Use este identificador para citar ou linkar para este item: http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/23438
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorBarros, Guilherme Mota Maciel do Rêgo-
dc.date.accessioned2025-10-06T20:45:25Z-
dc.date.available2025-10-06T20:45:25Z-
dc.date.issued2025-02-25-
dc.identifier.citationBARROS, Guilherme Mota Macieldo do Rêgo. Caracterização molecular e toxicológica de Ctenocephalides felis felis frente ao Fipronil. 2025. 47 f. Dissertação (Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/23438-
dc.description.abstractA pulga é um importante ectoparasita que pode causar enfermidades em animais domésticos. Ctenocephalides felis felis é a espécie mais comum nesses animais e o Fipronil, um fenilpirazol, atua nos canais de cloro ativados pelo GABA (ácido gama-aminobutírico), levando à morte da pulga por hiperexcitação. Diante da possibilidade de resistência ao Fipronil em C. felis felis, é necessário monitorar essa questão. Assim, o objetivo deste estudo foi caracterizar, por meio de bioensaios, a susceptibilidade de C. felis felis ao Fipronil em uma cepa laboratorial. Além disso, buscou-se detectar a possível presença de mutações no gene Rdl (Resistance to Dieldrin) na mesma cepa laboratorial e em uma cepa de campo. O estudo também investigou a presença de Rickettsia felis, uma bactéria de importância veterinária, cujo principal hospedeiro é C. felis felis. Para a cepa laboratorial, foram determinados os valores de concentração letal (CL) para C. felis felis, sendo a CL50 de 10,39 ppm e a CL90 de 23,71 ppm. Nas análises moleculares, verificou-se que 94,73% (36/38) das pulgas da cepa laboratorial apresentavam homozigose para a mutação de resistência no gene Rdl. Na cepa de campo, esse mesmo genótipo foi encontrado em 90,83% (109/120) das pulgas. Além disso, 5% (6/120) das pulgas da cepa de campo apresentaram heterozigose para a mutação, enquanto 4,16% (5/120) possuíam homozigose para alelos sem a mutação associada à resistência. A presença de DNA de R. felis foi detectada em 94,73% (36/38) das pulgas da cepa laboratorial e em 27,50% (33/120) das pulgas da cepa de campo. Em comparação com outros estudos toxicológicos, a colônia laboratorial foi caracterizada como susceptível ao Fipronil, apesar da predominância do genótipo de resistência para o gene Rdl. Na cepa de campo, também houve predomínio desse genótipo. Com base nesses resultados, conclui-se que a mutação no gene Rdl, isoladamente, não é suficiente para conferir resistência ao Fipronil em C. felis felis. Neste estudo, a presença de R. felis pode ter influenciado a susceptibilidade das pulgas ao inseticida. Além disso, verificou-se que essa mutação é predominante tanto em populações laboratoriais quanto em populações de campopt_BR
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectResistência parasitáriapt_BR
dc.subjectEctoparasitospt_BR
dc.subjectFenilpirazolpt_BR
dc.subjectEndossimbiontept_BR
dc.subjectparasitic resistancept_BR
dc.subjectectoparasitespt_BR
dc.subjectphenylpyrazolept_BR
dc.subjectendosymbiontpt_BR
dc.titleCaracterização molecular e toxicológica de Ctenocephalides felis felis Frente ao Fipronilpt_BR
dc.title.alternativeMolecular and Toxicological Characterization from Ctenocephalides felis felis to Fipronilen
dc.typeDissertaçãopt_BR
dc.description.abstractOtherThe flea is an important ectoparasite that can cause diseases in domestic animals. Ctenocephalides felis felis is the most common species found in these animals, and Fipronil, a phenylpyrazole, acts on chloride channels activated by GABA (gamma-aminobutyric acid), leading to flea death through hyperexcitation. Given the potential for Fipronil resistance in C. felis felis, it is necessary to monitor this issue. Thus, the objective of this study was to characterize, through bioassays, the susceptibility of C. felis felis to Fipronil in a laboratory strain. Additionally, the study aimed