culture and 16S amplicon profiling. Veterinary Sciences. v.9, n.366, 2022. LI, H.; GOH, B.N.; TEH, W.K.; JIANG, Z.; GOH, J.P.Z.; GOH, A.; WU, G.; HOON, S.S.; RAIDA, M.; CAMATTARI, A.; YANG, L.; O’DONOGHUE, A.J.; DWASON-JR, T.L. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. Journal of Investigative Dermatology. v. 138, p. 1137-1145, 2018. LORD, J.; MILLIS, N.; JONES, R.D.; JOHNSON, B.; KANIA, S.A.; ODOI, A. Patterns of antimicrobial, multidrug and methicillin resistance among Staphylococcus spp. isolated from canine specimens submitted to a diagnostic laboratory in Tennessee, USA: a descriptive study. BMC Veterinary Research. v. 18, n. 91, 2022. LYSKOVA, P.; VYDRZALOVA, M.; MAZUROVA, J. Identification and antimicrobial susceptibility of bacteria and yeasts isolated from health dogs with otitis externa. Journal of Veterinary Medicine Series A. v. 54, p. 559-563, 2007. MARKEY, B.K.; LEONARD, F.C.; ARCHAMBAULT, M.; CULLINANE, A.; MAGUIRE, D. Clinical Veterinary Microbiology, 2a ed. Editora: Mosby Elsevier, 901p, 2013. MARTÍN-BARRASA, J.L.; LUPIOLA-GÓMEZ, P.; GONZALEZ-LAMA, Z.; TEJEDOR- JUNCO, M.T. Antibacterial susceptibility patterns of Pseudomonas strains isolated from chronic canine otitis externa. Journal of Veterinary Medicine Series B. v. 47, p. 191-196, 2000. MASHIAH, J.; KARADY, T.; FLISS-ISAKOV, N.; SPRECHER, E.; SLODOWNIK, D.; ARTZI, O.; SAMUELOV, L.; ELLENBOGEN, E.; GODNEVA, A.; SEGAL, E.; MAHARSHAL, N. Clinical efficacy of fecal microbial transplantation treatment in adults with moderate-to-severe atopic dermatitis. Immunity, Inflammation and Disease. v. 10, n. e570, 2022. 45 MILLER, J.M.; MILLER, S.A. A Guide to Specimen Management in Clinical Microbiology, 2o Ed, Washington, DC, ASM Press, 1998. MORIOKA, H.; OKA, K.; YAMADA, Y.; NAKANE, Y.; KOMIYA, H.; MURASE, C.; IGUCHI, M.; YAGI, T. Lysinibacillus fusiformis bacteremia: Case report and literature review. Journal of Infection and Chemotherapy. v. 28, n 2, p. 315-318, 2022. NARDONI, S.; MANCIANTI, F.; RUM, A.; CORAZZA, M. Isolation of Malassezia species from healthy cats and cats with otitis. Journal of Feline Medicine and Surgery. v.7, p. 141- 145, 2005. NGO, J.; TAMINIAU, B.; FALL, P.A.; DAUBE, G.; FONTAINE, J. Ear canal microbiota – a comparison between healthy dogs and atopic dogs without clinical signs of otitis externa. Veterinary Dermatology. v.29, p.425-e140, 2018. NOCERA, F.P.; AMBROSIO, M.; FIORITO, F.; CORTESE, L.; DE MARTINO, L. On Gram- Positive- and Gram-Negative-Bacteria-Associated canine and feline skin infections: a 4-year retrospective study of the University Veterinary Microbiology Diagnostic Laboratory of Naples, Italy. Animals. v. 11, p. 1603, 2021. NOVÁKOVÁ, D.; PANTŮČEK, R.; PETRÁŠ, P.; KOUKALOVÁ, D.; SEDLÁČEK, I. Occurance of Staphylococcus nepalensis strains in different sources including human clinical material. FEMS Microbiology Letters. v. 263, n. 2, p. 163–168, 2006. NUTALL, T. Managing recurrent otitis externa in dogs: what have we learned and what can we do better? Journal of the American Veterinary Medical Association. v. 261, n. S1, 2023. O’NEILL, D.G.; VOLK, A.V.; SOARES, T.; CHURCH, D.B.; BRODBELT, D.C.; PEGRAM, C. Frequency and predisposing factors for canine otitis externa in the UK — a primary veterinary care epidemiological view. Canine Medicine and Genetics. v. 8, n. 7, 2021. OLANO, A.; CHUA, J.; SCHROEDER, S.; MINARI, A.; LA SALVIA, M.; HALL, G. Weissella confusa (Basonym:Lactobacillus confusus) bacteremia: a case report. Journal of Clinical Microbiology. v. 39, n. 4, 2001. OLIVEIRA, L.C.; LEITE, C.A.L.; BRILHANTE, R.S.N.; CARVALHO, C.B.M. Comparative study of the microbial profile from bilateral canine otitis externa. The Canadian