Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/23433Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Nadur, Nathalia Fonseca | - |
| dc.date.accessioned | 2025-10-03T17:11:07Z | - |
| dc.date.available | 2025-10-03T17:11:07Z | - |
| dc.date.issued | 2025-07-10 | - |
| dc.identifier.citation | NADUR, Nathalia Fonseca. Otimização Estrutural de 7-((piperidin-1-il)alcoxi)-cumarinas: Homologação e Construção de Heterociclos Miméticos Visando o Desenvolvimento de Novos Inibidores Mistos de Colinesterases. 2025. 288 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/23433 | - |
| dc.description.abstract | A Doença de Alzheimer (DA) caracteriza-se por ser um distúrbio neurodegenerativo progressivo e irreversível de memória e outras funções cognitivas, afetando o funcionamento ocupacional e social. O uso de compostos envolvendo ligantes multialvo (MTDLs), como inibidores mistos da enzima acetilcolinesterase (AChE) que atuam inibindo indiretamente a agregação do β-amiloide (Aβ) ou que combinem a inibição das colinesterases (ChEs) com outros mecanismos de ação vem sendo apontado como de grande valia para o tratamento da DA devido à possibolidade de se modular simultaneamente alvos que contribuem para a instalação e manutenção da doença. Recentemente, nosso grupo de trabalho (LaDMol-QM) descreveu duas classes de cumarinas (24 e 25a-b) que possuíam atividade inibitória mista, atuando no sítio catalítico (CAS) e periférico (PAS) ao mesmo tempo, com valores de CI50 de até 20 nM sobre a AChE e seletividades de até 354 vezes sobre a butirilcolinesterase (BChE). Tendo como base o mapa farmacofórico dessas séries, este trabalho tem como objetivo geral o planejamento, síntese e a avaliação farmacológica de uma série de benzil-triazol-cumarinas e de heterocíclos miméticos de cumarinas como possíveis agentes inibidores da enzima AChE de forma mista. Foram propostas três séries, sendo a primeira uma otimização da série triazol- cumarina, com a síntese de novos derivados benzílicos (série A), e as séries com os heterociclos miméticos quinolinona (série B) e aminoquinazolina (série C). A síntese da série A, homóloga superior da série 25, foi concluída após dez etapas sintéticas, levando a obtenção de dez novos derivados da série triazol-cumarina (26a-j), em que todos os compostos foram capazes de inibir a AChE com valores de CI50 variando de 4,2 a 103,8 nM e seletividades de até 685 vezes frente a BChE. O estudo de ancoramento molecular mostrou consistência com os resultados do estudo de cinética enzimática de compostos triazol-cumarínicos, que os classifica como inibição do tipo mista. O potencial multialvo da série A foi evidenciado pelos resultados obtidos frente a hH3R, MAO-A e MAO-B. A síntese da série B, bioisóstero clássico da série 24, foi concluída após seis etapas sintéticas, levando a obtenção de sete novos derivados da quinolinona (58a-g), que demonstraram um perfil de inibição dual das colinesterases (ChEs). Os estudos de ancoramento molecular permitiram elucidar os distintos mecanismos de inibição observados para os derivados da série B. A síntese da série C, bioisóstero não-clássico da série 24, foi realizada de forma convergente após a obtenção dos dois principais blocos de construção reacional, do fenol-2-aminoquinazolina e do cloridrato de cloroalquil piperidina, levando a obtenção de dois novos derivados da série aminoquinazolina (67a-b), que demonstraram ser capazes de inibir a BChE de forma seletiva. O estudo de ancoramento molecular mostrou consistência com os resultados do estudo de cinética enzimática, que os classifica como inibição do tipo mista. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Alzheimer | pt_BR |
| dc.subject | Inibidores colinesterásicos | pt_BR |
| dc.subject | Multialvo | pt_BR |
| dc.subject | cholinesterase inhibitors | pt_BR |
| dc.subject | multitarget | pt_BR |
| dc.title | Otimização Estrutural de 7-((piperidin-1-il)alcoxi)-cumarinas: Homologação e Construção de Heterociclos Miméticos Visando o Desenvolvimento de Novos Inibidores Mistos de Colinesterases | pt_BR |
