Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/24322
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarneiro, Priscila Pereira-
dc.date.accessioned2025-12-10T15:02:03Z-
dc.date.available2025-12-10T15:02:03Z-
dc.date.issued2025-02-26-
dc.identifier.citationCARNEIRO, Priscila Pereira. Impactos do grau de processamento físico da amostra na capacidade preditiva de um espectrômetro portátil do infravermelho próximo na estimativa do valor nutritivo de gramíneas Megathyrsus maximus (syn. Panicum maximum). 2025. 56 f Dissertação (Mestrado em Ciência Animal) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/24322-
dc.description.abstractA espectroscopia no infravermelho próximo (NIRS) tem se consolidado como ferramenta promissora para análises em tempo real da composição química de gramíneas, melhorando o manejo nutricional e otimizando o consumo de forragem. Este estudo teve como objetivo avaliar o impacto do grau de processamento físico das amostras na capacidade preditiva de um espectrômetro NIRS portátil (pNIRS) para estimar parâmetros nutricionais e fermentativos de gramíneas do gênero Megathyrsus maximus. Foram coletadas 120 amostras ao longo de um ano em quatros locais (Seropédica, RJ; Lavras, MG; São João Del Rei, MG; Viçosa, MG) sob diferentes sistemas de manejo, estações do ano e estágios fenológicos, com alturas variando de 30 a 215 cm, e corte residual de 50% da altura inicial do dossel. As amostras foram seccionadas em partículas de 2 a 3 cm, pesadas, secas e moídas, obtendo-se quatro níveis de processamento: fresca (FR), seca (SC), seca e moída a 2 mm (SM2) e a 1 mm (SM1). Em cada nível de processamento foram realizadas seis varreduras espectrais por amostras, utilizando um dispositivo pNIRS (MyNIR, Spectral Solution), cobrindo uma faixa de absorbância de 900 a 1700 nm. Todas as calibrações foram realizadas utilizando métodos de química úmida como referência (matéria seca, MS; matéria orgânica, MO; nitrogênio, N; fibra insolúvel em detergente neutro, FDN; fibra insolúvel em detergente neutro corrigida para cinzas, FDNc; fração indigestível da fibra insolúvel em detergente neutro, FDNi, digestibilidade in vitro da matéria seca, DIVMS, digestibilidade in vitro da fibra insolúvel em detergente neutro, DIVFDN e rendimento de metano in vitro, CH4). Foram testadas 100 possíveis combinações de préprocessamento e os dados espectrais foram analisados por regressão de mínimos quadrados parciais (PLSR) e validados por validação cruzada leave-one-out em ambiente Python e o software estatísco R Studio. Foram comparados os valores do coeficiente de determinação para calibração (R2 train) e validação (R2 test), a raiz do erro quadrático médio de previsão (RMSEP), o erro médio absoluto (MAE), a inclinação da reta (Slope) e o intercepto. As calibrações mostraram desempenho superior em amostras com maior nível de processamento físico. Para MS, os melhores resultados foram obtidos com amostras FR apresentando R2 train e R2 test superiores a 0,75, RMSEP de 2,72, MAE de 0,0187 e um slope de 0,93 superando os demais níveis de processamento. Para MO, frações fibrosas e digestibilidade, o tratamento SM1 demonstrou melhores ajustes. Enquanto para N e CH4 os melhores resultados foram obtidos em amostras SM2. No entanto, todos os parâmetros analisados obtiveram bons resultados preditivos R2 train entre 0,70 e 0,78 para FR, seguindo a ordem N>FDNi>DIVFDN>FDNc>FDN. Para parâmetros como DIVMS e rendimento de CH4 a capacidade preditiva foi intermediária (0,62 e 0,67, respectivamente), mas ainda promissora para uso em campo. Apesar de amostras moídas apresentarem maior robustez estatística, os modelos obtidos com amostras frescas mostraram-se viáveis para aplicação prática. Conclui-se que o pNIRS apresenta potencial para estimativas nutricionais em forragens tropicais Megathyrsus mamiximus, minimamente processadas, podendo auxiliar no manejo nutricional de ruminantes com maior eficiência e menor custo.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectcalibração multivariadapt_BR
dc.subjectgramíneas tropicaispt_BR
dc.subjectmetano entéricopt_BR
dc.subjectmultivariate calibrationpt_BR
dc.subjecttropical grassespt_BR
dc.subjectenteric methanept_BR
dc.titleImpactos do grau de processamento físico da amostra na capacidade preditiva de um espectrômetro portátil do infravermelho próximo na estimativa do valor nutritivo de gramíneas Megathyrsus maximus (syn. Panicum maximum).pt_BR
dc.title.alternativeImpacts of sample physical processing level on the predictive capacity of a portable near-infrared spectrometer for estimating the nutritive value of megathyrsus maximus (syn. panicum maximum) grasses.en
dc.typeDissertaçãopt_BR