to detect the possible presence of mutations in the Rdl (Resistance to Dieldrin) gene in both a laboratory strain and a field strain. Another objective was to investigate the presence of Rickettsia felis, an important bacterium for veterinary medicine, whose primary host is C. felis felis. For the laboratory strain, lethal concentration (LC) values were determined for C. felis felis, with LC50 at 10.39 ppm and LC90 at 23.71 ppm. Molecular analyses revealed that 94.73% (36/38) of the fleas from the laboratory strain were homozygous for the resistance mutation in the Rdl gene. In the field strain, the same genotype was found in 90.83% (109/120) of the fleas. Furthermore, 5% (6/120) of the fleas from the field strain were heterozygous for the mutation, while 4.16% (5/120) were homozygous for alleles without the resistance-associated mutation. The presence of R. felis DNA was detected in 94.73% (36/38) of the fleas from the laboratory strain and in 27,50% (33/120) of the fleas from the field strain. Compared to other toxicological studies, the laboratory colony was characterized as susceptible to Fipronil, despite the predominance of the resistance genotype in the Rdl gene. In the field strain, this genotype was also predominant. Based on these results, it can be concluded that the Rdl gene mutation alone is not sufficient to confer resistance to Fipronil in C. felis felis. In this study, the presence of R. felis may have played a role in the susceptibility of C. felis felis to the insecticide. Additionally, it was observed that this mutation is predominant in both laboratory and field flea populationsen
dc.contributor.advisor1Azevedo, Thaís Ribeiro Correia-
dc.contributor.advisor1IDhttp://lattes.cnpq.br/6049103053269712pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6049103053269712pt_BR
dc.contributor.referee1Azevedo, Thaís Ribeiro Correia-
dc.contributor.referee1IDhttp://lattes.cnpq.br/6049103053269712pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6049103053269712pt_BR
dc.contributor.referee2Furtado, Tassia Torres-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-4439-0218pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1503080262726213pt_BR
dc.contributor.referee3Doyle, Rovaina Laureano-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-8282-6564pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2961444018721919pt_BR
dc.creator.IDhttps://orcid.org/0000-0003-0753-0840pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/0821350616370628pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Veterináriapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspt_BR
dc.relation.referencesABBOTT, W. S. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, v, 18, n. 2, p. 265-267, 1925. ABBOTT, R. C. et al. Experimental and natural infection with Bartonella henselae in domestic cats. Comparative Immunology, Microbiology and Infectious Diseases, v. 20, n. 1, p. 41-51, 1997. AHN, K.-S. et al. Ctenocephalides canis is the dominant flea species of dogs in the Republic of Korea. Parasites & Vectors, v. 11, n. 1, 2018. ALHO, A. M. et al. Dipylidium caninum, da ingestão da pulga ao controle do cestóide mais comum do cão e do gato. Clínica Animal, v. 1, p. 26-29, 2015. ARAÚJO, F. R. et al. Severe cat flea infestation of dairy calves in Brazil. Veterinary Parasitology, v. 80, n. 1, p. 83–86, 1998. AZAD, A. F. Epidemiology of murine typhus. Annual Review of Entomology, v. 35, n. 1, p. 553–569, 1990. AZAD, A. F. et al. Flea-borne rickettsioses: ecologic considerations. Emerging Infectious Diseases, v. 3, n. 3, p. 319-327, 1997. BASS, C. et al. Identification of mutations associated with pyrethroid resistance in the para-type sodium channel of the cat flea, Ctenocephalides felis. Insect Biochemistry and Molecular Biology, v. 34, n. 12, p. 1305–1313, 2004. BEHAR, A. et al. Rickettsia felis infection in a common household insect pest, Liposcelis bostrychophila (Psocoptera: Liposcelidae). Applied and Environmental Microbiology, v. 76, n. 7, p. 2280–2285, 2010. 