Use este identificador para citar ou linkar para este item:
http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/24364Registro completo de metadados
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.author | Saldanha, Gustavo Rodrigues | - |
| dc.date.accessioned | 2026-02-03T13:03:48Z | - |
| dc.date.available | 2026-02-03T13:03:48Z | - |
| dc.date.issued | 2025-08-29 | - |
| dc.identifier.citation | SALDANHA, Gustavo Rodrigues Saldanha. Diversidade microbiana de solos sob cultivo de tomateiro (Solanum lycopersicum) com murcha bacteriana e bioprospecção de microrganismos promotores de crescimento vegetal. 2025. 62f. Dissertação (Mestrado em Agronomia, Ciência do solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025. | pt_BR |
| dc.identifier.uri | http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/24364 | - |
| dc.description.abstract | A murcha do tomateiro, que pode ter como agentes causais a bactéria Ralstonia solanacearum ou o fungo Fusarium oxysporum f. sp. lycopersici, representa um dos principais desafios para o manejo da cultura, devido à persistência desses patógenos no solo e o limitado uso eficiência dos métodos químicos disponíveis. No primeiro capítulo, investigou-se a composição da comunidade bacteriana da rizosfera de plantas de tomate com e sem sintomas de murcha bacteriana em duas unidades de produção protegida em Vassouras-RJ. A análise da diversidade alfa e beta, abundância diferencial e redes de coocorrência bacteriana indicou diferenças na rizosfera de plantas sintomáticas e assintomáticas. Famílias como Bacillaceae, Fictibacillaceae, Nocardiaceae, Chitinophagaceae e Streptomycetaceae predominaram na rizosfera de plantas sem sintomas, possivelmente associadas à supressão natural do patógeno, enquanto Pseudomonadaceae, Microbacteriaceae e Rhizobiaceae foram mais abundantes na rizosfera de plantas com murcha. As redes microbianas indicaram maior conectividade e predominância de interações negativas na presença de doença, com centralidade de Beijerinckiaceae nas plantas sintomáticas e de Mycobacteriales e Burkholderiaceae nas assintomáticas. O segundo capítulo concentrou-se na caracterização de 22 isolados de Pseudomonas previamente identificados por MALDI-TOF. A identificação foi confirmada por sequenciamento do gene rrs, e foi avaliado o potencial de biocontrole contra F. oxysporum f. sp. lycopersici e atributos de promoção de crescimento vegetal. Foi observada a predominância espécies de P. aeruginosa, P. putida e P. plecoglossicida. Nos testes de antagonismo direto, isolados de P. aeruginosa apresentaram maior capacidade de inibir o patógeno. Isolados do grupo putida destacaram-se na solubilização de fosfato e produção de ácido indolacético, indicando potencial como promotor de crescimento vegetal. Em conjunto, os resultados demonstram que houve alteração na composição microbiana na rizosfera de plantas com murcha bacteriana e destacam cepas de Pseudomonas como promissoras para a formulação de bioinsumos voltados para o controle de Fusarium e à promoção de crescimento vegetal. Essas informações reforçam a importância do desenvolvimento de estratégias baseadas na manipulação da microbiota do solo e da utilização de consórcios microbianos, favorecendo o avanço de práticas agrícolas mais eficientes e ambientalmente sustentáveis. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Fusarium oxysporum f. sp. | pt_BR |
| dc.subject | lycopersici | pt_BR |
| dc.subject | Murcha bacteriana | pt_BR |
| dc.subject | Ralstonia solanacearum | pt_BR |
| dc.title | Diversidade microbiana de solos sob cultivo de tomateiro (solanum lycopersicum) com murcha bacteriana e bioprospecção de microrganismos promotores de crescimento vegetal | pt_BR |
| dc.title.alternative | Soil microbial diversity under tomato (Solanum lycopersicum) cultivation with bacterial wilt and bioprospecting of plant growth-promoting microorganisms. | en |
| dc.type | Dissertação | pt_BR |