dc.description.abstractOtherNear-infrared spectroscopy (NIRS) has established itself as a promising tool for real-time analysis of the chemical composition of grasses, improving nutritional management and optimizing forage intake. This study aimed to evaluate the impact of the degree of physical processing of samples on the predictive ability of a portable NIRS spectrometer (pNIRS) to estimate nutritional and fermentative parameters of grasses from the Megathyrsus maximus genus. A total of 120 samples were collected over one year in four locations (Seropédica, RJ; Lavras, MG; São João Del Rei, MG; Viçosa, MG), under different management systems, seasons, and phenological stages, with plant heights ranging from 30 to 215 cm and residual cutting at 50% of the initial canopy height. Samples were chopped into 2 to 3 cm particles, weighed, dried, and ground, resulting in four levels of processing: fresh (FR), dried (SC), dried and ground to 2 mm (SM2), and to 1 mm (SM1). At each processing level, six spectral scans were performed per sample using a pNIRS device (MyNIR, Spectral Solution), covering an absorbance range from 900 to 1700 nm. All calibrations were performed using wet chemistry methods as reference (dry matter, DM; organic matter, OM; nitrogen, N; neutral detergent fiber, NDF; ash-corrected NDF, aNDFom; indigestible NDF fraction, iNDF; in vitro dry matter digestibility, IVDMD; in vitro NDF digestibility, IVNDFD; and in vitro methane yield, CH4). One hundred preprocessing combinations were tested, and the spectral data were analyzed using partial least squares regression (PLSR) and validated by leave-one-out cross-validation in Python and R Studio environments. Calibration performance was assessed using the coefficient of determination for calibration (R2 train) and validation (R2 test), root mean square error of prediction (RMSEP), mean absolute error (MAE), slope, and intercept. Calibrations showed better performance in samples with higher levels of physical processing. For DM, the best results were obtained with FR samples, showing R2 train and R2 test values above 0.75, RMSEP of 2.72, MAE of 0.0187, and a slope of 0.93, outperforming the other processing levels. For OM, fiber fractions, and digestibility, the SM1 treatment showed better fits. Meanwhile, for N and CH4, the best results were obtained from SM2 samples. However, all analyzed parameters showed good predictive performance in FR samples, with R2 train values ranging from 0.70 to 0.78, following the order: N>iNDF>IVNDFD>aNDFom>NDF. For parameters such as IVDMD and CH4 yield, predictive ability was intermediate (0.62 and 0.67, respectively), but still promising for field use. Although ground samples presented greater statistical robustness, models built with fresh samples proved viable for practical application. It is concluded that pNIRS shows potential for nutritional estimates in minimally processed Megathyrsus maximus tropical forages, contributing to more efficient and lower-cost nutritional management of ruminants.en
dc.contributor.advisor1Rodrigues, João Paulo Pacheco-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-1140-1259pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7648386374960014pt_BR
dc.contributor.advisor-co1Paiva, Adenilson José-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0002-7256-8581pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8503042241217395pt_BR
dc.contributor.advisor-co2Morenz , Mirton José Frota-
dc.contributor.advisor-co2Latteshttp://lattes.cnpq.br/8377813112549146pt_BR
dc.contributor.referee1Rodrigues, João Paulo Pacheco-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-1140-1259pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7648386374960014pt_BR
dc.contributor.referee2Homem, Bruno Grossi Costa H-
dc.contributor.referee2IDhttps://orcid.org/0000-0001-7787-0133pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9650261952145344pt_BR
dc.contributor.referee3Tomich, Thierry Ribeiro-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/7946491833504889pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9988603092936640pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Zootecniapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência Animalpt_BR
dc.relation.referencesACOSTA, J. J.; CASTILLO, M. S.; HODGE, G. R.. Comparison of benchtop and handheld near‐infrared spectroscopy devices to determine forage nutritive value. Crop Science, [S.L.], v. 60, n. 6, p. 3410-3422, 7 out. 2020. Wiley. http://dx.doi.org/10.1002/csc2.20264. AGELET, Lidia Esteve; HURBURGH, Charles R.. A Tutorial on Near Infrared Spectroscopy and Its Calibration. Critical Reviews In Analytical Chemistry, [S.L.], v. 40, n. 4, p. 246-260, 29 out. 2010. Informa UK Limited. http://dx.doi.org/10.1080/10408347.2010.515468. ALOMAR, D. et al. Prediction of the Composition of Fresh Pastures by Near Infrared Reflectance or Interactance-Reflectance Spectroscopy. Chilean journal of agricultural research, [s. l.], v. 69, n. 2, 2009. Disponível em: http://dx.doi.org/10.4067/S071858392009000200009 ALOMAR, Daniel; FUCHSLOCHER, Rita; PABLO, Marjorie de. Effect of preparation method on composition and NIR spectra of forage samples. Animal Feed Science And Technology, [S.L.], v. 107, n. 1-4, p. 191-200, jun. 2003. Elsevier BV. http://dx.doi.org/10.1016/s0377-8401(03)00124-x. AMORIM, Philipe Lima; LOPES, Erica Laura Guilherme; MOREIRA, Andressa Mirielle; CAVALCANTE, Filipe Souza; LYRA, Guilherme Bastos; ARAÚJO FILHO, José Teodorico; SANTOS, Ana Iris Silva; SOUSA, Braulio Maia Lana. EFEITOS DA INTERCEPTAÇÃO LUMINOSA OU PERÍODO DE DESCANSO FIXO NO ACÚMULO DE FORRAGEM E ESTRUTURA DO DOSSEL DE UMA ANTIGA CULTIVAR DE Megathyrsus maximus. Revista Ciência Agrícola, [S.L.], v. 18, n. 1, p. 29-37, 12 abr. 2020. Universidade Federal de Alogoas. http://dx.doi.org/10.28998/rca.v18i1.8801. ANDRÉS, Sonia; MURRAY, Ian; CALLEJA, Alfredo; GIRÁLDEZ, F. Javier. Nutritive Evaluation of Forages by near Infrared Reflectance Spectroscopy. Journal Of Near Infrared Spectroscopy, [S.L.], v. 13, n. 6, p. 301-311, dez. 2005. SAGE Publications. http://dx.doi.org/10.1255/jnirs.561. ANDREU-RODRÍGUEZ, J.; PÉREZ-ESPINOSA, A.; PÉREZ-MURCIA, M.D.; MORAL, R.; AGULLÓ, E.; FERRÁNDEZ-VILLENA, M.; FERRÁNDEZ-GARCÍA, M.T.; BUSTAMANTE, M.A.. Near infrared reflectance spectroscopy (NIRS) for the assessment of biomass production and C sequestration by Arundo donax L. in salt-affected environments. Agricultural Water Management, [S.L.], v. 183, p. 94-100, mar. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.agwat.2016.10.005. ANDUEZA, D.; PICARD, F.; JESTIN, M.; ANDRIEU, J.; BAUMONT, R.. NIRS prediction of the feed value of temperate forages: efficacy of four calibration strategies. Animal, [S.L.], v. 5, n. 7, p. 1002-1013, 2011. Elsevier BV. http://dx.doi.org/10.1017/s1751731110002697. 31 ANDUEZA, Donato; PICARD, Fabienne; DOZIAS, Dominique; AUFRÈRE, Jocelyne. Fecal Near-Infrared Reflectance Spectroscopy Prediction of the Feed Value of Temperate Forages for Ruminants and Some Parameters of the Chemical Composition of Feces: efficiency of four calibration strategies. Applied Spectroscopy, [S.L.], v. 71, n. 9, p. 2164-2176, 6 jun. 2017. SAGE Publications. http://dx.doi.org/10.1177/0003702817712740. BARBER, G.D.; GIVENS, D.I.; KRIDIS, M.s.; OFFER, N.W.; MURRAY, I.. Prediction of the organic matter digestibility of grass silage. Animal Feed Science And Technology, [S.L.], v. 28, n. 1-2, p. 115-128, fev. 1990. Elsevier BV. http://dx.doi.org/10.1016/0377-8401(90)90074i. BARBOSA, Rodrigo Amorim; NASCIMENTO JÚNIOR, Domicio do; EUCLIDES, Valéria Pacheco Batista; SILVA, Sila Carneiro da; ZIMMER, Ademir Hugo; TORRES JÚNIOR, Roberto Augusto de Almeida. Capim-tanzânia submetido a combinações entre intensidade e freqüência de pastejo. Pesquisa Agropecuária Brasileira, [S.L.], v. 42, n. 3, p. 329-340, mar. 2007. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0100-204x2007000300005. BEć, Krzysztof B; GRABSKA, Justyna; SIESLER, Heinz W; HUCK, Christian W. Handheld near-infrared spectrometers: where are we heading?. Nir News, [S.L.], v. 31, n. 3-4, p. 28-35, 13 abr. 2020. SAGE Publications. http://dx.doi.org/10.1177/0960336020916815. BELL, M. J.; MEREU, L.; DAVIS, J. The Use of Mobile Near-Infrared Spectroscopy for RealTime Pasture Management. Frontiers in Sustainable Food Systems, [s. l.], v. 2, 2018. https://doi.org/10.3389/fsufs.2018.00076. BERZAGHI, P.; CHERNEY, J.H.; CASLER, M.D.. Prediction performance of portable near infrared reflectance instruments using preprocessed dried, ground forage samples. Computers And Electronics In Agriculture, [S.L.], v. 182, p. 106013, mar. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.compag.2021.106013. BOEVER, J.L. de; VANACKER, J.M.; BRABANDER, D.L. de. Rumen degradation characteristics of nutrients in compound feeds and the evaluation of tables, laboratory methods and NIRS as predictors. Animal Feed Science And Technology, [S.L.], v. 107, n. 1-4, p. 2943, jun. 2003. Elsevier BV. http://dx.doi.org/10.1016/s0377-8401(03)00063-4. BORREANI, G.; TABACCO, E.; SCHMIDT, R.J.; HOLMES, B.J.; MUCK, R.e.. Silage review: factors affecting dry matter and quality losses in silages. Journal Of Dairy Science, [S.L.], v. 101, n. 5, p. 3952-3979, maio 2018. American Dairy Science Association. http://dx.doi.org/10.3168/jds.2017-13837. BRERETON, Richard G.. Introduction to multivariate calibration in analytical chemistry. The Analyst, [S.L.], v. 125, n. 11, p. 2125-2154, 2000. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/b003805i. 2, BROGNA, N.; PALMONARI, A.; CANESTRARI, G.; MAMMI, L.; PRÀ, A. dal; FORMIGONI, A.. Technical note: near infrared reflectance spectroscopy to predict fecal indigestible neutral detergent fiber for dairy cows. Journal Of Dairy Science, [S.L.], v. 101, n. p. 1234-1239, fev. 2018. http://dx.doi.org/10.3168/jds.2017-13319. American Dairy Science Association. 32 BÜNING-PFAUE, Hans. Analysis of water in food by near infrared spectroscopy. Food Chemistry, [S.L.], v. 82, n. 1, p. 107-115, jul. 2003. Elsevier BV. http://dx.doi.org/10.1016/s0308-8146(02)00583-6. BURNS, D. A.; CIURCZAK, E. W. (org.). Handbook of Near-Infrared Analysis. [S. l.]: CRC Press, 2007. https://dx.doi.org/10.1201/9781420007374. CAMPOS, Ana Carolina Atala Lombelo et al. Levantamento florístico e fitossociológico da mata ciliar do Rio das Mortes em São João del-Rei, Minas Gerais. Revista Brasileira de Biociências, v. 5, n. S2, p. 1177-1179, 2007. CARVALHO, Ana Luiza Silva et al. Production and quality of Mombaça grass forage under different residual heights. Acta Scientiarum. Animal Sciences, v. 39, n. 2, p. 143-148, 2017. CARVALHO, Daniel F. de et al. Coeficientes da equação de Angström-Prescott e sua influência na evapotranspiração de referência em Seropédica, RJ. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 15, p. 838-844, 2011. CASTRO, P. S. et al. Interceptação da chuva por mata natural secundaria na regiao de Vicosa, MG [Minas Gerais, Brasil]. Revista árvore, v. 7, 1983. CAZETTA, Jairo Osvaldo; VILLELA, Luciana Cristine Vasques. Nitrate reductase activity in leaves and stems of tanner grass (Brachiaria radicans Napper). Scientia Agricola, [S.L.], v. 61, n. 6, p. 640-648, dez. 2004. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s010390162004000600012. CEN, Haiyan; HE, Yong. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends In Food Science & Technology, [S.L.], v. 18, n. 2, p. 72-83, fev. 2007. Elsevier BV. http://dx.doi.org/10.1016/j.tifs.2006.09.003. CIENFUGOS, F. Análise instrumental: conceitos e avanços da análise no infravermelho. Revista Química e Derivados, São Paulo, v.38, n.413, p.40-46, mar. 2003. CIURCZAK, E. W. et al. Handbook of Near-Infrared Analysis. 