| dc.title.alternative | Structural Optimization of 7-((piperidin-1-yl)alkoxy)- coumarins: Homologation and Construction of Mimetic Heterocycles Aiming at the Development of New Mixed Cholinesterase Inhibitors | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | Alzheimer's disease (AD) is characterized by being a progressive and irreversible neurodegenerative disorder of memory and other cognitive functions, affecting occupational and social functioning. The use of compounds involving multitarget-directed ligands (MTDLs), such as mixed inhibitors of the enzyme acetylcholinesterase (AChE) that indirectly suppress aggregation of β-amyloid (Aβ) or combine cholinesterase (ChEs) inhibition with other mechanisms, has been observed as a high-value objective for AD treatment due to the possibility to inhibit simultaneously different targets that contribute to the onset and maintenance of the disease. Recently, our research group (LaDMol-QM) described two classes of coumarins (24 and 25a-b) that exhibited mixed inhibitory activity, acting on at the catalytic site (CAS) and at the peripheral site (PAS) simultaneously, with IC50 values of up to 20 nM on AChE and selectivities of up to 354-fold over butyrylcholinesterase (BChE). Based on the pharmacophoric map of these series, this work has as its general objective the design, synthesis, and pharmacological evaluation of a series of benzyl-triazole-coumarins and coumarin mimetic heterocycles as possible mixed inhibitors of the AChE enzyme. Three series were proposed: the first, an optimization of the triazole-coumarin series involving the synthesis of new benzyl derivatives (series A); the second, a series with mimetic heterocycles, including quinolinone (series B) and aminoquinazoline (series C). The synthesis of series A, a superior homolog of series 25, was completed after ten synthetic steps, leading to the production of ten new derivatives of the triazole-coumarin series (26a-j), in which all compounds were able to inhibit AChE with IC50 values ranging from 4.2 to 103.8 nM and selectivities of up to 685-fold against BChE. The molecular docking study showed consistency with the results of the enzymatic kinetics study of triazole-coumarin compounds, which classified them as mixed-type inhibition. The multitarget potential of series A was demonstrated by the results obtained against hH3R, MAO-A, and MAO-B. The synthesis of series B, a classical bioisostere of series 24, was completed after six synthetic steps, leading to the production of seven new quinolinone derivatives (58a-g), which demonstrated a dual inhibition profile of cholinesterases (ChEs). Molecular docking studies elucidated the distinct inhibition mechanisms observed for the B series derivatives. The synthesis of the C series, a non-classical bioisostere of the 24 series, was performed in a convergent manner after obtaining the two main reaction building blocks, phenol-2-amino quinazoline and chloroalkyl piperidine hydrochloride, leading to the production of two new derivatives of the amino quinazoline series (67a-b), which were shown to be capable of inhibiting BChE selectively. The molecular docking study showed consistency with the results of the enzyme kinetics study, which classified them as mixed-type inhibition. | en |
| dc.contributor.advisor1 | Kümmerle, Arthur Eugen | - |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5598000938584486 | pt_BR |
| dc.contributor.referee1 | Kümmerle, Arthur Eugen | - |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/5598000938584486 | pt_BR |
| dc.contributor.referee2 | Lima, Aurea Echevarria Aznar Neves | - |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/1879077396134052 | pt_BR |
| dc.contributor.referee3 | Caleffi, Guilherme da Silva | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0001-9703-3404 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/5663421512698987 | pt_BR |
| dc.contributor.referee4 | Sant'Anna, Carlos Mauricio Rabello de | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0003-1989-5038 | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/2087099684752643 | pt_BR |
| dc.contributor.referee5 | Pinheiro, Pedro de Sena Murteira | - |
| dc.contributor.referee5ID | https://orcid.org/0000-0003-4148-4243 | pt_BR |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/5967618384293645 | pt_BR |
| dc.creator.ID | https://orcid.org/0000-0002-5948-5810 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/4851384421417833 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Química | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Química | pt_BR |