| dc.description.abstractOther | Tomato wilt, caused by either the bacterium Ralstonia solanacearum or the fungus Fusarium oxysporum f. sp. lycopersici, represents one of the main challenges for tomato crop management due to the persistence of these pathogens in the soil and the limited efficiency of available chemical control methods. In the first chapter, the composition of the bacterial community in the rhizosphere of tomato plants with and without bacterial wilt symptoms was investigated in two protected production units located in Vassouras, Rio de Janeiro, Brazil. Analyses of alpha and beta diversity, differential abundance, and bacterial co-occurrence networks revealed differences between the rhizospheres of symptomatic and asymptomatic plants. Families such as Bacillaceae, Fictibacillaceae, Nocardiaceae, Chitinophagaceae, and Streptomycetaceae predominated in the rhizosphere of asymptomatic plants, possibly associated with natural suppression of the pathogen, whereas Pseudomonadaceae, Microbacteriaceae, and Rhizobiaceae were more abundant in plants showing wilt symptoms. Microbial network analyses indicated higher connectivity and a predominance of negative interactions in the presence of disease, with Beijerinckiaceae showing centrality in symptomatic plants, and Mycobacteriales and Burkholderiaceae in asymptomatic ones. The second chapter focused on the characterization of 22 Pseudomonas isolates previously identified by MALDI-TOF. Identification was confirmed by sequencing of the rrs gene, and the potential for biocontrol against F. oxysporum f. sp. lycopersici as well as plant growth-promoting traits were evaluated. The predominant species were P. aeruginosa, P. putida, and P. plecoglossicida. In direct antagonism assays, P. aeruginosa isolates exhibited greater ability to inhibit the pathogen. Isolates belonging to the P. putida group stood out for their phosphate solubilization and indole3-acetic acid production, indicating potential as plant growth promoters. Overall, the results demonstrate that the microbial composition of the rhizosphere is altered in plants affected by bacterial wilt and highlight Pseudomonas strains as promising candidates for the development of bioinputs aimed at Fusarium control and plant growth promotion. These findings reinforce the importance of developing strategies based on soil microbiome manipulation and the use of microbial consortia to advance more efficient and environmentally sustainable agricultural practices. | en |
| dc.contributor.advisor1 | Coelho, Irene da Silva | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0003-1357-2529 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2191695584157582 | pt_BR |
| dc.contributor.referee1 | Coelho, Irene da Silva | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0003-1357-2529 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/2191695584157582 | pt_BR |
| dc.contributor.referee2 | Vidal, Marcia Soares | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0003-3378-4617 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/3036544314910366 | pt_BR |
| dc.contributor.referee3 | Baldani, José Ivo | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0002-5363-7123 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/8391182235603982 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/4118898684515530 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Agronomia | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Agronomia - Ciência do Solo | pt_BR |
| dc.relation.references | AGRIOS, GEORGE N. Plant Pathology. 5. ed. Amsterdam; Boston: Academic Press / Elsevier, 2005. 952 p. ISBN 978-0-12-0445653. AHMAD, F.; AHMAD, I.; KHAN, M. S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological research, v. 163, n. 2, p. 173-181, 2008. ALBUQUERQUE, G. R.; LUCENA, L. P.; ASSUNÇÃO, E. F.; MESQUITA, J. C. P.; SILVA, A. M. F.; SOUZA, E. B.; & GAMA, M. A. S. Evaluation of tomato rootstocks to Ralstonia solanacearum and R. pseudosolanacearum in Mata mesoregion, PE. Horticultura Brasileira, v. 39, n. 1, p. 72-78, 2021. ALI, S. Z.; SANDHYA, V.; VENKATESWAR RAO, L. Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Annals of microbiology, v. 64, p. 493-502, 2014. ALIYAT, F. Z., MALDANI, M., EL GUILLI, M., NASSIRI, L., & IBIJBIJEN, J. Phosphatesolubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms: Calcium, iron, and aluminum phosphates. Microorganisms, v. 10, n. 5, p. 980, 2022. ALIYAT, F. Z., MALDANI, M., EL GUILLI, M., NASSIRI, L., & IBIJBIJEN, J. Phosphatesolubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms: Calcium, iron, and aluminum phosphates. Microorganisms, v. 10, n. 5, p. 980, 2022. ALTSCHUL, S. F.; MADDEN, T. L.; SCHÄFFER, A. A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, v. 25, n. 17, p. 3389–3402, 1997. ALVARENGA, M.A.R. Tomate: Produção em Campo, Casa de Vegetação e Hidroponia. Lavras: UFLA, p. 455, 2013. ANDERSEN, K.S., KIRKEGAARD, R.H., KARST, S.M., ALBERTSEN, M., 2018. Ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv 299537. https:// doi.org/10.1101/299537. ARAVANAN, V. S.; SUBRAMONIAM, S. R.; RAJ, S. A. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Brazilian journal of microbiology, v. 35, p. 121-125, 2004. ARCAND, M. M.; SCHNEIDER, K. D. Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. Anais da Academia Brasileira de Ciencias, vol. 78, no. 4, p. 791–807, Dec. 2006. BAKER, R.; COOK, J. Biological control of plant pathogens San Francisco: W. H. Freeman, 1974. 50 BASHAN, Y.; KAMNEV, A. A.; DE-BASHAN, L. E. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biology and Fertility of Soils, v. 49, n. 4, p. 465–479, May 2013. BENITE, A. M. C.; MACHADO, S. P.; MACHADO, B. C. Sideróforos: uma resposta dos microorganismos. Química Nova, v. 25, p. 1155-1164, 2002. BERGAMIN FILHO, A.; KIMATI, H.; AMORIM, L. Manual de fitopatologia: princípios e conceitos. 3. ed. São Paulo: Agronômica Ceres, 1995. v. 1. BETTIOL, W.; GHINI, RAQUEL. Solos supressivos. Ecologia e Manejo de Patógenos Radiculares em Solos Tropicais. Recife. Imprensa Universitária da Universidade Federal Rural de Pernambuco, p. 125-152, 2005. BETTIOL, W.; TERAO, D.; HALFELD-VIEIRA, B. D. A.; MENDES, R.; MORANDI, M.; MASCARIN, G.; & MARCELO AUGUSTO BOECHAT MORANDI, A. R. I. N. Controle biológico de doenças de plantas. 1991. BIELEN, A., BABIĆ, I., VUK SURJAN, M., KAZAZIĆ, S., ŠIMATOVIĆ, A., LAJTNER, J., UDIKOVIĆ-KOLIĆ, N & HUDINA, S. Comparison of MALDI-TOF mass spectrometry and 16S rDNA sequencing for identification of environmental bacteria: a case study of cave musselassociated culturable microorganisms. Environmental science and pollution research, v. 31, n. 14, p. 21752-21764, 2024. BIESSY, A.; NOVINSCAK, A.; ST-ONGE, R.; LÉGER, G.; ZBORALSKI, A.; & FILION, M. Inhibition of three potato pathogens by phenazine-producing Pseudomonas spp. is associated with multiple biocontrol-related traits. MSphere, v. 6, n. 3, p. 10.1128/msphere. 00427-21, 2021. BRASIL. Governo do Estado de Goiás. Destaque do mês Agro em Dados – Fevereiro 2025: Tomate. 2025. Disponível em: https://goias.gov.br/agricultura/destaque-do-mes-agro-emdados-fevereiro-2025-tomate. Acesso em: 16 set. 2025. BRASIL. Governo do Estado do Rio de Janeiro. A cultura do tomate no Estado do Rio de Janeiro – 2019-2023. Rio de Janeiro: Pesagro-RJ, 2023. Disponível em: https://www.rj.gov.br/pesagro/sites/default/files/arquivos_paginas/DOC%20Online%2011%2 0A%20cultura%20do%20tomate%20no%20Estado%20do%20Rio%20de%20Janeiro%20201 9%20-%202023.pdf. Acesso em: 16 set. 2025. BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Agrofit: Sistema de Agrotóxicos Fitossanitários. Brasília, DF: MAPA, 2003–. Disponível em: https://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Acesso em: 18 ago. 2025 CALLAHAN, B. J.; MCMURDIE, P. J.; ROSEN, M. J., HAN, A. W.; JOHNSON, A. J. A.; & HOLMES, S. P. DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, v. 13, n. 7, p. 581-583, 2016. CARVALHO FILHO, A.; LUMBRERAS, J. F.; COELHO, M. R.; OLIVEIRA, A. P.; SILVA, E. F.; DART, R. O.; BACA, J. F. M.; FREITAS, P. L.; PEDREIRA, J. P. N. C.; MEDEIROS, 51 P. S. C.; SILVA, G. B.; PONTONI, D. R. Mapa de aptidão agrícola das terras do Brasil, escala 1:500.000. Rio de Janeiro: Embrapa; IBGE, 2024. Disponível em: https://geoinfo.dados.embrapa.br/catalogue/#/map/6499. Acesso em: 29 jul. 2025. CAULIER, S.; GILLIS, A.; COLAU, G.; LICCIARDI, F.; LIÉPIN, M.; DESOIGNIES, N.; & BRAGARD, C. Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in microbiology, v. 9, p. 143, 2018. CLIMADATA. Clima de Vassouras (RJ). Disponível em: https://pt.climate-data.org/americado-sul/brasil/rio-de-janeiro/vassouras-33690/. Acesso em: 18 ago. 2025. COLE, J. R.; WANG, Q.; FISH, J. A.; CHAI, B.; MCGARRELL, D. M.; SUN, Y.; & TIEDJE, J. M. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic acids research, v. 42, n. D1, p. D633-D642, 2013. DA SILVA COSTA, E.; DA SILVA COSTA, K. D.; DE CARVALHO FILHO, J. L. S.; & DE OLIVEIRA SILVA, M. Reação de resistência do tomateiro à Ralstonia solanacearum em condições de casa de vegetação. Brazilian Journal of Development, v. 9, n. 6, p. 19413- 19428, 2023. DE LUCA, G.; BARAKAT, M.; ORTET, P.; FOCHESATO, S.; JOURLIN-CASTELLI, C.; ANSALDI, M.; & HEULIN, T. The cyst-dividing bacterium Ramlibacter tataouinensis TTB310 genome reveals a well-stocked toolbox for adaptation to a desert environment. PLoS One, v. 6, n. 9, p. e23784, 2011. DE MENEZES, A. B.; LOCKHART, R. J.; COX, M. J.; ALLISON, H. E.; & MCCARTHY, A. J. Cellulose degradation by micromonosporas recovered from freshwater lakes and