4. ed. Fourth edition. | Boca Raton : Taylor and Francis, 2021. |: CRC Press, 2021. https://dx.doi.org/10.1201/b22513. 1 CORSON, D.C.; WAGHORN, G.C.; ULYATT, M.J.; LEE, J.. NIRS: forage analysis and livestock feeding. Proceedings Of The New Zealand Grassland Association, [S.L.], p. 127132, jan. 1999. New http://dx.doi.org/10.33584/jnzg.1999.61.2340. Zealand Grassland Association. COSTA, Ana Beatriz Graciano da; DIFANTE, Gelson dos Santos; GURGEL, Antonio Leandro Chaves; VERAS, Emmanuel Lievio de Lima; RODRIGUES, Jéssica Gomes; PEREIRA, Marislayne de Gusmão; SANTOS, Anna Yanka de Oliveira; EMERENCIANO NETO, João Virgínio; MONTAGNER, Denise Baptaglin. Morphogenic and structural characteristics of Panicum cultivars during the establishment period in the Brazilian Northeast. Acta Scientiarum. Animal Sciences, [S.L.], v. 43, p. 50984, 19 ago. 2020. Universidade Estadual de Maringá. http://dx.doi.org/10.4025/actascianimsci.v43i1.50984. 33 COZZOLINO, D.; FASSIO, A.; FERNÁNDEZ, E.; RESTAINO, E.; LAMANNA, A.. Measurement of chemical composition in wet whole maize silage by visible and near infrared reflectance spectroscopy. Animal Feed Science And Technology, [S.L.], v. 129, n. 3-4, p. 329336, set. 2006. Elsevier BV. http://dx.doi.org/10.1016/j.anifeedsci.2006.01.025. COZZOLINO, D; A FASSIO,; A GIMENEZ,. The use of near-infrared reflectance spectroscopy (NIRS) to predict the composition of whole maize plants. Journal Of The Science Of Food And Agriculture, [S.L.], v. 81, n. 1, p. 142-146, 2001. Wiley. http://dx.doi.org/10.1002/1097-0010(20010101)81:13.0.co;2-i. 111, COZZOLINO, D; A MORON,. Exploring the use of near infrared reflectance spectroscopy (NIRS) to predict trace minerals in legumes. Animal Feed Science And Technology, [S.L.], v. n. 1-4, p. 161-173, http://dx.doi.org/10.1016/j.anifeedsci.2003.08.001. jan. 2004. Elsevier BV. CROCOMBE, Richard A.. Portable Spectroscopy. Applied Spectroscopy, [S.L.], v. 72, n. 12, p. 1701-1751, 18 out. 2018. SAGE Publications. http://dx.doi.org/10.1177/0003702818809719. DALE, Laura M.; THEWIS, André; BOUDRY, Christelle; ROTAR, Ioan; PăCURAR, Florin S.; ABBAS, Ouissam; DARDENNE, Pierre; BAETEN, Vincent; PFISTER, James; PIERNA, Juan A. Fernández. Discrimination of grassland species and their classification in botanical families by laboratory scale NIR hyperspectral imaging: preliminary results. Talanta, [S.L.], v. 116, p. 149-154, nov. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.talanta.2013.05.006. DETMANN, E. et al. Métodos para análise de alimentos. 2. ed. Visconde do Rio Branco, MG: Suprema, 2021. DHANOA, Mewa S.; LÓPEZ, Secundino; SANDERSON, Ruth; LISTER, Sue J.; BARNES, Ralph J.; ELLIS, Jennifer L.; FRANCE, James. Methodology adjusting for least squares regression slope in the application of multiplicative scatter correction to near‐infrared spectra of forage feed samples. Journal Of Chemometrics, [S.L.], v. 37, n. 11, 3 ago. 2023. Wiley. http://dx.doi.org/10.1002/cem.3511. DIAS, Cristiana Maduro; NUNES, Helder; BORBA, Alfredo. Near-Infrared Spectroscopy Integration in the Regular Monitorization of Pasture Nutritional Properties and Gas Production. Agriculture, [S.L.], v. 13, n. 7, p. 1398, 14 jul. 2023. MDPI AG. http://dx.doi.org/10.3390/agriculture13071398. Nutrition: DIAS, Cristiana Maduro; NUNES, Helder; BORBA, Alfredo. Near-Infrared Spectroscopy in Animal historical insights, technical principles, and practical applications. Analytica, [S.L.], v. 5, n. 4, p. 481-498, 2 out. 2024. MDPI AG. http://dx.doi.org/10.3390/analytica5040033. EVANGELISTA, Chiara; BASIRICÒ, Loredana; BERNABUCCI, Umberto. An Overview on the Use of Near Infrared Spectroscopy (NIRS) on Farms for the Management of Dairy Cows. Agriculture, [S.L.], v. 11, n. 4, p. 296, 30 mar. 2021. MDPI AG. http://dx.doi.org/10.3390/agriculture11040296. FEDORAH, Phillip M.; HRUDEY, Steve E.. A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environmental Technology Letters, [S.L.], v. 4, 34 n. 10, p. 425-432, out. http://dx.doi.org/10.1080/09593338309384228. v. 1983. Informa UK Limited. FERNANDES, Francisco Duarte; RAMOS, Allan Kardec Braga; JANK, Liana; CARVALHO, Marcelo Ayres; MARTHA JUNIOR, Geraldo Bueno; BRAGA, Gustavo José. Forage yield and nutritive value of Panicum maximum genotypes in the Brazilian savannah. Scientia Agricola, [S.L.], 71, n. 1, p. 23-29, fev. http://dx.doi.org/10.1590/s0103-90162014000100003. 2014. FapUNIFESP (SciELO). FERRARO, F. P.; NAVE, R. L. G.; SULC, R. M.; BARKER, D. J.. Seasonal Variation in the Rising Plate Meter Calibration for Forage Mass. Agronomy Journal, [S.L.], v. 104, n. 1, p. 16, jan. 2012. Wiley. http://dx.doi.org/10.2134/agronj2011.0190. FERREIRA, M. M. C. Quimiometria: conceitos, métodos e aplicações. Campinas: Ed. UNICAMP, 2016, p. 833. Scielo. https://dx.doi.org/10.7476/9788526814714 FOSKOLOS, A.; CALSAMIGLIA, S.; CHRENKOVÁ, M.; WEISBJERG, M.R.; ALBANELL, E.. Prediction of rumen degradability parameters of a wide range of forages and non-forages by NIRS. Animal, [S.L.], v. 9, n. 7, p. 1163-1171, 2015. Elsevier BV. http://dx.doi.org/10.1017/s1751731115000191. GARCIA, Jaime; COZZOLINO, Daniel. Use of Near Infrared Reflectance (NIR) Spectroscopy to Predict Chemical Composition of Forages in Broad-Based Calibration Models. Agricultura Técnica, [S.L.], v. 66, n. 1, p. 41-47, mar. 2006. SciELO Agencia Nacional de Investigacion y Desarrollo (ANID). http://dx.doi.org/10.4067/s0365-28072006000100005. GARNSWORTHY, P. C.; WISEMAN, J.; FEGEROS, K. Prediction of chemical, nutritive and agronomic characteristics of wheat by near infrared spectroscopy. The Journal of Agricultural Science, [s. l.], v. 135, n. 4, p. 409–417, 2000. Disponível em: https://www.cambridge.org/core/product/identifier/S0021859699008382/type/journal_article. - Porto GIULIANO TOSTES NOVAIS. Climas do Brasil: classificação climática e aplicações. 