37 BENNET-CLARK, H. C.; LUCEY, E. C. A. The jump of the flea: A study of the energetics and a model of the mechanism. The Journal of Experimental Biology, v. 47, n. 1, p. 59–76, 1967. BERTI, J.; MANZO, D.; RAMOS, M.; GUERRA, L. A. Eficacia y actividad residual del regulador de crecimiento pyriproxyfen sobre larvas de Aedes aegypti (Diptera: Culicidae) en condiciones de laboratorio. Boletín de Malariología y Salud Ambiental, v. 53, n. 1, p. 56–64, 2013. BLAND, D. M.; HINNEBUSCH, B. J. Feeding Behavior Modulates Biofilm-Mediated Transmission of Yersinia pestis by the Cat Flea, Ctenocephalides felis. PLoS neglected tropical diseases, v. 10, n. 2, 2016. BLANTON, L. S. The rickettsioses: A practical update. Infectious disease clinics of North America, v. 33, n. 1, p. 213–229, 2019. BOSSARD, R. L. et al. Insecticide susceptibilities of cat fleas (Siphonaptera: Pulicidae) from several regions of the United States. Journal of Medical Entomology, v. 39, n. 5, p. 742–746, 2002. BOSSARD, R. L. et al. Review of insecticide resistance in cat fleas (Siphonaptera: Pulicidae). Journal of Medical Entomology, v. 35, n. 4, p. 415–422, 1998. BOWMAN, D. D. Georgis’ Parasitology for Veterinarians - Elsevier eBook on Vitalsource (Retail Access Card). 10. ed. [s.l.] Saunders, 2013. BROWN, A.W.A.; PAL, R. Resistência a inseticidas em artrópodes. 2a ed. Genebra: Organização Mundial da Saúde; 1971. BRUNET, S. et al. Rdl gene polymorphism and sequence analysis and relation to in vivo fipronil susceptibility in strains of the cat flea. Journal of Economic Entomology, v.102, n. 1, p. 366-372, 2009. 38 BURDEN, G. S.; SMITTLE, B. J. Laboratory methods for evaluation of toxicants for the bed bug and the oriental rat flea. Journal of Economic Entomology, v. 61, n. 6, p. 1565– 1567, 1968. BUSVINE, J. R.; LIEN, J. Methods for measuring insecticide susceptibility levels in bed- bugs, cone-nosed bugs, fleas and lice. Bulletin of the World Health Organization, v. 24, p. 509–517, 1961. COLE, L. M. et al. Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pesticide Biochemistry and Physiology, v. 46, n. 1, p. 47–54, 1993. COLLART, M. G.; HINK, W. F. Development of resistance to malathion in cat flea (Siphonaptera: Pulicidae). Journal of Economic Entomology, v. 79, n. 6, p. 1570–1572, 1986. COUSTAU, C.; FFRENCH-CONSTANT, R. Detection of cyclodiene insecticide resistance‐associated mutations by single‐stranded conformational polymorphism analysis. Pesticide Science, v. 43, n. 4, p. 267–271, 1995. CRUZ-VAZQUEZ, C. et al. Seasonal occurrence of Ctenocephalides felis felis and Ctenocephalides canis (Siphonaptera:Pulicidae) infesting dogs and cats in an urban area in Cuernavaca, Mexico. Journal of Medical Entomology, v. 38, n. 1, p. 111–113, 2001. CUNNINGHAM, J. et al. Residual efficacy of Frontline Top Spot for the control of fleas and ticks in the dog. Proceedings of the North American Veterinary Conference, Orlando, 11-15, 1997. DABORN, P. et al. Detection of insecticide resistance-associated mutations in cat flea Rdl by TaqMan-allele specific amplification. Pesticide Biochemistry and Physiology, v. 79, n. 1, p. 25–30, 2004. DAVIES, T. G. E. et al. Knockdown resistance to DDT and pyrethroids: from target‐site mutations to molecular modelling. Pest Management Science, v. 64, n. 11, p. 1126–1130, 2008. 