classification of these actinomycetes by DNA gyrase B gene sequencing. Applied and Environmental Microbiology, v. 74, n. 22, p. 7080-7084, 2008. DESLANDES, J.A. Doenças do tomateiro no Nordeste. Boletim da Sociedade Brasileira de Agronomia, Rio de Janeiro, v.3, n.4, p.442–453, 1940. DORAN, J. W.; SARRANTONIO, M.; LIEBIG, M. A. Soil health and sustainability. Advances in Agronomy, San Diego, v. 56, p. 2-54, 1996. EDGAR, R. Use pesquisa. Laboratório Nacional Lawrence Berkeley. (LBNL), Berkeley, CA (Estados Unidos), 2010. EMATER-RIO. Acompanhamento sistemático da produção agrícola 2023 – Sistema Agrogeo. Disponível em: https://www.emater.rj.gov.br/index.php/node/151. Acesso em: 18 fev. 2024. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Manual de métodos de análise de solo. Rio de Janeiro, Centro Nacional de Pesquisa de Solos, 1997. P.212. FAOSTAT (FAO). Production: Crops and livestock products – Tomatoes (World, 2022). Roma: FAO, 2022. Disponível em: FAOSTAT (base de dados). Acesso em: 18 ago. 2025. 52 FAUST, KAROLINE; RAES, JEROEN. Microbial interactions: from networks to models. Nature Reviews Microbiology, v. 10, n. 8, p. 538-550, 2012. FELIX, R.; ONYANGO, O. J.; ELIAZER, O. M. Assessment of Irish Potato Cultivars' Field Tolerance to Bacterial wilt(Ralstonia solanacearum) in Kenya. Plant Pathology Journal, v. 9, n. 3, p. 122-128, 2011. FELSENSTEIN, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, p.783-791, 1985. FILGUEIRA, F. A. R. Manual de olericultura: Agrotecnologia moderna na produção e comercialização de hortaliças. Viçosa: UFV, 402 p. 2008. GIRARD, L.; LOOD, C.; HÖFTE, M.; VANDAMME, P.; ROKNI-ZADEH, H.; VAN NOORT, V.; & DE MOT, R. The ever-expanding Pseudomonas genus: description of 43 new species and partition of the Pseudomonas putida group. Microorganisms, v. 9, n. 8, p. 1766, 2021. GOMILA, M.; PEÑA, A.; MULET, M.; LALUCAT, J.; & GARCÍA-VALDÉS, E. Phylogenomics and systematics in Pseudomonas. Frontiers in microbiology, v. 6, p. 214, 2015. GOUI.D. W. A. Tomato produetion, processing & technology. 3~. ed. CT1 publications. 1992. 500p. GROBE, S.; WINGENDER, J.; FLEMMING, H.C.; 2001. Capability of mucoid Pseudomonas aeruginosa to survive in chlorinated water. International Journal of Hygiene and Environmental Health 204 (2e3), 139e142. GROßKINSKY, D. K.; TAFNER, R.; MORENO, M. V.; STENGLEIN, S. A.; GARCÍA DE SALAMONE, I. E.; NELSON, L. M.; & ROITSCH, T. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Scientific reports, v. 6, n. 1, p. 23310, 2016. GULATI, A.; RAHI, P.; & VYAS, P. Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Current microbiology, v. 56, n. 1, p. 73-79, 2008. HE, F. E. coli genomic DNA extraction. Bio-protocol, p. e97-e97, 2011. HIFNAWY, M.; HASSAN, H. M.; MOHAMMED, R.; M. FOUDA, M.; SAYED, A. M.; A. HAMED, A.; & ABDELMOHSEN, U. R. Induction of antibacterial metabolites by cocultivation of two red-sea-sponge-associated actinomycetes Micromonospora sp. UR56 and Actinokinespora sp. EG49. Marine Drugs, v. 18, n. 5, p. 243, 2020. HIGGINS, D. G. CLUSTAL V: multiple alignment of DNA and protein sequences. In: Computer analysis of sequence data. Springer, Totowa, NJ. p.307-318, 1994. 53 HU, Q.; TAN, L.; GU, S.; XIAO, Y.; XIONG, X.; ZENG, W. A.; & DENG, Y. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. npj Biofilms and Microbiomes, v. 6, n. 1, p. 8, 2020. HUET, GAËLLE. Breeding for resistances to Ralstonia solanacearum. Frontiers in plant science, v. 5, p. 715, 2014. IBGE – Instituto Brasileiro de Geografia e Estatística. Levantamento Sistemático da Produção Agrícola (LSPA): pesquisa mensal de previsão e acompanhamento das safras agrícolas no ano civil. Rio de Janeiro: IBGE, 2024. IBGE – Instituto Brasileiro de Geografia e Estatística. Produção Agrícola Municipal (PAM): área plantada, área colhida, quantidade produzida, rendimento médio e valor da produção. Rio de Janeiro: IBGE, 2025. IQBAL, A.; & HASNAIN, S. Auxin producing Pseudomonas strains: biological candidates to modulate the growth of Triticum aestivum beneficially. American Journal of Plant Sciences, v. 4, n. 09, p. 1693, 2013. ISLAM, M. A.; NAIN, Z.; ALAM, M. K., BANU, N. A., & ISLAM, M. R. In vitro study of biocontrol potential of rhizospheric Pseudomonas aeruginosa against Fusarium oxysporum f. sp. cucumerinum. Egyptian journal of Biological Pest control, v. 28, n. 1, p. 90, 2018. JANATI, W.; MIKOU, K.; EL GHADRAOUI, L.; & ERRACHIDI, F. Isolation and characterization of phosphate solubilizing bacteria naturally colonizing legumes rhizosphere in Morocco. Frontiers in Microbiology, v. 13, p. 958300, 2022. JAYARAMAN, S.; NAOREM, A. K.; LAL, R.; DALAL, R. C.; SINHA, N. K.; PATRA, A. K.; & CHAUDHARI, S. K. Disease-suppressive soils—beyond food production: a critical review. Journal of Soil Science and Plant Nutrition, v. 21, p. 1437-1465, 2021. JIANG, H.; XU, X.; FANG, Y.; OGUNYEMI, S. O.; AHMED, T.; LI, X.; & LI, B. Metabarcoding reveals response of rice rhizosphere bacterial community to rice bacterial leaf blight. Microbiological Research, v. 270, p. 127344, 2023. KANG, S. M.; RADHAKRISHNAN, R.; KHAN, A. L.; KIM, M. J.; PARK, J. M.; KIM, B. R.; & LEE, I. J. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal 43 and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry, v. 84, p. 115-124, 2014. KAMPERS, L. F. C.; VOLKERS, R. J. M.; MARTINS DOS SANTOS, V. A. P. Pseudomonas putida KT 2440 is HV 1 certified, not GRAS. Microbial Biotechnology, v. 12, n. 5, p. 845848, 2019. KASSAMBARA, A.; MUNDT, F. Package ‘factoextra’. Extract and visualize the results of multivariate data analyses, v. 76, 2017. KHALID, A.; ARSHAD, M.; ZAHIR, Z. A. Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, v.96, p. 473-480, 2004. 54 KHALID, A.; ARSHAD, M.; ZAHIR, Z. A. Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, v.96, p. 473-480, 2004. KINKEL, L. L.; BAKKER, M. G.; SCHLATTER, D. C. A coevolutionary framework for managing disease-suppressive soils. Annual Review of Phytopathology, v. 49, n. 1, p. 47-67, 2011. KLOEPPER, JOSEPH W.; RYU, CHOONG-MIN; ZHANG, SHOUAN. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, v. 94, n. 11, p. 12591266, 2004. KÖHL, J.; KOLNAAR, R.; RAVENSBERG, W. J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science, v. 10, p. 845, 2019. KUMAR S.; STECHER G.; PETERSON D.; TAMURA K. MEGA-CC: Computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics v.28, p. 2685-2686, 2012. KURABACHEW, Henok; WYDRA, Kerstin. Induction of systemic resistance and defenserelated enzymes after elicitation of resistance by rhizobacteria and silicon application against Ralstonia solanacearum in tomato (Solanum lycopersicum). Crop Protection, v. 57, p. 1-7, 2014. KUROZAWA, C. & PAVAN, M. A. P. Doenças do tomateiro. In: Manual de fitopatologia: doenças de plantas cultivadas. 4. ed. São Paulo: Agronômica Ceres, 2005. v. 2, p. 607– 626. LANA, U. D. P.; RIBEIRO, V.; GOMES, E.; & OLIVEIRA-PAIVA, C. D. Seleção em larga escala de bactérias produtoras do hormônio ácido indolacético (AIA), auxina associada à promoção de crescimento em plantas. 2017. LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for categorical data. Biometrics, v. 33, p. 159–174, 1977. LANE, D.J. 16S/23S rRNA sequencing. In: STACKEBRANDT, E; GOODFELLOW, M Nucleic acid techniques in bacterial systematics. p. 115–175. New York: Wiley, 1991. LESLIE, J. F.; & SUMMERELL, B. A. The Fusarium laboratory manual. Ames: Blackwell, 2006. 388 p. LIANG H.; DUAN J.; SIBLEY CD.; SURETTE MG.; DUAN K. Identification of mutants with altered phenazine production in Pseudomonas aeruginosa. J Med Microbiol. 2011;60:22–34. LIANG, J.; WEI, C.; SONG, X.; WANG, R.; SHI, H.; TAN, J.; & WANG, X. Bacterial wilt affects the structure and assembly of microbial communities along the soil-root continuum. Environmental Microbiome, v. 19, n. 1, p. 6, 2024. 55 LIANG, J.; WEI, C.; SONG, X.; WANG, R.; SHI, H.; TAN, J. Bacterial wilt affects the structure and assembly of microbial communities along the soil-root continuum. Environmental Microbiome, v. 19, n. 1, p. 6, 2024. LIU, L.; ZHU, K.; WURZBURGER, N.; & ZHANG, J .Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere, v. 11, n. 1, e02999, 2020. LOPES, C. A.; LOPES, Carlos Alberto. Murcha bacteriana ou murchadeira: uma inimiga do tomateiro em climas quentes. 2009. LOPES, C. A.; REIS, A. Diferenciando as murchas do tomateiro. Brasília, DF: Embrapa Hortaliças, 2022. (Comunicado Técnico, 135). LOPES, C. A.; ROSSATO, M. Diagnóstico de Ralstonia solanacearum em tomateiro. 