1. ed. Alegre: TOTALBOOKS, 2023. Disponível em: https://files.cercomp.ufg.br/weby/up/51/o/Livro_dos_Climas_do_Brasil_-_final.pdf. Acesso em: 12 fev. 2025. GIVENS, D. I. et al. (org.). Forage evaluation in ruminant nutrition. UK: CABI Publishing, 2000. Disponível http://www.cabidigitallibrary.org/doi/book/10.1079/9780851993447.0000. ago. em: GOMIDE, Carlos Augusto de Miranda; GOMIDE, José Alberto. Análise de crescimento de cultivares de Panicum maximum Jacq. Revista Brasileira de Zootecnia, [S.L.], v. 28, n. 4, p. 675-680, 1999. 35981999000400003. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1516HART, Leonie; HUGUENIN-ELIE, Olivier; LATSCH, Roy; SIMMLER, Michael; DUBOIS, Sébastien; UMSTATTER, Christina. Comparison of Spectral Reflectance-Based Smart Farming Tools and a Conventional Approach to Determine Herbage Mass and Grass Quality on Farm. Remote Sensing, [S.L.], v. 12, n. 19, p. 3256, 7 out. 2020. MDPI AG. http://dx.doi.org/10.3390/rs12193256. 35 36 HOLTSHAUSEN, L. et al. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. Journal of Dairy Science, [s. l.], v. 92, n. 6, p. 2809–2821, 2009. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0022030209705983. IBÁÑEZ, L.; ALOMAR, D. PREDICTION OF THE CHEMICAL COMPOSITION AND FERMENTATION PARAMETERS OF PASTURE SILAGE BY NEAR INFRARED REFLECTANCE SPECTROSCOPY (NIRS). CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, [s. l.], 2009. Disponível em: https://utoronto.scholaris.ca/items/0979b5ef-e1a4-4a5d-92fc-11ba30d9ecbd. IKOYI, A.y.; YOUNGE, B.A.. Influence of forage particle size and residual moisture on near infrared reflectance spectroscopy (NIRS) calibration accuracy for macro-mineral determination. Animal Feed Science And Technology, [S.L.], v. 270, p. 114674, dez. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.anifeedsci.2020.114674. JHA, S. N.; GARG, Ruchi. Non-destructive prediction of quality of intact apple using near infrared spectroscopy. Journal Of Food Science And Technology, [S.L.], v. 47, n. 2, p. 207213, mar. 2010. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s13197010-0033-1. JOHNSON, K. A.; JOHNSON, D. E.. Methane emissions from cattle. Journal Of Animal Science, [S.L.], v. 73, n. 8, p. 2483-2492, 1 ago. 1995. Oxford University Press (OUP). http://dx.doi.org/10.2527/1995.7382483x. KHALSA, J.; FRICKE, T.; WEISSER, W. W.; WEIGELT, A.; WACHENDORF, M.. Effects of functional groups and species richness on biomass constituents relevant for combustion: results from a grassland diversity experiment. Grass And Forage Science, [S.L.], v. 67, n. 4, p. 569-588, 12 jul. 2012. Wiley. http://dx.doi.org/10.1111/j.1365-2494.2012.00884.x. KOEHLER; SMALL, Gary W.; COMBS, Roger J.; KNAPP, Robert B.; KROUTIL, Robert T.. Calibration Transfer Algorithm for Automated Qualitative Analysis by Passive Fourier Transform Infrared Spectrometry. Analytical Chemistry, [S.L.], v. 72, n. 7, p. 1690-1698, 4 mar. 2000. American Chemical Society (ACS). http://dx.doi.org/10.1021/ac9907888. KRIZSAN, S. J.; HUHTANEN, P. Effect of diet composition and incubation time on feed indigestible neutral detergent fiber concentration in dairy cows. Journal Of Dairy Science, [s. l.], v. 96, n. 3, p. 1715–1726, 2013. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0022030213000234. KRIZSAN, S.J.; RINNE, M.; NYHOLM, L.; HUHTANEN, P.. New recommendations for the ruminal in situ determination of indigestible neutral detergent fibre. Animal Feed Science And Technology, [S.L.], v. 205, p. 31-41, jul. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.anifeedsci.2015.04.008. LABSPHERE. Spectralon Diffuse Reflectance Standards. Technical Guide. North Sutton, NH: Labsphere Inc., 2020. Disponível em: https://www.labsphere.com. Acesso em: 22 abr. 2025. LIU, Jinming; ZENG, Changhao; WANG, Na; SHI, Jianfei; ZHANG, Bo; LIU, Changyu; SUN, Yong. Rapid Biochemical Methane Potential Evaluation of Anaerobic Co-Digestion Feedstocks Based on Near Infrared Spectroscopy and Chemometrics. Energies, [S.L.], v. 14, n. 5, p. 1460, 7 mar. 2021. MDPI AG. http://dx.doi.org/10.3390/en14051460. v. LOBOS, I.; MOSCOSO, C. J.; PAVEZ, P. Calibration models for the nutritional quality of fresh pastures by nearinfrared reflectance spectroscopy. Ciencia E Investigación agraria, [s. l.], 46, n. 3, p. 234–242, https://rcia.uc.cl/index.php/ijanr/article/view/2020. 2019. Disponível em: MACEDO, M. C. M. Pastagens no ecossistema Cerrados: evolução das pesquisas para o desenvolvimento sustentável. In:, 2005. Reunião anual da sociedade brasileira de zootecnia. [S. l.: s. n.], 2005. p. 56–84. Disponível em: https://www.researchgate.net/profile/ManuelMacedo-2/publication/325698028 MALAVIYA, Devendra Ram; BAIG, Mirza Jaynul; KUMAR, Bijendra; KAUSHAL, Pankaj. Effects of shade on guinea grass genotypes Megathyrsus maximus (Poales: poaceae). Revista de Biología Tropical, [S.L.], v. 68, n. 2, 17 mar. 2020. Universidad de Costa Rica. http://dx.doi.org/10.15517/rbt.v68i2.38362. MAPBIOMAS BRASIL. [S. l.], [s. d.]