39 DEAN, K. R. et al. Human ectoparasites and the spread of plague in Europe during the Second Pandemic. Proceedings of the National Academy of Sciences of the United States of America, v. 115, n. 6, p. 1304–1309, 2018. DIEPENS, N. J. et al. Pet dogs transfer veterinary medicines to the environment. The Science of the Total Environment, v. 858, n. 1, 2023. DRYDEN, M. Biology of fleas of dogs and cats. Compendium of Continuing Education Practice Veterinarian, [s.l.], v. 15, p. 569–579, 1993. DRYDEN, M. W. et al. Efficacy of fluralaner flavored chews (Bravecto) administered to dogs against the adult cat flea, Ctenocephalides felis felis and egg production. Parasites & Vectors, v. 8, n. 1, p. 364, 2015. DRYDEN, M. W.; GAAFAR, S. M. Blood consumption by the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Journal of Medical Entomology, v. 28, n. 3, p. 394–400, 1991. DYER, R. E. et al. Typhus fever: Transmission of endemic typhus by rubbing either crushed infected fleas or infected flea feces into wounds. Public Health Reports, v. 47, n. 3, p. 131, 1932. EISELE, M. et al. Investigations on the biology, epidemiology, pathology and control of Tunga penetrans in Brazil: I. Natural history of tungiasis in man. Parasitology Research, v. 90, n. 2, p.87-99, 2003. ELLWANGER, J. H.; CHIES, J. A. B. Zoonotic spillover: Understanding basic aspects for better prevention. Genetics and Molecular Biology, v. 44, n. 1 Suppl 1, p. e20200355, 2021. FELDMEIER, H. et al. Investigations on the biology, epidemiology, pathology and control of Tunga penetrans in Brazil: IV. Clinical and histopathology. Parasitology Research, v. 94, n. 4, p. 275–282, 2004. 40 FINKELSTEIN, J. L. et al. Studies on the growth of Bartonella henselae in the cat flea (Siphonaptera: Pulicidae). Journal of Medical Entomology, v. 39, n. 6, p. 915–919, 2002. FLORIN, T. A. et al. Beyond cat scratch disease: widening spectrum of Bartonella henselae infection. Pediatrics, v. 121, n. 5, p. e1413-25, 2008. GASSER, R. B. et al. Fingerprinting sequence variation in ribosomal DNA of parasites by DGGE. Molecular Cell Probes, v. 10, p. 99–105, 1996. GUNASEKARA, A. S. et al. Environmental fate and toxicology of fipronil. Journal of Pesticide Science, v. 32, n. 3, p. 189–199, 2007. GUPTA, R. C.; ANADÓN, A. Fipronil. Veterinary Toxicology, p. 533–538, 2018. GUPTILL, L. Bartonella infections in cats: what is the significance? In practice, v. 34, n. 8, p. 434–445, 2012. HALLIWELL, R. E. W. Factors in the development of flea-bite allergy. Veterinary Clinics of North America, v. 79, p.1273- 1278, 1984. HAMZA, L. et al. WITHDRAWN: Understanding the epidemiology and molecular basis of the insecticides-resistance mechanisms in fleas. New Microbes and New Infections, 2018. HEMINGWAY, J. et al. The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, v. 34, n. 7, p. 653–665, 2004. HESS, A. D. Current status of insecticide resistance in insects of public health importance. The American Journal of Tropical Medicine and Hygiene, v. 2, n. 2, p. 311–318, 1953. 41 HINK, W. F.; NEEDHAM, G. R. Vacuuming is lethal to all postembryonic life stages of the cat flea, Ctenocephalides felis. Entomologia Experimentalis et Applicata, v. 125, n. 2, p. 221–222, 2007. HORTA, M. C. et al. Rickettsia felis in Ctenocephalides felis felis from Five Geographic Regions of Brazil. The American Journal of Tropical Medicine and Hygiene, v. 91, n. 1, p. 96–100, 2014. KONTSEDALOV, S. et al. The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Management Science, v. 64, n. 8, p. 789-792, 2008. KRÄMER, F.; MENCKE, N. Flea Biology and Control: The biology of the cat flea control and prevention with imidacloprid in small animals. 2001. ed. Berlim, Germany: Springer, 2012. KRASNOV, B. R. Functional and Evolutionary Ecology of Fleas: A model for ecological parasitology. Cambridge, England: Cambridge University Press, 2009. KUGELER, K. J. et al. Epidemiology of human plague in the United States, 1900-2012. Emerging Infectious Diseases, v. 21, n. 1, p. 16–22, 2015. LEGENDRE, K. P.; MACALUSO, K. R. Rickettsia felis: a review of transmission mechanism of na emerging pathogen, Tropical Medicine and Infectious Disease, v. 2, n. 4, p. 64, 2017. LINARDI, P. M.; GUIMARÃES, L. R. Sifonápteros do Brasil. In: MUSEU DE ZOOLOGIA USP/FAPESP (Org.). São Paulo: [s.n.], 2000. 