2013. LOVE MI, HUBER W, ANDERS S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with Deseq2. Genome biology 15 : 550. M. Nucleic acid techniques in bacterial systematics. New York: Wiley, 1991. p.115–175. MAGOČ, T.; SALZBERG, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, v. 27, n. 21, p. 2957-2963, 2011. MARIAN, M.; NISHIOKA, T.; KOYAMA, H.; SUGA, H.; & SHIMIZU, M. Biocontrol potential of Ralstonia sp. TCR112 and Mitsuaria sp. TWR114 against tomato bacterial wilt. Applied Soil Ecology, v. 128, p. 71-80, 2018. MARIANO, R. L. R. Métodos de seleção “in vitro” para controle microbiológico. Revista Anual de Patologia de Plantas, v. 1, p. 369–409, 1993. MCMURDIE, P. J.; HOLMES, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE, v. 8, p. e61217, 2013. MELIANI, A.; BENSOLTANE, A.; BENIDIRE, L.; & OUFDOU, K. Plant growth-promotion and IAA secretion with Pseudomonas fluorescens and Pseudomonas putida. Research & Reviews: Journal of Botanical Sciences, v. 6, n. 2, p. 16-24, 2017. MELLO, T. A.; AZEVEDO, J. L.; FONTES, E. M. G. Controle biológico de pragas da agricultura. Brasília, DF: Embrapa, 2020. MENDES, I. C.; SOUSA, D. M. G.; REIS JÚNIOR, F. B.; LOPES, A. A. Bioanálise do solo: Como interpretar a saúde do solo. Circular técnica 38. Planaltina, DF: Embrapa Cerrados, 2018. MENDES, R.; KRUJIT, M.; DE BRUIJN, I.; DEKKERS, E.; VAN DER VOORT, M.; SCHNEIDER, J. H. M.; PICENO, Y. M.; DeSANTIS, T. Z.; ANDERSEN, G. L.; BAKKER, P. A. H. M.; RAAIJMAKERS, J. M. Deciphering the rhizosphere microbiome for diseasesuppressive bacteria. Science, v. 332, p. 1097–1100, 2011. 56 MERBACH, W.; FANKEM, H.; DEUBEL, A. Influence of rhizosphere bacteria of African oil palm (Elaeis guineensis) on calcium, iron, and aluminum phosphate in vitro mobilization. In: International symposium “Root Research and Applications”, 2–4 BOKU, Vienna, Austria. Sep. RRcd/session03/poster/042.pdf. 2009. URL: http://asrr.boku.ac.at/fileadmin/files/ MEZIANE, H.; VAN DER SLUIS, I.; VAN LOON, L. C.; HÖFTE, M.; & BAKKER, P. A. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Molecular Plant Pathology, v. 6, n. 2, p. 177-185, 2005. MIKRYUKOV V (2019) Metagmisc: miscellaneous functions for metagenomic analysis. MUKAKA, M.M. A guide to appropriate use of Correlation coefficient in medical research. Malawi Med. J. 24, 69–71. 2012. MONTEIRO, F. P.; WAMSER, A. F.; OGOSHI, C.; VALMORBIDA, J.; CARDOSO, D. A.; PERAZZOLI, V. Performance of Green Power and Shincheonggang tomato rootstocks in Ralstonia solanacearum contaminated area. 2020. MULET, M., MONTANER, M., ROMÁN, D., GOMILA, M., KITTINGER, C., ZARFEL, G., ... & GARCÍA-VALDÉS, E. Pseudomonas species diversity along the Danube River assessed by rpoD gene sequence and MALDI-TOF MS analyses of cultivated strains. Frontiers in Microbiology, v. 11, p. 2114, 2020. NAGARAJKUMAR, M.; BHASKARAN, R.; VELAZHAHAN, R. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiological Research, v. 159, n. 1, p. 73-81, 2004. NANDI, M.; SELIN, C.; BRAWERMAN, G.; FERNANDO, W. D.; & DE KIEVIT, T. Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biological Control, v. 108, p. 47-54, 2017. NAUTIYAL, C. Shekhar. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiology Letters, v. 170, n. 1, p. 265-270, 1999. NICAULT, M.; ZAITER, A.; DUMARCAY, S.; CHAIMBAULT, P.; GELHAYE, E.; LEBLOND, P.; & BONTEMPS, C. Elicitation of antimicrobial active compounds by Streptomyces-fungus co-cultures. Microorganisms, v. 9, n. 1, p. 178, 2021. NOGUEIRA, S. R.; LIMA, F. S.; ROCHA, E. M.; ARAÚJO, D. H. Fungicidas no controle de fusariose do abacaxi no estado de Tocantins. Brasil. Revista de ciências agrárias, 37, 4, 447- 455. 2014. OLIVEIRA JÚNIOR, E. A. Tomate. In: LIMA, M. C.; OLIVEIRA JÚNIOR, E.A.; OLIVEIRA, E.; SILVA, J. P. Hortaliças e frutas: retrospectiva, procedência e cenários de produção no Maranhão. 1ºed. São Luís: EDUFMA, v.1, p.234-249, 2012. OLIVEIRA, C. A.; ALVES, V. M. C.; MARRIEL, I. E.; GOMES, E. A.; SCOTTI, M. R.; CARNEIRO, N. P.; GUIMARÃES, C. T.; SCHAFFERT, R. E.; SÁ, N. M. H. Phosphate 57 solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biology and Biochemistry, vol. 41, no. 9, p. 1782–1787, Sep. 2009. PARA- PROGRAMA DE ANÁLISE DE RESÍDUOS DE AGROTÓXICOS EM ALIMENTOS. Relatório de Atividades. Gerência Geral de Toxicologia. ANVISA. 2014. PARKS, D. H.; CHUVOCHINA, M.; RINKE, C.; MUSSIG, A. J.; CHAUMEIL, P. A.; & HUGENHOLTZ, P. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic acids research, v. 50, n. D1, p. D785-D794, 2022. PARRA, J. R. P. Biological control in Brazil: an overview. Scientia Agricola, v. 71, p. 420429, 2014. PARVIN, W.; RAHMAN, M. M.; GOVENDER, N. T.; & WONG, M. Y. Identification, determination and quantification of indole-3-acetic acid produced by Pseudomonas aeruginosa UPMP3 and its effect on the growth of oil palm (Elaeis guineensis Jacq). World Journal of Agricultural Research, v. 8, n. 3, p. 75-83, 2020. PEIX, A.; RAMÍREZ-BAHENA, M.; VELÁZQUEZ, E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infection, genetics and evolution, v. 9, n. 6, p. 11321147, 2009. QUAST C.; PRUESSE E.; YILMAZ P.; GERKEN J.; SCHWEER T.; YARZA P.; PEPLIES J.; GLÖCKNER F. The silva ribosomal rna gene database project: improved data processing and web-based tools. Nucleic acids research 41:590–596. 