. Disponível https://brasil.mapbiomas.org/2024/12/06/pastagem-soja-e-cana-ocupam-77-da-area-deagropecuaria-no-brasil/. Acesso em: 12 fev. 2025. MARTENS, H.; NAES, T. Multivariate calibration. New York: Wiley, 1996. em: MOLANO, Martha Lucía; CORTÉS, María Lucía; ÁVILA, Patricia; MARTENS, Siriwan D.; MUÑOZ, Luz Stella. Ecuaciones de calibración en espectroscopía de reflectancia en el infrarrojo cercano (NIRS) para predicción de parámetros nutritivos en forrajes tropicales. Tropical Grasslands-Forrajes Tropicales, [S.L.], v. 4, n. 3, p. 139, 2016. Centro Internacional de Agricultura Tropical. http://dx.doi.org/10.17138/tgft(4)139-145. MOSCOSO, C. J.; BALOCCHI, O. A.. Concentración de carbohidratos solubles en agua y nitrógeno posterior a la defoliación en ballicas perennes (Lolium perenne L.) en primavera. Agro Sur, [S.L.], v. 44, n. 3, p. 11-17, 2016. Sistema de Bibliotecas UACH. http://dx.doi.org/10.4206/agrosur.2016.v44n3-02. MOSS, Angela R.; JOUANY, Jean-Pierre; NEWBOLD, John. Methane production by ruminants: its contribution to global warming. In: Annales de zootechnie. EDP Sciences, 2000. p. 231-253. Disponível em: https://hal.science/hal-00889894v1. MURRAY, I. The NIR spectra of homologous series of organic compounds. In:Proceedings of the international NIR/NIT conference. Akademiai Kiado: Budapest, Hungary, 1986. p. 13-28. NAES, T., ISAKSSON, T., FEARN, T., DAVIES, T.. A User-Friendly Guide to Multivariate Calibration and Classification. NIR Publications. 2002. NEUMANN, Mikael; LEÃO, Guilherme Fernando Mattos; SANTOS, Leslei Caroline dos; MARAFON, Fabiano; ASKEL, Eloize Jaqueline. Dupla vedação em silagem de milho na 37 16 mar. produção de bovinos confinados. Revista de Ciências Agroveterinárias, [S.L.], v. 17, n. 1, p. 100-106, 2015. Universidade http://dx.doi.org/10.5965/223811711712018100. do Estado de Santa Catarina. NGUYEN, Hoang Nam; DEHARENG, Frédéric; HAMMIDA, Mohamed; BAETEN, Vincent; FROIDMONT, Eric; SOYEURT, Hélène; NIEMÖELLER, Andreas; DARDENNE, Pierre. Potential of near Infrared Spectroscopy for On-Line Analysis at the Milking Parlour Using a Fibre-Optic Probe Presentation. Nir News, [S.L.], v. 22, n. 7, p. 11-13, nov. 2011. SAGE Publications. http://dx.doi.org/10.1255/nirn.1271. NIU, Kechang; HE, Jin-Sheng; ZHANG, Shiting; LECHOWICZ, Martin J.. Tradeoffs between forage quality and soil fertility: lessons from himalayan rangelands. Agriculture, Ecosystems & Environment, [S.L.], v. 234, p. 31-39, out. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.agee.2016.04.023. NORMAN, Hayley C.; HULM, Elizabeth; HUMPHRIES, Alan W.; HUGHES, Steve J.; VERCOE, Philip E.. Broad near-infrared spectroscopy calibrations can predict the nutritional value of >100 forage species within the Australian feedbase. Animal Production Science, [S.L.], v. 60, n. 8, p. 1111, 2020. CSIRO Publishing. http://dx.doi.org/10.1071/an19310. NORRIS, K. H.; BARNES, R. F.; MOORE, J. E.; SHENK, J. S.. Predicting Forage Quality by Infrared Replectance Spectroscopy. Journal Of Animal Science, [S.L.], v. 43, n. 4, p. 889897, 1 out. 1976. Oxford University Press (OUP). http://dx.doi.org/10.2527/jas1976.434889x. NUNES, P. G. A. Uma Nova Tecnica para Seleção de Variáveis em Calibração Multivariada aplicada as Espectrometrias UV-VIS e NIR. 2008. Tese (Doutorado), Universidade Federal da Paraíba, Paraíba, Brasil. OLIVEIRA, Denilson Mendes de; PASQUINI, Celio; NOGUEIRA, Ana Rita de Araújo; RABELO, Márcio Dias; SIMEONE, Maria Lúcia Ferreira; SOUZA, Gilberto Batista de. Comparative analysis of compact and benchtop near-infrared spectrometers for forage nutritional trait measurements. Microchemical Journal, [S.L.], v. 196, p. 109682, jan. 2024. Elsevier BV. http://dx.doi.org/10.1016/j.microc.2023.109682. OLIVEIRA, Elson Marcos de; MARTUSCELLO, Janaina Azevedo; JANK, Liana; CUNHA, Daniel de Noronha Figueiredo Vieira da; SANTOS, Mateus Figueiredo. Evaluation of Megathyrsus maximus genotypes under water stress conditions. Acta Scientiarum. Animal Sciences, [S.L.], v. 44, p. 54975, 10 maio 2022. Universidade Estadual de Maringa. http://dx.doi.org/10.4025/actascianimsci.v44i1.54975. OSBORNE, Brian G.; DOUGLAS, Stuart. Measurement of the degree of starch damage in flour by near infrared reflectance analysis. Journal Of The Science Of Food And Agriculture, [S.L.], v. 32, n. 4, p. 328-332, abr. 1981. Wiley. http://dx.doi.org/10.1002/jsfa.2740320403. PARK, R.S; AGNEW, R.E; GORDON, F.J; STEEN, R.W.J. The use of near infrared reflectance spectroscopy (NIRS) on undried samples of grass silage to predict chemical composition and digestibility parameters. Animal Feed Science And Technology, [S.L.], v. 72, n. 1-2, p. 155-167, maio 1998. Elsevier BV. http://dx.doi.org/10.1016/s03778401(97)00175-2. 38 PARRINI, Silvia; ACCIAIOLI, Anna; CROVETTI, Alessandro; BOZZI, Riccardo. Use of FTNIRS for determination of chemical components and nutritional value of natural pasture. Italian Journal Of Animal Science, [S.L.], v. 17, n. 1, p. 87-91, 7 jul. 2017. Informa UK Limited. http://dx.doi.org/10.1080/1828051x.2017.1345659. PARRINI, Silvia; ACCIAIOLI, Anna; FRANCI, Oreste; PUGLIESE, Carolina; BOZZI, Riccardo. Near Infrared Spectroscopy technology for prediction of chemical composition of natural fresh pastures. Journal Of Applied Animal Research, [S.L.], v. 47, n. 1, p. 514-520, 1 jan. 2019. Informa UK Limited. http://dx.doi.org/10.1080/09712119.2019.1675669. PASQUINI, Celio. Near infrared spectroscopy: a mature analytical technique with new perspectives ⠳ a review. Analytica Chimica Acta, [S.L.], v. 1026, p. 8-36, out. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.aca.2018.04.004. PASQUINI, Celio. Near Infrared Spectroscopy: fundamentals, practical aspects and analytical applications. Journal Of The Brazilian Chemical Society, [S.L.], v. 14, n. 2, p. 198-219, abr. 2003. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0103-50532003000200006. PAUL, C. Effect of soil contamination on NIRS analysis of grass silage. Analytical Application Of Spectroscopy, p. 84-90, 1990. PEREIRA, Mariana; ALMEIDA, Roberto Giolo de; MACEDO, Manuel Claudio Motta; SANTOS, Valéria Ana Corvalã dos; GAMARRA, Erick Lemes; CASTRO-MONTOYA, Joaquín; LEMPP, Beatriz; MORAIS, Maria da Graça. Anatomical and nutritional characteristics of Megathyrsus maximus genotypes under a silvopastoral system. Tropical Grasslands-Forrajes Tropicales, [S.L.], v. 9, n. 2, p. 159-170, 31 maio 2021. Centro Internacional de Agricultura Tropical. http://dx.doi.org/10.17138/tgft(9)159-170. PIMENTEL, Maria Fernanda; NETO, B. Barros. Calibração: uma revisão para químicos analíticos. Química Nova, v. 19, n. 3, p. 268-277, 1996. 1, p. PINO, F.H.; HEINRICHS, A.J.. Comparison of on-farm forage-dry-matter methods to forcedair oven for determining forage dry matter. The Professional Animal Scientist, [S.L.], v. 30, n. 33-36, fev. 2014. American Registry of Professional Animal Scientists. http://dx.doi.org/10.15232/s1080-7446(15)30079-6. PUJOL, S.; PÉREZ-VENDRELL, A.M.; TORRALLARDONA, D.. Evaluation of prediction of barley digestible nutrient content with near-infrared reflectance spectroscopy (NIRS). Livestock Science, [S.L.], v. 109, n. 1-3, p. 189-192, maio 2007. Elsevier BV. http://dx.doi.org/10.1016/j.livsci.2007.01.144. p. QUEIROZ FILHO, José Leite de; SILVA, Divan Soares da; NASCIMENTO, Inaldete Soares do. Produção de matéria seca e qualidade do capim-elefante (Pennisetum purpureum Schum.) cultivar Roxo em diferentes idades de corte. Revista Brasileira de Zootecnia, [S.L.], v. 29, n. 1, 69-74, fev. 2000. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s151635982000000100010. REDDERSEN, Björn; FRICKE, Thomas; WACHENDORF, Michael. Effects of sample preparation and measurement standardization on the NIRS calibration quality of nitrogen, ash and NDFom content in extensive experimental grassland biomass. Animal Feed Science And 39 Technology, [S.L.], v. 183, n. 3-4, p. 77-85, jul. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.anifeedsci.2013.04.016. REGO, Guillermo; FERRERO, Francisco; VALLEDOR, Marta; CAMPO, Juan Carlos; FORCADA, Sergio; ROYO, Luis J.; SOLDADO, Ana. A portable IoT NIR spectroscopic system to analyze the quality of dairy farm forage. Computers And Electronics In Agriculture, [S.L.], v. 175, p. 105578, http://dx.doi.org/10.1016/j.compag.2020.105578. ago. 2020. Elsevier BV. REICH, G. Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Advanced Drug Delivery Reviews, [S.L.], v. 57, n. 8, p. 1109-1143, 15 jun. 2005. Elsevier BV. http://dx.doi.org/10.1016/j.addr.2005.01.020. 37, RODRIGUES, Marcônio Martins; OLIVEIRA, Maria Elizabete; LEAL, Tânia Maria; MOURA, Raniel Lustosa; ARAðJO, Daniel Louçana da Costa; SANTOS, Maurílio Sousa dos; RODRIGUES, Francelino Neiva; RODRIGUES, Viviany Sousa. Forage intake processes by goats on a massai grass pasture with different sward heights. Semina: Ciências Agrárias, [S.L.], v. n. 6, p. 4339, 14 dez. 2016. Universidade Estadual de Londrina. http://dx.doi.org/10.5433/1679-0359.2016v37n6p4339. SANTANA, Felipe B. de; GIUSEPPE, Larissa O. de; SOUZA, André M. de; POPPI, Ronei J.. Removing the moisture effect in soil organic matter determination using NIR spectroscopy and PLSR with external parameter orthogonalization. Microchemical Journal, [S.L.], v. 145, p. 1094-1101, mar. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.microc.2018.12.027. SENA, M. M. et al. Multivariate Statistical Analysis and Chemometrics. 1. ed. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2017.: CRC Press, 2017. Disponível em: https://www.taylorfrancis.com/books/9781498754644. SERGIO DE ZEN, P. et al. Ano 10-38a Edição-Fevereiro de. [s. l.], 2018. Disponível em: Acesso em: 17 fev. 2025. SHI, Ji-Yong; ZOU, Xiao-Bo; ZHAO, Jie-Wen; MEL, Holmes; WANG, Kai-Liang; WANG, Xue; CHEN, Hong. Determination of total flavonoids content in fresh Ginkgo biloba leaf with different colors using near infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, [S.L.], v. 94, p. 271-276, ago. 2012. Elsevier BV. http://dx.doi.org/10.1016/j.saa.2012.03.078. SIESLER, Heinz W. et al. (Ed.). Near-infrared spectroscopy: principles, instruments, applications. John Wiley & Sons, 2008. SILVA, Fabiano Ferreira da; SÁ, Jacqueline Firmino de; SCHIO, Alex Resende; ÍTAVO, Luís Carlos Vínhas; SILVA, Robério Rodrigues; MATEUS, Rodrigo Gonçalves. Suplementação a pasto: disponibilidade e qualidade x níveis de suplementação x desempenho. Revista Brasileira de Zootecnia, [S.L.], v. 38, n. , p. 371-389, jul. 2009. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1516-35982009001300037. SOTELO, F.F. Aplicações da espectroscopia de infravermelho próximo na caracterização de petróleo. Simulação de uma unidade de destilação atmosférica. 2006. 