| dc.relation.references | ABBAS, Kashif et al. Multi-target approach to Alzheimer’s disease prevention and treatment: antioxidant, anti-inflammatory, and amyloid- modulating mechanisms. Neurogenetics, v. 26, n. 1, p. 39, 1 abr. 2025. ABDALLAH, Abdallah E. Review on anti-alzheimer drug development: approaches, challenges and perspectives. RSC Advances, v. 14, n. 16, p. 11057–11088, 2024. ALI, Nisha et al. Molecular mechanisms and biomarkers in neurodegenerative disorders: a comprehensive review. Molecular Biology Reports, v. 52, n. 1, p. 337, dez. 2025. ALZHEIMER, A. Uber eigenartige Erkrankung der Hirnrinde. All Z Psychiatr, v. 64, p. 146–148, 1907. ALZPIPELINE. AlzPipeline. Disponível em: <https://alzpipeline.com/>. Acesso em: 15 maio. 2025. AMEEN, Taha Basit et al. Amyloid solutions: lecanemab, gantenerumab, and donanemab in the treatment of Alzheimer’s disease. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, v. 61, n. 1, p. 37, 8 maio 2025. AÑAZCO, Tito et al. First in class pyrrolo[2,3-d]pyrimidine derivatives fused to fluorobenzylpiperidines as dual ligands of acetylcholinesterase and histamine H3 receptor. Archiv der Pharmazie, v. 358, n. 3, p. e2400387, 2025. AZAM, Uzma; NASEER, Muhammad Moazzam; ROCHAIS, Christophe. Analysis of skeletal diversity of multi-target directed ligands (MTDLs) targeting Alzheimer’s disease. European Journal of Medicinal Chemistry, v. 286, p. 117277, mar. 2025. BAUTISTA‐AGUILERA, Óscar M. et al. Multitarget‐Directed Ligands Combining Cholinesterase and Monoamine Oxidase Inhibition with Histamine H3 R Antagonism for Neurodegenerative Diseases. Angewandte Chemie International Edition, v. 56, n. 41, p. 12765–12769, 2 out. 2017. BINDA, Claudia et al. Structures of Human Monoamine Oxidase B Complexes with Selective Noncovalent Inhibitors: Safinamide and Coumarin Analogs. Journal of Medicinal Chemistry, v. 50, n. 23, p. 5848–5852, 1 nov. 2007. BOURNE, Yves et al. Conformational Flexibility of the Acetylcholinesterase Tetramer Suggested by X-ray Crystallography *. Journal of Biological Chemistry, v. 274, n. 43, p. 30370–30376, 22 out. 1999. BRUS, Boris et al. Discovery, Biological Evaluation, and Crystal Structure of a Novel Nanomolar Selective Butyrylcholinesterase Inhibitor. Journal of Medicinal Chemistry, v. 57, n. 19, p. 8167–8179, 9 out. 2014. BUKKE, Vidyasagar Naik et al. The Dual Role of Glutamatergic Neurotransmission in Alzheimer’s Disease: From Pathophysiology to Pharmacotherapy. International Journal of Molecular Sciences, v. 21, n. 20, p. 7452, 9 out. 2020. 155 BURNS, A.; ILIFFE, S. Alzheimer’s disease. BMJ, v. 338, n. feb05 1, p. b158–b158, 5 fev. 2009. CAO, Jiasheng et al. Oxidation of Lindane with Fe(II)-Activated Sodium Persulfate. Environmental Engineering Science, v. 25, n. 2, p. 221–228, mar. 2008. CAREY, FRANCIS A.; SUNDBERG, RICHARD J. Advanced Organic Chemistry Part A: Structure and Mechanisms Part B: Reactions and Synthesis. Chemistry International, v. 24, n. 5, p. 28–29, set. 2002. CHEIGNON, C. et al. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biology, v. 14, p. 450–464, abr. 2018. CHEN, Jiangmin et al. Refining the interactions between microglia and astrocytes in Alzheimer’s disease pathology. Neuroscience, v. 573, p. 183–197, maio 2025a. CHEN, Leilei et al. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduction and Targeted Therapy, v. 10, n. 1, p. 31, 3 fev. 2025b. CHEN, Weiming et al. Oxidative Aromatization of 3,4-Dihydroquinolin-2(1 H )-ones to Quinolin-2(1 H )-ones Using Transition-Metal-Activated Persulfate Salts. The Journal of Organic Chemistry, v. 84, n. 13, p. 8702–8709, 5 jul. 2019. CHEN, Zhi-Ru et al. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules, v. 27, n. 6, p. 1816, 10 mar. 2022. CLAYDEN, Jonathan; GREEVES, Nick; WARREN, Stuart. Organic Chemistry. [S.l.]: OUP Oxford, 2012. CLINICALTRIALS. ClinicalTrials.gov. Disponível em: <https://clinicaltrials.gov/>. Acesso em: 15 maio. 2025. COMMISSIONER, Office of the. FDA Approves First Drug to Treat Agitation Symptoms Associated with Dementia due to Alzheimer’s Disease. Disponível em: <https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-treat- agitation-symptoms-associated-dementia-due-alzheimers-disease>. Acesso em: 15 maio. 2025. COPELAND, Robert A. Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists. 1. ed. [S.l.]: Wiley, 2013. CUMMINGS, Jeffrey et al. Alzheimer’s disease drug development pipeline: 2024. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, v. 10, n. 2, p. e12465, abr. 2024. CZARNECKA, Kamila et al. New cyclopentaquinoline hybrids with multifunctional capacities for the treatment of Alzheimer’s disease. Journal of Enzyme Inhibition and Medicinal Chemistry, v. 33, n. 1, p. 158–170, 1 jan. 2018. 156 DAINA, Antoine; ZOETE, Vincent. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem, v. 11, n. 11, p. 1117–1121, 2016. DAS, Jharna R.; TIZABI, Yousef. Additive Protective Effects of Donepezil and Nicotine Against Salsolinol-Induced Cytotoxicity in SH-SY5Y Cells. Neurotoxicity Research, v. 16, n. 3, p. 194–204, 1 out. 2009. DE BOER, Danna et al. A Comprehensive Review of Cholinesterase Modeling and Simulation. Biomolecules, v. 11, n. 4, p. 580, 15 abr. 2021. DE CONTO, Véronique et al. In vitro differentiation modifies the neurotoxic response of SH- SY5Y cells. Toxicology in Vitro, v. 77, p. 105235, 1 dez. 2021. DE SOUZA, Gabriela Alves et al. Discovery of novel dual-active 3-(4- (dimethylamino)phenyl)-7-aminoalcoxy-coumarin as potent and selective acetylcholinesterase inhibitor and antioxidant. Journal of Enzyme Inhibition and Medicinal Chemistry, v. 34, n. 1, p. 631–637, 1 jan. 2019. DEMIR, Ayhan S. et al. Manganese(III) acetate-mediated synthesis of biaryls under microwave irradiation. Tetrahedron, v. 66, n. 6, p. 1308–1312, fev. 2010. DEMIR, Ayhan S.; FINDIK, Hamide. Potassium permanganate/carboxylic acid/organic solvent: a powerful reagent for enone oxidation and aryl coupling reactions. Tetrahedron, v. 64, n. 27, p. 6196–6201, jun. 2008. DO N. GOULART, Paula et al. Butyrylcholinesterase - BuChE: A Potential Target for Development of Drugs for Alzheimer’s Disease Treatment. Revista Virtual de Química, v. 13, n. 1, p. 90–126, 2021. DOMINGUEZ-GORTAIRE, Jose et al. Alzheimer’s Disease: Exploring Pathophysiological Hypotheses and the Role of Machine Learning in Drug Discovery. International Journal of Molecular Sciences, v. 26, n. 3, p. 1004, 24 jan. 2025. EGAN, William J.; MERZ, Kenneth M.; BALDWIN, John J. Prediction of Drug Absorption Using Multivariate Statistics. Journal of Medicinal Chemistry, v. 43, n. 21, p. 3867–3877, 1 out. 2000. ELLMAN, George L. et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, v. 7, n. 2, p. 88–95, 1 jul. 1961. FANG, Cheng et al. Buntanetap, a Novel Translational Inhibitor of Multiple Neurotoxic Proteins, Proves to Be Safe and Promising in Both Alzheimer’s and Parkinson’s Patients. The Journal of Prevention of Alzheimer’s Disease, v. 10, n. 1, p. 25–33, 1 jan. 2023. FAYYAZ, Ammara et al. Investigation of 3-Phenylcoumarin Derivatives as Potential Multi- target Inhibitors for Human Cholinesterases and Monoamine oxidases: A Computational Approach. Applied Biochemistry and Biotechnology, v. 196, n. 11, p. 8389–8409, nov. 2024. 157 FERRI, Cleusa P. et al. Global prevalence of dementia: a Delphi consensus study. The Lancet, v. 366, n. 9503, p. 2112–2117, 17 dez. 2005. GAO, Mingshan et al. Discovery and Optimization of 3-(2-(Pyrazolo[1,5-a]pyrimidin-6- yl)ethynyl)benzamides as Novel Selective and Orally Bioavailable Discoidin Domain Receptor 1 (DDR1) Inhibitors. Journal of Medicinal Chemistry, v. 56, n. 8, p. 3281–3295, 25 abr. 2013. GAZVODA, Martin et al. Mechanism of copper-free Sonogashira reaction operates through palladium-palladium transmetallation. Nature Communications, v. 9, n. 1, p. 4814, 16 nov. 2018. GHOSE, Arup K.; VISWANADHAN, Vellarkad N.; WENDOLOSKI, John J. A Knowledge- Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. Journal of Combinatorial Chemistry, v. 1, n. 1, p. 55–68, 12 jan. 1999. HAN, Xu; HE, Gefei. Toward a Rational Design to Regulate β-Amyloid Fibrillation for Alzheimer’s Disease Treatment. ACS Chemical Neuroscience, v. 9, n. 2, p. 198–210, 21 fev. 2018. HARDY, John. Testing times for the “amyloid cascade hypothesis”. Neurobiology of aging, v. 23, n. 6, p. 1073–1074, 1 nov. 2002. HE, Chuan et al. Synergistic Catalysis in the Sonogashira Coupling Reaction: Quantitative Kinetic Investigation of Transmetalation. Angewandte Chemie International Edition, v. 52, n. 5, p. 1527–1530, 28 jan. 2013. HIPPIUS, Hanns; NEUNDÖRFER, Gabriele. The discovery of Alzheimer’s disease. Dialogues in Clinical Neuroscience, v. 5, n. 1, p. 101–108, 31 mar. 2003. HUANG, Li-Kai et al. Clinical trials of new drugs for Alzheimer disease: a 2020–2023 update. Journal of Biomedical Science, v. 30, n. 1, p. 83, 2 out. 2023. HUANG, Yadong; MUCKE, Lennart. Alzheimer Mechanisms and Therapeutic Strategies. Cell, v. 148, n. 6, p. 1204–1222, 16 mar. 2012. HUSSAIN, Mohd Kamil et al. Phytomolecules as Alzheimer’s therapeutics: A comprehensive review. European Journal of Medicinal Chemistry, v. 288, p. 117401, abr. 2025. JEREMIC, Danko; JIMÉNEZ-DÍAZ, Lydia; NAVARRO-LÓPEZ, Juan D. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: a systematic review. Ageing Research Reviews, v. 72, p. 101496, 1 dez. 2021. JIN, Liqun et al. Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne “click reaction”. Science Advances, v. 1, n. 5, p. e1500304, 5 jun. 2015. KHANDELWAL, Riya et al. Recent advances in triazole synthesis via click chemistry and their pharmacological applications: A review. Bioorganic & Medicinal Chemistry Letters, v. 112, p. 129927, nov. 2024. 158 KHANFAR, Mohammad A. et al. Design, synthesis, and biological evaluation of novel oxadiazole- and thiazole-based histamine H3R ligands. Bioorganic & Medicinal Chemistry, v. 26, n. 14, p. 4034–4046, ago. 2018. KIM, Byeong-Hyeon et al. Second-generation anti-amyloid monoclonal antibodies for Alzheimer’s disease: current landscape and future perspectives. Translational Neurodegeneration, v. 14, n. 1, p. 6, 27 jan. 2025. KNEZEVIC, Dunja; MIZRAHI, Romina. Molecular imaging of neuroinflammation in Alzheimer’s disease and mild cognitive impairment. Progress in Neuro- Psychopharmacology and Biological Psychiatry, Neuroimaging in psychiatry: Steps toward the clinical application of brain imaging in psychiatric disorders. v. 80, p. 123–131, 3 jan. 2018. KNOPMAN, David S. et al. Alzheimer disease. Nature Reviews Disease Primers, v. 7, n. 1, p. 33, 13 maio 2021. KOCHI, Jay K.; RUST, Frederick F. Oxidation of Free Radicals from Unsaturated Compounds by Cupric Salts. Journal of the American Chemical Society, v. 84, n. 20, p. 3946–3953, out. 1962. KOTTKE, Tim et al. Receptor-specific functional efficacies of alkyl imidazoles as dual histamine H3/H4 receptor ligands. European Journal of Pharmacology, v. 654, n. 3, p. 200–208, 11 mar. 2011. KRAEPELIN, Emil. Psychiatrie : ein Lehrbuch für Studierende und Ärzte. [S.l.]: Leipzig : Barth, 1915. KUMAR, Naveen et al. In Vitro and In Vivo Investigations of Chromone Derivatives as Potential Multitarget-Directed Ligands: Cognitive Amelioration Utilizing a Scopolamine- Induced Zebrafish Model. ACS Chemical Neuroscience, v. 15, n. 14, p. 2565–2585, 17 jul. 2024. L, Nelson, David; M, Cox, Michael. Princípios de Bioquímica de Lehninger. [S.l.]: Artmed Editora, 2022. LEE, Hyewon H. et al. Behavioral and Psychological Symptoms (BPSD) in Alzheimer’s Disease (AD): Development and Treatment. In: KIDD, Emma J.; NEWHOUSE, Paul A. (Orgs.). Neurobiology of Alzheimer’s Disease. Cham: Springer Nature Switzerland, 2025. p. 245–273. LEONEL SILVA SOUSA, Gleyton et al. Design, synthesis and antiproliferative evaluation of new acridine-thiosemicarbazone derivatives as topoisomerase IIα inhibitors. Results in Chemistry, v. 7, p. 101371, 1 jan. 2024. LI, Nuojin; ZHOU, Tian; FEI, Erkang. Actions of Metformin in the Brain: A New Perspective of Metformin Treatments in Related Neurological Disorders. International Journal of Molecular Sciences, v. 23, n. 15, p. 8281, jan. 2022. 159 LI, Qi et al. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry, v. 158, p. 463–477, out. 2018. LIPINSKI, Christopher A. et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, MOST CITED PAPERS IN THE HISTORY OF ADVANCED DRUG DELIVERY REVIEWS: A TRIBUTE TO THE 25TH ANNIVERSARY OF THE JOURNAL. v. 64, p. 4–17, 1 dez. 2012. LIU, Wenjie et al. Design, synthesis and biological evaluation of novel coumarin derivatives as multifunctional ligands for the treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry, v. 242, p. 114689, 15 nov. 2022. LIU, Yuqing et al. The interaction between ageing and Alzheimer’s disease: insights from the hallmarks of ageing. Translational Neurodegeneration, v. 13, n. 1, p. 7, 23 jan. 2024. MALEK, Rim et al. New Dual Small Molecules for Alzheimer’s Disease Therapy Combining Histamine H3 Receptor (H3R) Antagonism and Calcium Channels Blockade with Additional Cholinesterase Inhibition. Journal of Medicinal Chemistry, v. 