2012. QUEZADO-DUVAL, A. M.; LOURENÇO JUNIOR, V. Os desafios da Olericultura. Manejo de doenças foliares do tomateiro. Hortaliças em Revista, Brasília, v. 1, n. 24, p. 12- 13. 2018. R CORE TEAM (2021) R: language and environment for statistical computing R foundation for statistical computing vienna austria. RADZKI, W.; GUTIERREZ MAÑERO, F. J.; ALGAR, E., LUCAS GARCÍA, J. A.; GARCÍA-VILLARACO, A.; & RAMOS SOLANO, B. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, v. 104, n. 3, p. 321-330, 2013. RAUSEO, J.; CARACCIOLO, A. B.; ADEMOLLO, N.; CARDONI, M.; DI LENOLA, M.; GAZE, W.; & PATROLECCO, L. Dissipation of the antibiotic sulfamethoxazole in a soil amended with anaerobically digested cattle manure. Journal of Hazardous Materials, v. 378, p. 120769, 2019. ROBERT, C. A. M.; HIMMIGHOFEN, P.; MCLAUGHLIN, S.; COFER, T. M.; KHAN, S. A.; SIFFERT, A.; & SASSE, J. Environmental and biological drivers of root exudation. Annual Review of Plant Biology, v. 76, 2025. RODRIGUES, R. R.; PIZETTA, S. C.; DA COSTA JAEGGI, M. E. P.; ROCHA, R. S.; DA SILVA, R. D. K. G.; DA CRUZ, D. P.; & DE ARAÚJO CAPETINI, S. Cultivo do tomateiro 58 em ambiente protegido sob diferentes tensões de água no solo. Research, Society and Development, v. 9, n. 11, p. e2289119777-e2289119777, 2020. RODRÍGUEZ, H.; & FRAGA, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances, v. 17, n. 4-5, p. 319-339, 1999. SAHA, M.; MAURYA, B. R.; MEENA, V. S.; BAHADUR, I.; & KUMAR, A. Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatalysis and agricultural biotechnology, v. 7, p. 202-209, 2016. SARAVANAKUMAR, D.; SAMIYAPPAN, R. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. Journal of applied microbiology, v. 102, n. 5, p. 1283-1292, 2007. SARAVANAN, V. S.; SUBRAMONIAM, S. R.; RAJ. Savariappan Anthoni. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Brazilian journal of microbiology, v. 35, p. 121-125, 2004. SARWAR, M.; KREMER, R. J. Determination of bacterially derived auxins using a microplate method. Letters in applied microbiology, v. 20, n. 5, p. 282-285, 1995. SCHROECKH, V.; SCHERLACH, K.; NÜTZMANN, H. W.; SHELEST, E.; SCHMIDTHECK, W.; SCHUEMANN, J.; & BRAKHAGE, A. A. Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proceedings of the National Academy of Sciences, v. 106, n. 34, p. 14558-14563, 2009. SHARMA, S. B.; SAYYED, R. Z.; TRIVEDI, M. H.; & GOBI, T. A. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, v. 2, n. 1, p. 587, 2013. SIGLE, S.; LADWIG, N.; WOHLLEBEN, W.; & MUTH, G. Synthesis of the spore envelope in the developmental life cycle of Streptomyces coelicolor. International Journal of Medical Microbiology, v. 305, n. 2, p. 183-189, 2015. SINGH, V. K.; SINGH, Harikesh B.; UPADHYAY, R. S. Role of fusaric acid in the development of ‘Fusarium wilt’symptoms in tomato: Physiological, biochemical and proteomic perspectives. Plant physiology and biochemistry, v. 118, p. 320- 332, 2017. SOUZA, B.; VAZQUEZ, L. L.; MARUCCI, R. C. Natural enemies of insect pests in neotropical agroecosystems. Biological Control and Functional Biodiversity. Cham: Springer, v. 1, p. 546, 2019. SPOSITO, G.; ZABEL, A. The assessment of soil quality. Geoderma, Amsterdam, v. 114, n. 3/4, p. 143-144, 2003. STOREY, S.; ASHAARI, M. M.; CLIPSON, N.; DOYLE, E.; & DE MENEZES, A. B. Opportunistic bacteria dominate the soil microbiome response to phenanthrene in a microcosmbased study. Frontiers in Microbiology, v. 9, p. 2815, 2018. 59 STOVER, C. K.; PHAM, X. Q.; ERWIN, A. L.; MIZOGUCHI, S. D.; WARRENER, P.; HICKEY, M. J.; & OLSON, M. V. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, v. 406, n. 6799, p. 959-964, 2000. TEIXEIRA, P. C., DONAGEMMA, G. K., FONTANA, A., & TEIXEIRA, W. G. Manual de métodos de análise de solo. Brasília, DF: Embrapa, 2017. 3. ed. rev. e ampl., 574 p. 2017. TIMPERIO, A. M., GORRASI, S., ZOLLA, L., & FENICE, M. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PloS one, v. 12, n. 7, p. e0181860, 2017. TITO, T. M., RODRIGUES, N. D. M. B., COELHO, S. M. O., SOUZA, M. M. S., ZONTA, E.; COELHO, I. S. Choice of DNA extraction protocols from Gram negative and positive bacteria and directly from the soil. Afr J Microbiol Res, v. 9, n. 12, p.863-871, 2015. TORRES, N.; HERRERA, I.; FAJARDO, L.; & BUSTAMANTE, R. O. Meta-analysis of the impact of plant invasions on soil microbial communities. BMC Ecology and Evolution, v. 21, n. 1, p. 172, 2021. TRIVEDI P, PANDEY A, PALNI LMS. In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol Res 163:329– 336. 