Veterinary Journal. v. 49, n.8, p. 785-788, 2008. PATERSON, S. A review of 200 cases of otitis externa in the dog. Veterinary Dermatology. v.14, p.249, 2002. PATERSON, S. Discovering the causes of otitis externa. In practice. v.38, p.7-11, 2016. PEREGO, R.; PROVERBIO, D.; DE GIORGI, G.B.; PEPA, A.D.; SPADA, E. Prevalence of otitis externa in stray cats in northern Italy. Journal of feline medicine and surgery. v.16, n.6, p.483-490, 2014. PHUMTHANAKORN, N.; PRAPASARAKUL, N.; YINDEE, J.; GRONSANG, D. Frequency, Distribution, and Antimicrobial Resistance of Coagulase-Negative Staphylococci 46 Isolated from Clinical Samples in Dogs and Cats. Microbial Drug Resistance. v. 28, n. 2, p. 236-243, 2022. PONN, P.C.; TIPOLD, A.; VOLK, A.V. Can we minimize the risk of dogs developing canine otitis externa? – a retrospective study on 321 dogs. Animals. v. 14, 2024. PYE, C. Pseudomonas otitis externa in dogs. The Canadian Veterinary Journal. v. 59, p. 1231-1234, 2018. PYE, C.C.; YU, A.A.; WEESE, J.S. Evaluation of biofilm production by Pseudomonas aeruginosa from canine ears and the impact of biofilm on antimicrobial susceptibility in vitro. Veterinary Dermatology. v. 24, p. 446, 2013. QUAST, C.; PRUESSE, E.; YILMAZ, P.; GERKEN, J.; SCHWEER, T.; YARZA, P.; PEPLIES, J.; GLÖCKNER, F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research. v. 41, n1, p. 590-596, 2013. RODRIGUES, N.M.; QUESSADA, A.M.; SILVA, F.L.; SILVA, E.M.C.; NETO, J.M.C.; LIMA, W. Epidemiologia e risco anestésico de cães portadores de otohematomas. Acta Scientiae Veterinariae. v.44, p.1354, 2016. RODRIGUES-HOFFMANN, A.; PATTERSON, A.P.; DIESEL, A.; LAWHON, S.D.; LY, H.J.; ELKINS-STEPHENSON, C.; MANSELL, J.; STEINER, J.M.; DOWD, S.E.; OLIVRY, T.; SUCHODOLSKI, J.S. The skin microbiome in healthy and allergic dogs. PLOS ONE. v.09, n.1, 2014. ROSALES, R.S.; RAMÍREZ, A.S.; MOYA-GIL, E.; FUENTE, S.N.; SÚAREZ-PEREZ, A.; POVEDA, J.B. Microbiological survey and evaluation of antimicrobial susceptibility patterns of microrganisms obtained from suspect cases of canine otitis externa in Gran Canaria, Spain. Animals. v. 14, n. 742, 2024. ROSSMANN, S.N.; WILSON, P.H.; HICKS, J.; CARTER, B.; CRON, S.G.; SIMON, C.; FLAITZ, C.M.; DEMMLER, G.J.; SHEARER, W.T.; KLINE, M.W. Isolation of Lautropia mirabilis from oral cavities of human immunodeficiency virus-infected children. Journal of Clinical Microbiology. v. 36, n. 6, 1998. ROSTAHER, A.; MORSY, Y.; FAVROT, C.; UNTERER, S.; SCHNYDER, M.; SCHARL, M.; FISCHER, N.M. Comparison of the gut microbiome between atopic and healthy dogs – preliminary data. Animals. v. 12, n. 2377, 2022. RYAN, M.P.; ADLEY, C.C. Ralstonia spp.: emerging global opportunistic pathogens. European Journal of Clinical Microbiology & Infectious Diseases. v. 33, p. 291-304, 2014. SAENGCHOOWONG, S.; JITVAROPAS, R.; POOMIPAK, W.; PRAIANANTATHAVORN, K.; PAYUNGPORN, S. Identification of bacteria associated with canine otitis externa based on 16S rDNA high-throughput sequencing. Veterinary Microbiology – Research Paper. v.54, p.3283-3290, 2023. SANTOS, R.G.; HURTADO, R.; GOMES, L.G.R.; PROFETA, R.; RIFICI, C.; ATTILI, A.R.; SPIER, S.J.; GIUSEPPE, M.; MORAIS-RODRIGUES, F.; GOMIDE, A.C.P.; BRENIG, B. Complete genome analysis of Glutamicibacter creatinolyticus from mare abscess and 47 comparative genomics provide insight of diversity and adaptation for Glutamicibacter. Gene. v. 741, 2020. SARIDOMICHELAKIS, M.N.; FARMAKI, R.; LEONTIDES, L.S.; KOUTINAS, A.F. Aetiology of canine otitis externa: a retrospective study of 100 cases. Veterinary Dermatology. v.18, p.341-347, 2007. SARTORI L, SACRAMENTO AG, SELLERA FP, FURLAN JPR, BARBOSA FB, ESPOSITO F, LINCOPAN N, KNÖBL T. Staphylococcus