155 p. LINARDI, P. M.; SANTOS, J. L. C. Ctenocephalides felis felis vs. Ctenocephalides canis (Siphonaptera: Pulicidae): some issues in correctly identify these species. Revista 42 Brasileira de Parasitologia Veterinaria [Brazilian Journal of Veterinary Parasitology], v. 21, n. 4, p. 345–354, 2012. LINDEMANN, B. A.; MCCALL, J. W. Experimental Dipetalonema reconditum infections in dogs. The Journal of Parasitology, v. 70, n. 1, p. 167–168, 1984. LIU, X. D.; GUO, H. F. Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. Current Opinion in Insect Science, v. 33, p. 84-89, 2019. MARCHIONDO, A. A. et al. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) second edition: Guidelines for evaluating the efficacy of parasiticides for the treatment, prevention and control of flea and tick infestations on dogs and cats. Veterinary Parasitology, v. 194, p. 84-97, 2013. MARSELLA, R. Advances in flea control. The Veterinary clinics of North America. Small Animal Practice, v. 29, n. 6, p. 1407–1424, 1999. MARRUGAL, A. et al. Morphological, biometrical, and molecular characterization of Ctenocephalides felis and Ctenocephalides canis isolated from dogs from different geographical regions. Parasitology Research, v. 112, p. 2289–2298, 2013. MARTINEZ, M. A. C. et al. Manifestations and management of flea-borne rickettsioses. Research and Reports in Tropical Medicine, v. 12, p. 1–14, 2021. MEDEL-MATUS, J. S. et al. Receptor Gaba: implicaciones farmacológicas a nivel central. Archivos de Neurociencia (Mex), v. 16, n. 1, p. 40-45, 2011. MEDVEDEV, S. G. Specific features of the distribution and host associations of fleas (Siphonaptera). Entomological Review, v. 82, p. 1165-1177, 2002. MÉNIER, K.; BEAUCOURNU, J.-C. Taxonomic study of the genus Ctenocephalides stiles & Collins, 1930 (Insecta: Siphonaptera: Pulicidae) by using aedeagus characters. Journal of Medical Entomology, v. 35, n. 5, p. 883–890, 1998. 43 MOORE, C. O. et al. Vector biology of the cat flea Ctenocephalides felis. Trends in Parasitology, v. 40, n. 4, p. 324–337, 2024. NAPOLI, E. et al. Development of Acanthocheilonema reconditum (Spirurida, Onchocercidae) in the cat flea Ctenocephalides felis (Siphonaptera, Pulicidae). Parasitology, v. 141, n. 13, p. 1718–1725, 2014. NARAHASHI, T. Neurophysiological effects of insecticides. Em: Hayes’ Handbook of Pesticide Toxicology. [s.l.] Elsevier, 2010. p. 799–817. NG-NGUYEN, D. et al. Domestic dogs are mammalian reservoirs for the emerging zoonosis flea-borne spotted fever, caused by Rickettsia felis. Scientific Reports, v. 10, n. 1, p. 4151, 2020. OSBRINK, W. L.; RUST, M. K.; REIERSON, D. A. Distribution and control of cat fleas in homes in Southern California (Siphonaptera: Pulicidae). Journal of Economic Entomology, v. 79, n. 1, p. 135–140, 1986. PATERSON, S. Canine flea control: too much choice? Companion Animal, v. 24, n. 9, p. 452–457, 2019. REIF, K. E.; MACALUSO, K. R. Ecology of Rickettsia felis: A review. Journal of Medical Entomology, v. 46, n. 4, p. 723–736, 2009. ROBINSON, W. H. Integrated pest management in the urban environment. American Entomologist, v. 42, n. 2, p. 76–78, 1996. ROUSSEAU, J. et al. Dipylidium caninum in the twenty-first century: epidemiological studies and reported cases in companion animals and humans. Parasites & Vectors, v. 15, n. 1, 2022. RUSSELL, R.; OTRANTO, D.; WALL, R. Encyclopedia of Medical and Veterinary Entomology. Wallingford, England: CABI Publishing, 2013. 44 RUST, M. K. Advances in the control of Ctenocephalides felis (cat flea) on cats and dogs. Trends in Parasitology, v. 21, n. 5, p. 232–236, 2005. RUST, M.K. The Biology and Ecology of Cat Fleas and Advancements in Their Pest Management: A Review. Insects, v. 8, n. 4, p. 118, 2017. RUST, M. K. et al. Susceptibility of cat fleas (Siphonaptera: Pulicidae) to fipronil and imidacloprid using adult and larval bioassays. Journal of Medical Entomology, v. 51, n. 3, p. 638–643, 2014. RUST, M. K. et al. Susceptibility of adult cat fleas (Siphonaptera: Pulicidae) to insecticides and status of insecticide resistance mutations at the rdl and knockdown