2008. TSUKAMOTO, T.; TAKEUCHI, M.; SHIDA, O.; MURATA, H.; & SHIRATA, A.Proposal of Mycetocola gen. nov. in the family Microbacteriaceae and three new species, Mycetocola saprophilus sp. nov., Mycetocola tolaasinivorans sp. nov. and Mycetocola lacteus sp. nov., isolated from cultivated mushroom, Pleurotus ostreatus. International Journal of Systematic and Evolutionary Microbiology, v. 51, n. 3, p. 937-944, 2001. TULLIO, H. E. Potencial de bactérias endofíticas do cacau para o controle de fungos de solo e promoção de crescimento radicular na cultura da soja. 2017. Dissertação (Mestrado em Agronomia) – Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, 2017. TÜMMLER, B. What makes Pseudomonas aeruginosa a pathogen?. In: Pseudomonas aeruginosa: Biology, Pathogenesis and Control Strategies. Cham: Springer International Publishing, 2022. p. 283-301. VAN DER HEIJDEN, M. G. A.; BARDGETT, R. D.; VAN STRAALEN, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, v. 11, p. 296–310, 2008. WAGG, C.; BENDER, S. F.; WIDMER, F.; VAN DER HEIJDEN, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, v. 111, n. 14, p. 5266–5270, 8 abr. 2014. doi:10.1073/pnas.1320054111. WAHEED, K.; NAWAZ, H.; HANIF, M.A;; E REHMAN, R. 2019. Tomate. Páginas 631-644 em: Medicinal Plants of South Asia Novel Sources for Drug Discovery (1ª ed.). M. Hanif, H. Nawaz, M. Khan e H. Byrne, orgs. Elsevier, Amsterdã, Holanda. 60 WANG, W.; JIA, T.; QI, T.; LI, S.; DEGEN, A. A.; HAN, J.; & SHANG, Z. Root exudates enhanced rhizobacteria complexity and microbial carbon metabolism of toxic plants. iScience, v. 25, n. 10, 2022. WEISBURG, W. G.; BARNS, S. M.; PELLETIER, D. A.; LANE, D. J. 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology, v. 173, n. 2, p. 697-703, 1991. WELLER, D. M.; RAAIJMAKERS, J. M.; MCSPADDEN GARDENER, B. B.; THOMASHOW, L. S. Populações microbianas responsáveis pela supressão específica de patógenos de plantas. Annual Review of Phytopathology, v. 40, p. 309-348, 2002. WHEATER, D. W. F.; MARA, D. D.; JAWAD, L.; & ORAGUI, J. Pseudomonas aeruginosa and Escherichia coli in sewage and fresh water. Water Research, v. 14, n. 7, p. 713-721, 1980. WINSTEAD, N. N.; KELMAN, ARTHUR. Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. 1952. XIAO, Y.; ZHANG, S.; LI, H.; TENG, K.; WU, S.; LIU, Y. Metagenomic insights into the response of soil microbial communities to pathogenic Ralstonia solanacearum. Frontiers in Plant Science, v. 15, p. 1325141, 2024. YANG, H.; LI, J.; XIAO, Y.; GU, Y.; LIU, H.; LIANG, Y.; & YIN, H. An integrated insight into the relationship between soil microbial community and tobacco bacterial wilt disease. Frontiers in Microbiology, v. 8, p. 2179, 2017. YANG, S. The Role of Microbial Community Structure in Rice Rhizosphere Over the Growing Season. Molecular Soil Biology, v. 15, 2024. YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communications in soil science and plant analysis, v. 19, n. 13, p. 1467-1476, 1988. YU, H.; WU, X.; ZHANG, G.; ZHOU, F.; HARVEY, P. R.; WANG, L.; & ZHANG, X. Identification of the phosphorus-solubilizing bacteria strain JP233 and its effects on soil phosphorus leaching loss and crop growth. Frontiers in Microbiology, v. 13, p. 892533, 2022. ZHANG, Q. X., KONG, X. W., LI, S. Y., CHEN, X. J., & CHEN, X. J. Antibiotics of Pseudomonas protegens FD6 are essential for biocontrol activity. Australasian plant pathology, v. 49, p. 307-317, 2020. ZHANG, Y.; ZHENG, X.; XU, X.; CAO, L.; ZHANG, H.; ZHANG, H.; & CAO, X. STRAW return promoted the simultaneous elimination of sulfamethoxazole and related antibiotic resistance genes in the paddy soil. Science of the Total Environment, v. 806, p. 150525, 2022. ZHANG, YING; ZHANG, Y., HU, A., ZHOU, J., ZHANG, W., & LI, P. Comparison of bacterial communities in soil samples with and without tomato bacterial wilt caused by Ralstonia solanacearum species complex. BMC Microbiology, v. 20, n. 1, p. 89, 2020. | pt_BR |
| dc.subject.cnpq | Agronomia | pt_BR |
| Aparece nas coleções: | Mestrado em Agronomia - Ciência do Solo | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Arquivos associados a este item:
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| GUSTAVO RODRIGUES SALDANHA (1).pdf | 4,33 MB | Adobe PDF | Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.