62, n. 24, p. 11416–11422, 26 dez. 2019. MANZOOR, Shoaib et al. Discovery of Quinolinone Hybrids as Dual Inhibitors of Acetylcholinesterase and Aβ Aggregation for Alzheimer’s Disease Therapy. ACS Chemical Neuroscience, v. 15, n. 3, p. 539–559, 7 fev. 2024. MARTIN-JIMÉNEZ, Cynthia Alexandra et al. Relationship Between Obesity, Alzheimer’s Disease, and Parkinson’s Disease: an Astrocentric View. Molecular Neurobiology, v. 54, n. 9, p. 7096–7115, 1 nov. 2017. MATTHEWS, Dawn C. et al. Rasagiline effects on glucose metabolism, cognition, and tau in Alzheimer’s dementia. Disponível em: <https://alz.journals.onlinelibrary.wiley.com/doi/epdf/10.1002/trc2.12106>. Acesso em: 17 maio. 2025. MAURI, M. C. et al. Clinical pharmacology of atypical antipsychotics: an update. EXCLI Journal, v. 13, p. 1163–1191, 13 out. 2014. MINISTÉRIO DA SAÚDE. Relatório Nacional sobre a Demência no Brasil. Disponível em: <https://www.gov.br/saude/pt-br/assuntos/noticias/2024/setembro/relatorio-nacional- sobre-a-demencia-estima-que-cerca-de-8-5-da-populacao-idosa-convive-com-a-doenca>. Acesso em: 26 abr. 2025. MOHAMED, Tarek; RAO, Praveen P. N. 2,4-Disubstituted quinazolines as amyloid-β aggregation inhibitors with dual cholinesterase inhibition and antioxidant properties: Development and structure-activity relationship (SAR) studies. European Journal of Medicinal Chemistry, v. 126, p. 823–843, 27 jan. 2017. MOSMANN, Tim. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, v. 65, n. 1, p. 55– 63, 16 dez. 1983. 160 MUEGGE, Ingo; HEALD, Sarah L.; BRITTELLI, David. Simple Selection Criteria for Drug- like Chemical Matter. Journal of Medicinal Chemistry, v. 44, n. 12, p. 1841–1846, 1 jun. 2001. MURPHY, Kayla S.; GOLDEN, Julia C.; TAMPI, Rajesh R. Dexmedetomidine for agitation in dementia: Current data and future direction. Journal of the American Geriatrics Society, v. 73, n. 2, p. 552–557, fev. 2025. NACHON, Florian et al. Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase. Biochemical Journal, v. 453, n. 3, p. 393–399, 12 jul. 2013. NADUR, Nathalia Fonseca. Síntese e avaliação farmacológica de novas 3-(1,2,3-triazol)- cumarinas planejadas para o tratamento da Doença de Alzheimer. Seropédica, RJ: UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO, 2020. NAOI, Makoto et al. Type A monoamine oxidase; its unique role in mood, behavior and neurodegeneration. Journal of Neural Transmission, v. 132, n. 3, p. 387–406, mar. 2025. NEVES SANTOS, Sabrina et al. Regioselective microwave synthesis and derivatization of 1,5-diaryl-3-amino-1,2,4-triazoles and a study of their cholinesterase inhibition properties. RSC Advances, v. 9, n. 35, p. 20356–20369, 2019. NICHOLS, Emma et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, v. 7, n. 2, p. e105–e125, fev. 2022. NIETO-ALAMILLA, Gustavo et al. The Histamine H3 Receptor: Structure, Pharmacology, and Function. Molecular Pharmacology, v. 90, n. 5, p. 649–673, nov. 2016. OGOS, Martyna; STARY, Dorota; BAJDA, Marek. Recent Advances in the Search for Effective Anti-Alzheimer’s Drugs. International Journal of Molecular Sciences, v. 26, n. 1, p. 157, 27 dez. 2024. OYOVWI, Mega Obukohwo et al. Molecular pathways: the quest for effective MAO-B inhibitors in neurodegenerative therapy. Molecular Biology Reports, v. 52, n. 1, p. 240, dez. 2025. PARKINSONSDISEASE, Editorial Team 3. min. Medications for Parkinson’s Disease. Disponível em: <https://parkinsonsdisease.net/medications>. Acesso em: 18 maio. 2025. PEITZIKA, Stergiani-Chrysovalanti; PONTIKI, Eleni. A Review on Recent Approaches on Molecular Docking Studies of Novel Compounds Targeting Acetylcholinesterase in Alzheimer Disease. Molecules, v. 28, n. 3, p. 1084, 21 jan. 2023. PENG, Xueqian et al. Structural basis for recognition of antihistamine drug by human histamine receptor. Nature Communications, v. 13, n. 1, p. 6105, 15 out. 2022. PEREIRA, Thiago Moreira et al. Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years. Current Topics in Medicinal Chemistry, v. 18, n. 2, p. 124–148, 24 abr. 2018. 161 PERRY, Elaine K. et al. CHANGES IN BRAIN CHOLINESTERASES IN SENILE DEMENTIA OF ALZHEIMER TYPE. Neuropathology and Applied Neurobiology, v. 4, n. 4, p. 273–277, jul. 1978. PICCIOTTO, Marina R.; HIGLEY, Michael J.; MINEUR, Yann S. Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior. Neuron, v. 76, n. 1, p. 116–129, 4 out. 2012. PORSTEINSSON, A. P. et al. Diagnosis of Early Alzheimer’s Disease: Clinical Practice in 2021. The Journal of Prevention of Alzheimer’s Disease, v. 8, n. 3, p. 371–386, jul. 2021. PRZYBYŁOWSKA, Maja et al. Design, synthesis and biological evaluation of novel N- phosphorylated and O-phosphorylated tacrine derivatives as potential drugs against Alzheimer’s disease. Journal of Enzyme Inhibition and Medicinal Chemistry, v. 37, n. 1, p. 1012–1022, 31 dez. 2022. PURANIK, Nidhi; SONG, Minseok. Glutamate: Molecular Mechanisms and Signaling Pathway in Alzheimer’s Disease, a Potential Therapeutic Target. Molecules, v. 29, n. 23, p. 5744, 5 dez. 2024. QUEDA, Fausto et al. Novel Donepezil–Arylsulfonamide Hybrids as Multitarget-Directed Ligands for Potential Treatment of Alzheimer’s Disease. Molecules, v. 26, n. 6, p. 1658, jan. 2021. RAJASEKHAR, K.; GOVINDARAJU, Thimmaiah. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer’s disease. RSC Advances, v. 8, n. 42, p. 23780–23804, 2018. RODRIGUES, Daniel A. et al. Structure–property relationship studies of 3-acyl-substituted furans: the serendipitous identification and characterization of a new non-classical hydrogen bond donor moiety. New Journal of Chemistry, v. 44, n. 26, p. 10994–11005, 2020. ROSTOVTSEV, Vsevolod V. et al. A Stepwise Huisgen Cycloaddition Process: Copper(I)- Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angewandte Chemie International Edition, v. 41, n. 14, p. 2596–2599, 15 jul. 2002. ROY, Sreekanya et al. An approach to predict and inhibit Amyloid Beta dimerization pattern in Alzheimer’s disease. Toxicology Reports, v. 14, p. 101879, jun. 2025. RULLO, Mariagrazia et al. In Vitro Evaluation of Novel Furo[3,2-c]coumarins as Cholinesterases and Monoamine Oxidases Inhibitors. Molecules, v. 30, n. 8, p. 1830, jan. 2025. RYDBERG, Edwin H. et al. Complexes of Alkylene-Linked Tacrine Dimers with Torpedo californica Acetylcholinesterase: Binding of Bis(5)-tacrine Produces a Dramatic Rearrangement in the Active-Site Gorge. Journal of Medicinal Chemistry, v. 49, n. 18, p. 5491–5500, 1 set. 2006. SCOTLAND, Kevin M.; VREUGDENHIL, Andrew J.; SHETRANJIWALLA, Shegufa. The reaction of thionyl chloride with β amino alcohols: a computational investigation to delineate the mechanisms of the well-established synthesis that forms the 1-chloro-(2- 162 alkylamino)ethanes and the 1,2,3 alkyloxathiazolidine-2-oxide compounds. Canadian Journal of Chemistry, v. 103, n. 4, p. 114–128, abr. 2025. SENAWEERA, Sameera; WEAVER, Jimmie D. S N Ar catalysis enhanced by an aromatic donor–acceptor interaction; facile access to chlorinated polyfluoroarenes. Chemical Communications, v. 53, n. 54, p. 7545–7548, 2017. SHI, Riri et al. Structure‐Based Specific Detection and Inhibition of Monoamine Oxidases and Their Applications in Central Nervous System Diseases. ChemBioChem, v. 20, n. 12, p. 1487–1497, 14 jun. 2019. SIES, Helmut. Oxidative stress: a concept in redox biology and medicine. Redox Biology, v. 4, p. 180–183, 1 abr. 2015. SILVA SOUSA, Gleyton Leonel et al. Discovery of novel thiosemicarbazone-acridine targeting butyrylcholinesterase with antioxidant, metal complexing and neuroprotector abilities as potential treatment of Alzheimer’s disease: In vitro, in vivo, and in silico studies. European Journal of Medicinal Chemistry, v. 281, p. 117030, jan. 2025. SINGH, Som et al. Amylin and Secretases in the Pathology and Treatment of Alzheimer’s Disease. Biomolecules, v. 12, n. 7, p. 996, 17 jul. 2022. SMITH, Michael B. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. [S.l.]: John Wiley & Sons, 2020. SOLOMONS, T. W. Graham; FRYHLE, Craig B.; SNYDER, Scott A. Organic Chemistry. [S.l.]: John Wiley & Sons, 2022. SON, Se-Young et al. Structure of human monoamine oxidase A at 2.2-Å resolution: The control of opening the entry for substrates/inhibitors. Proceedings of the National Academy of Sciences, v. 105, n. 15, p. 5739–5744, 15 abr. 2008. SONI, Urvashi et al. Exploring Alzheimer’s disease treatment: Established therapies and novel strategies for future care. European Journal of Pharmacology, v. 998, p. 177520, jul. 2025. SONOGASHIRA, Kenkichi. Development of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. Journal of Organometallic Chemistry, v. 653, n. 1, p. 46–49, 1 jul. 2002. SONOGASHIRA, Kenkichi; TOHDA, Yasuo; HAGIHARA, Nobue. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Letters, v. 16, n. 50, p. 4467–4470, 1 jan. 1975. SZUKIEWICZ, Dariusz. Histaminergic System Activity in the Central Nervous System: The Role in Neurodevelopmental and Neurodegenerative Disorders. International Journal of Molecular Sciences, v. 25, n. 18, p. 9859, 12 set. 2024. THOMAS, Shilu Deepa et al. Targeting Microglia in Neuroinflammation: H3 Receptor Antagonists as a Novel Therapeutic Approach for Alzheimer’s Disease, Parkinson’s Disease, and Autism Spectrum Disorder. Pharmaceuticals, v. 17, n. 7, p. 831, 25 jun. 2024. 163 TIPTON, Philip W. Updates on pharmacological treatment for Alzheimer’s disease. Neurologia i Neurochirurgia Polska, v. 58, n. 2, p. 150–160, 30 abr. 2024. TOCCI, Darcy et al. Beyond expectations: investigating nilotinib’s potential in attenuating neurodegeneration in Alzheimer’s disease. Alzheimer’s Research & Therapy, v. 17, n. 1, p. 60, 15 mar. 2025. TOK, Fatih. Recent Studies on Heterocyclic Cholinesterase Inhibitors Against Alzheimer’s Disease. Chemistry & Biodiversity, v. 22, n. 4, p. e202402837, abr. 2025. VEBER, Daniel F. et al. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, v. 45, n. 12, p. 2615–2623, 1 jun. 2002. WHO. Dementia. Disponível em: <https://www.who.int/news-room/fact- sheets/detail/dementia>. Acesso em: 26 abr. 2025. WINGEN, Kerstin; STARK, Holger. Scaffold variations in amine warhead of histamine H3 receptor antagonists. Drug Discovery Today: Technologies, v. 10, n. 4, p. e483–e489, dez. 2013. WORRELL, B. T.; MALIK, J. A.; FOKIN, V. V. Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions. Science, v. 340, n. 6131, p. 457–460, 26 abr. 2013. WU, Yuanbo; CHEN, Meiqiao; JIANG, Jielong. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion, v. 49, p. 35–45, 1 nov. 2019. YANG, Aihong et al. Novel coumarin derivatives as multifunctional anti-AD agents: Design, synthesis, X-ray crystal structure and biological evaluation. Journal of Molecular Structure, v. 1268, p. 133747, 15 nov. 2022. YANG, Eleen; ABD-ELRAHMAN, Khaled S. Alzheimer’s disease treatment landscape: current therapies and emerging mechanism-targeted approaches. Neural Regeneration Research, v. 20, n. 12, p. 3531–3532, dez. 2025. YEE, Dominic J.; BALSANEK, Vojtech; SAMES, Dalibor. Ligands for Aldoketoreductases. , 25 fev. 2010. Disponível em: <https://patents.google.com/patent/US20100048604A1/en>. Acesso em: 14 dez. 2024 YOO, Jeasang et al. Multi-target-directed therapeutic strategies for Alzheimer’s disease: controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chemical Science, v. 16, n. 5, p. 2105–2135, 2025. YOUDIM, Moussa B. H. Multi Target Neuroprotective and Neurorestorative Anti-Parkinson and Anti-Alzheimer Drugs Ladostigil and M30 Derived from Rasagiline. Experimental Neurobiology, v. 22, n. 1, p. 1–10, 30 mar. 2013. YUAN, Jin-Wei et al. KMnO 4 /AcOH-mediated C3-selective direct arylation of coumarins with arylboronic acids. RSC Advances, v. 6, n. 42, p. 35936–35944, 2016. 164 ZARINI-GAKIYE, Elahe et al. Recent Updates in the Alzheimer’s Disease Etiopathology and Possible Treatment Approaches: A Narrative Review of Current Clinical Trials. Current Molecular Pharmacology, v. 13, n. 4, p. 273–294, 2 nov. 2020. ZHAO, Jin et al. Pd/C Catalyzed Carbonylation of Azides in the Presence of Amines. Organic Letters, v. 18, n. 8, p. 1736–1739, 15 abr. 2016. ZHAO, Xian; LIU, Wei. Recent Advances in Transition-Metal-Catalyzed Sonogashira Cross- Coupling Reactions of Alkyl Electrophiles. Synthesis, v. 56, n. 08, p. 1244–1258, abr. 2024. ZHAO, Xingyi et al. Dual-target inhibitors based on acetylcholinesterase: Novel agents for Alzheimer’s disease. European Journal of Medicinal Chemistry, v. 279, p. 116810, dez. 2024. ZHAO, Yan; ZHAO, Baolu. Oxidative Stress and the Pathogenesis of Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity, v. 2013, p. 1–10, 2013. ŻOŁEK, Teresa et al. Coumarin Derivative Hybrids: Novel Dual Inhibitors Targeting Acetylcholinesterase and Monoamine Oxidases for Alzheimer’s Therapy. International Journal of Molecular Sciences, v. 25, n. 23, p. 12803, 28 nov. 2024. | pt_BR |
| dc.subject.cnpq | Química | pt_BR |
| Appears in Collections: | Doutorado em Química | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| NATHALIA FONSECA NADUR.pdf | 33.42 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