nepalensis infecting a companion animal: genomic insights from an emerging multidrug-resistant pathogen. New Microbes and New Infections. v. 27, n. 62, 2024. SCHERER, C.B.; BOTONI, L.S.; COURA, F.M.; SILVA, R.O.; SANTOS, R.; HEINEMANN, M.B.; COSTA-VAL, A.P. Frequency and antimicrobial susceptibility of Staphylococcus pseudintermedius in dogs with otitis externa. Ciência Rural. v. 48, n. 4, e20170738, 2018. SCHLOSS, P.D.; WESTCOTT, S.L.; RYABIN, T.; HALL, J.R.; HARTMANN, M.; HOLLISTER, E.B.; LESNIEWSKI, R.A.; OAKLEY, B.B.; PARKS, D.H.; ROBINSON, C.J.; SAHL, J.W.; STRES, B.; THALLINGER, G.G.; VAN-HORN, D.J.; WEBER, S. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology. v. 75, p. 7537-7541, 2009. SCHRECKENBERGER, P.C. Questioning dogmas: proposed new rules and guidelines for the clinical laboratory. ASM News. v.67, p. 388-389, 2001 SECKER, B.; SHAW, S.; ATTERBURY, R.J. Pseudomonas spp. in canine otitis externa. Microorganisms. v.11, p. 2650, 2023. SPERGSER, J.; WIESER, M.; TÄUBEL, M.; ROSSELLÓ-MORA, R.A.; ROSENGARTEN, R.; BUSSE, H.J. Staphylococcus nepalensis sp. nov., isolated from goats of the Himalayan region. International Journal of Systematic and Evolutionary Microbiology. v. 53, n. 6, 2023. STURINO, J.M. Literature-based safety assessment of an agriculture- and animal-associated microorganism: Weissella confusa. Regulatory Toxicology and Pharmacology. v. 95, p. 142- 152, 2018. TANG, S.; PREM, A.; TJOKROSURJO, J.; SARY, M.; VAN-BEL, M.A.; RODRIGUES- HOFFMANN, A.; KAVANAGH, M.; WU, G.; VAN-EDEN, M. E.; KRUMBECK, J.A. The canine skin and ear microbiome: a comprehensive survey of pathogens implicated in canine skin and ear infections using a novel next-generation-sequencing-based assay. Veterinary Microbiology. v.247, 2020. TESIN, N.; STOJANOVIC, D.; STANCIC, I.; KLADAR, N.; RUŽIC, Z.; SPASOJEVIC, J.; TOMANIC, D.; KOVACEVIC, Z. Prevalence of the microbiological causes of canine otitis externa and the antibiotic susceptibility of the isolated bacterial strains. Polish Journal of Veterinary Sciences. v. 26, p. 449–459, 2023. URAL, K. Fecal microbiota transplantation capsule therapy via oral route for combatting atopic dermatitis in dogs. Ankara Üniversitesi Veteriner Fakültesi Dergisi. v. 69, p. 211–219, 2022. 48 VELEGRAKI, A.; CAFARCHIA, C.; GAITANIS, G.; IATTA, R.; BOEKHOUT, T. Malassezia infections in humans and animals: pathophysiology, detection and treatment. PLOS Pathogens, v. 11, n. 1, 2015. WENZLER, E.; KAMBOJ, K.; BALADA-LLSAT, J.M. Severe sepsis secondary to persistent Lysinibacillus sphaericus, Lysinibacillus fusiformis and Paenibacillus amylolyticus bacteremia. International Journal of Infectious Diseases. v. 35, p. 93-95, 2015. WORLD HEALTH ORGANIZATION. Global action plan on antimicrobial resistance. WHO Library, 2015. ISBN 978 92 4 150976 3. Available from: http://apps.who.int/iris/bitstream/10665/193736/1/9789241509763eng.pdf?ua=1 (Data de acesso: setembro de 2022). WORLD HEALTH ORGANIZATION; FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS; UNITED NATIONS ENVIRONMENT PROGRAMME; WORLD ORGANISATION FOR ANIMAL HEALTH. Implementing the global action plan on antimicrobial resistance: first quadripartite biennial report. Geneva, 2023. Licence: CC BY-NC-SA 3.0 IGO. ZUR, G.L.; LIFSHITZ, B.; BDOLAH-ABRAM, T. The association between the signalment, common causes of canine otitis externa and pathogens. Journal of Small Animal Practice. v.52. p.254-258, 2011. | pt_BR |
| dc.subject.cnpq | Medicina Veterinária | pt_BR |
| Appears in Collections: | Doutorado em Ciências Veterinárias | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Mário Tatsuo Makita- pdf.pdf | 4.34 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