154 p. Tese (Doutorado em Engenharia Química) – Universidade de São Paulo, São Paulo. 40 SOUZA, André Marcelo de; POPPI, Ronei Jesus. Experimento didático de quimiometria para análise exploratória de óleos vegetais comestíveis por espectroscopia no infravermelho médio e análise de componentes principais: um tutorial, parte i. Química Nova, [S.L.], v. 35, n. 1, p. 223-229, 2012. 40422012000100039. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0100SU, Huawei; SHA, Kun; ZHANG, Li; ZHANG, Qian; XU, Yuling; ZHANG, Rong; LI, Haipeng; SUN, Baozhong. Development of near infrared reflectance spectroscopy to predict chemical composition with a wide range of variability in beef. Meat Science, [S.L.], v. 98, n. 2, p. 110-114, out. 2014. Elsevier BV. http://dx.doi.org/10.1016/j.meatsci.2013.12.019. TASSONE, S.; MASOERO, G.; PEIRETTI, P.G.. Vibrational spectroscopy to predict in vitro digestibility and the maturity index of different forage crops during the growing cycle and after freeze- or oven-drying treatment. Animal Feed Science And Technology, [S.L.], v. 194, p. 1225, ago. 2014. Elsevier BV. http://dx.doi.org/10.1016/j.anifeedsci.2014.04.019. THEODOROU, Michael K.; WILLIAMS, Barbara A.; DHANOA, Mewa S.; MCALLAN, Alex B.; FRANCE, James. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science And Technology, [S.L.], v. 48, n. 3-4, p. 185-197, ago. 1994. Elsevier BV. http://dx.doi.org/10.1016/03778401(94)90171-6. TIAN, Wenfei; CHEN, Gengjun; ZHANG, Guorong; WANG, Donghai; TILLEY, Michael; LI, Yonghui. Rapid determination of total phenolic content of whole wheat flour using nearinfrared spectroscopy and chemometrics. Food Chemistry, [S.L.], v. 344, p. 128633, maio 2021. Elsevier BV. http://dx.doi.org/10.1016/j.foodchem.2020.128633. TIBOLA, Casiane Salete et al. Espectroscopia no infravermelho próximo para avaliar indicadores de qualidade tecnológica e contaminantes em grãos. Brasília: Embrapa, 2018. TORNIAINEN, Jari; AFARA, Isaac O.; PRAKASH, Mithilesh; SARIN, Jaakko K.; STENROTH, Lauri; TÖYRÄS, Juha. Open-source python module for automated preprocessing of near infrared spectroscopic data. Analytica Chimica Acta, [S.L.], v. 1108, p. 1-9, abr. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.aca.2020.02.030. TRAN, H.; SALGADO, P.; TILLARD, E.; DARDENNE, P.; NGUYEN, X.T.; LECOMTE, P.. “Global” and “local” predictions of dairy diet nutritional quality using near infrared reflectance spectroscopy. Journal Of Dairy Science, [S.L.], v. 93, n. 10, p. 4961-4975, out. 2010. American Dairy Science Association. http://dx.doi.org/10.3168/jds.2008-1893. UNGERFELD, Emilio M.. Metabolic Hydrogen Flows in Rumen Fermentation: principles and possibilities of interventions. Frontiers In Microbiology, [S.L.], v. 11, p. 589, 15 abr. 2020. Frontiers Media SA. http://dx.doi.org/10.3389/fmicb.2020.00589. URBANO, Stela Antas; RODRIGUES, Jessica Caroline Nascimento; RIBEIRO, Pedro Henrique Cavalcante; SILVA, Yasmin dos Santos; SILVA, Rodrigo Ferreira da; EMERENCIANO NETO, João Virgínio; RANGEL, Adriano Henrique do Nascimento; OLIVEIRA, Juliana Paula Felipe de; MEDEIROS, Henrique Rocha de. Nutrient Intake, Performance, Carcass Characteristics, Meat Quality, and Cost Analysis of Sheep Submitted to 41 Intermittent Supplementation on Masai Grass Pastures. Animals, [S.L.], v. 13, n. 7, p. 1267, 6 abr. 2023. MDPI AG. http://dx.doi.org/10.3390/ani13071267. 1. VARMUZA, K.; FILZMOSER, P. Introduction to Multivariate Statistical Analysis in Chemometrics. ed. [S. l.]: CRC Press, 2016. Disponível em: https://www.taylorfrancis.com/books/9781420059496. VON JACQUIN, Nikolaus Joseph; VON JACQUIN, Nikolaus Joseph Freiherr. Icones plantarum rariorum. apud CF Wappler, 1781. 3, VRANIć, Marina; BOŁNJAK, Krešimir; RUKAVINA, Ivana; GLAVANOVIć, Siniša; PUKEC, Nataša Pintić; BABIć, Andreja; VRANIć, Ivica. Prediction of forage chemical composition by NIR spectroscopy. Journal Of Central European Agriculture, [S.L.], v. 21, n. p. 554-568, 2020. Journal http://dx.doi.org/10.5513/jcea01/21.3.2839. of Central European Agriculture. WITTKOP, Benjamin; SNOWDON, Rod J.; FRIEDT, Wolfgang. New NIRS Calibrations for Fiber Fractions Reveal Broad Genetic Variation in Brassica napus Seed Quality. Journal Of Agricultural And Food Chemistry, [S.L.], v. 60, n. 9, p. 2248-2256, 21 fev. 2012. American Chemical Society (ACS). http://dx.doi.org/10.1021/jf204936f. YAN, Hui; SIESLER, Heinz W. Hand-held near-infrared spectrometers: state-of-the-art instrumentation and practical applications. Nir News, [S.L.], v. 29, n. 7, p. 8-12, 20 ago. 2018. SAGE Publications. http://dx.doi.org/10.1177/0960336018796391. ZHANG, Baohua; GU, Baoxing; TIAN, Guangzhao; ZHOU, Jun; HUANG, Jichao; XIONG, Yingjun. Challenges and solutions of optical-based nondestructive quality inspection for robotic fruit and vegetable grading systems: a technical review. Trends In Food Science & Technology, [S.L.], v. 81, p. http://dx.doi.org/10.1016/j.tifs.2018.09.018. 213-231, nov. 2018. Elsevier BV. ZHANG, Wenwen; KASUN, Liyanaarachchi Chamara; WANG, Qi Jie; ZHENG, Yuanjin; LIN, Zhiping. A Review of Machine Learning for Near-Infrared Spectroscopy. Sensors, [S.L.], v. 22, n. 24, p. 9764, 13 dez. 2022. MDPI AG. http://dx.doi.org/10.3390/s22249764.pt_BR
dc.subject.cnpqZootecniapt_BR
Appears in Collections:Mestrado em Ciência Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
PRISCILA PEREIRA CARNEIRO.pdf2.56 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.