resistance loci. Parasitology Research, v. 114, n. S1, p. 7–18, 2015. RUST, M. K. Recent Advancements in the Control of Cat Fleas. Insects, v. 11, n. 10, p. 668, 2020. SACHSE, M. M.; GULDBAKKE, K. K.; KHACHEMOUNE, A. Tunga penetrans: a stowaway from around the world. Journal of the European Academy of Dermatology and Venereology: JEADV, v. 21, n. 1, p. 11–16, 2007. SAENZ VERA, C. DDT in prevention of plague in Ecuador. Boletin de la Oficina Sanitaria Panamericana. Pan American Sanitary Bureau, v. 36, n. 2, p. 193–195, 1954. SAMISH, M. et al. Biocontrol of the cat flea, Ctenocephalides felis, by entomopathogenic nematodes and fungi. Biological Control: theory and applications in pest management, v. 149, n. 104301, p. 104301, 2020. SANTOLIN, I. D. A. C. et al. Detection and identification of Rickettsia agents in ticks collected from wild birds in Brazil by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Revista Brasileira de Medicina Veterinária, v. 35, n. 2, 2013. 45 SAWICKI, R. M. Unusual response of DDT-resistant houseflies to carbinol analogues of DDT. Nature, v. 275, n. 5679, p. 443–444, 1978. SCHEIDT, V. J. Flea allergy dermatitis. The Veterinary Clinics of North America. Small Animal Practice, v. 18, n. 5, p. 1023–1042, 1988. SHORETTE, K. Outcomes of global environmentalism: Longitudinal and cross-national trends in chemical fertilizer and pesticide use. Social Forces: a scientific medium of social study and interpretation, v. 91, n. 1, p. 299–325, 2012. SIDDIQUI, J. A. et al. Role of insect gut Microbiota in pesticide degradation: A review. Frontiers in Microbiology, v. 13, 2022. SILVERMAN, J.; RUST, M. K. Extended longevity of the pre-emerged adult cat flea (Siphonaptera: Pulicidae) and factors stimulating emergence from the pupal cocoon. Annals of the Entomological Society of America, v. 78, n. 6, p. 763–768, 1985. SILVERMAN, J. et al. Influence of temperature and humidity on survival and development of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Journal of Medical Entomology, v. 18, n. 1, p. 78–83, 1981. SOCOLOVSCHI, C. et al. Rickettsia felis-associated uneruptive fever, Senegal. Emerging Infectious Diseases, v. 16, n. 7, p. 1140–1142, 2010. STEHR, C. M. et al. The developmental neurotoxicity of fipronil: notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicological Sciences: an official journal of the Society of Toxicology, v. 92, n. 1, p. 270–278, 2006. TAYLOR-WELLS, J. et al. The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl GABA receptor. Journal of Neurochemistry, v. 135, n. 4, p. 705–713, 2015. 46 VERIFIED MARKET REPORTS. Flea Control Products and Services Market. 2024. Disponível em: https://www.verifiedmarketreports.com/pt/product/flea-control-products- and-services-market/. Acesso em: 31 mar. 2025. VOBIS, M. et al. Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers. Parasitology Research, v. 94, p. 219–226, 2004. WALL, R.; SHEARER, D. Veterinary Entomology: Arthropod ectoparasites of veterinary importance. Dordreque, Netherlands: Springer, 1997. WANG, X. et al. Fipronil insecticide toxicology: oxidative stress and metabolism. Critical Reviews in Toxicology, v. 46, n. 10, p. 876–899, 2016. WHALON, M. E.; MOTA-SANCHEZ, D.; HOLLINGWORTH, R. M. (EDS.). Global Pesticide Resistance in Arthropods. [s.l.] Cabi, 2008. WHO. Global Plan for Insecticide Resistance Management. 2012. ZHAO, X.; YEH, J. Z.; SALGADO, V. L.; NARAHASHI, T. Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons. The Journal of Pharmacology and Experimental Therapeutics, v. 310, n. 1, p. 192-201, 2004. ZHU, F. et al. Insecticide resistance and management strategies in urban ecosystems. Insects, v. 7, n. 1, p. 2, 2016.pt_BR
dc.subject.cnpqMedicina Veterináriapt_BR
Aparece nas coleções:Mestrado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
GUILHERME MOTA MACIEL DO RÊGO BARROS.pdf1,65 MBAdobe PDFThumbnail
Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.