Use este identificador para citar ou linkar para este item:
http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/24504Registro completo de metadados
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.author | Santos, Luan Valim dos | - |
| dc.date.accessioned | 2026-02-06T17:31:38Z | - |
| dc.date.available | 2026-02-06T17:31:38Z | - |
| dc.date.issued | 2025-12-27 | - |
| dc.identifier.citation | DOS SANTOS, Luan Valim. Efeitos do hidrato de morina sobre o desenvolvimento e metabolismo de Aedes aegypti. 2025. 206 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025. | pt_BR |
| dc.identifier.uri | http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/24504 | - |
| dc.description.abstract | Aedes aegypti é o principal vetor de arboviroses de grande impacto em saúde pública, como dengue, zika, chikungunya e febre Mayaro, sendo capaz de adaptar-se a diferentes ambientes e desenvolver resistência a inseticidas sintéticos. Nesse cenário, compostos naturais como os flavonoides como alternativas no manejo integrado de vetores. O hidrato de morina, flavonol de origem vegetal, tem sido estudado por suas propriedades farmacológicas, mas pouco se conhece sobre sua ação em insetos vetores. O objetivo deste trabalho foi avaliar de forma integrada os efeitos do hidrato de morina sobre o metabolismo energético e parâmetros biológicos de A. aegypti, com enfoque na sobrevivência, no desenvolvimento, na fertilidade e na suscetibilidade vetorial. Para isso, foram conduzidos ensaios laboratoriais com larvas expostas ao composto em diferentes concentrações e condições nutricionais, sendo avaliados crescimento, sobrevivência, reservas energéticas, perfil bioquímico e metabolômico, além de ensaios de infecção com vírus Mayaro e análises complementares de toxicidade em mamíferos. Os resultados mostraram que o hidrato de morina provoca mortalidade larval dependente da dose, retarda o desenvolvimento e reduz a fertilidade de fêmeas emergidas, mesmo quando a exposição ocorre apenas em estágios juvenis. Observou-se depleção significativa de lipídios, carboidratos e proteínas, associada a alterações em vias metabólicas e indução de estresse oxidativo, configurando um estado fisiológico semelhante ao jejum. Essa perturbação energética repercutiu na fase adulta, comprometendo a reprodução e reduzindo a suscetibilidade vetorial para o vírus Mayaro. Além disso, os testes em camundongos demonstraram ausência de efeitos tóxicos relevantes, reforçando o potencial seletivo e ambientalmente seguro do composto. Em conjunto, os achados revelam que o hidrato de morina atua como um modulador metabólico multifuncional, capaz de comprometer simultaneamente sobrevivência, metabolismo, desenvolvimento e reprodução de A. aegypti, configurando uma alternativa promissora para o desenvolvimento de novas estratégias de controle sustentáveis e seletivos. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | flavonoide | pt_BR |
| dc.subject | controle biológico | pt_BR |
| dc.subject | desenvolvimento | pt_BR |
| dc.subject | metabolismo energético | pt_BR |
| dc.subject | suscetibilidade vetorial | pt_BR |
| dc.subject | flavonoid | pt_BR |
| dc.subject | biological control | pt_BR |
| dc.subject | larval development | pt_BR |
| dc.subject | energy metabolism | pt_BR |
| dc.subject | vector susceptibility | pt_BR |
| dc.title | Efeitos do hidrato de morina sobre o desenvolvimento e metabolismo de aedes aegypti. | pt_BR |
| dc.title.alternative | Effects of morin hydrate on the development and metabolism of aedes aegypti. | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | Aedes aegypti is the primary vector of arboviruses with major public health impact, such as dengue, Zika, chikungunya, and Mayaro fever, being capable of adapting to diverse environments and developing resistance to synthetic insecticides. In this context, natural compounds such as flavonoids as alternatives for integrated vector management. Morin hydrate, a plant-derived flavonol, has been investigated for its pharmacological properties, but its effects on insect vectors remain poorly understood. The aim of this study was to comprehensively evaluate the effects of morin hydrate on the energy metabolism and biological parameters of A. aegypti, with emphasis on survival, development, fertility, and vector competence. Laboratory assays were conducted using larvae exposed to the compound at different concentrations and under variable nutritional conditions. Growth, survival, energy reserves, biochemical and metabolomic profiles were assessed, in addition to infection assays with Mayaro virus and complementary toxicity analyses in non-target organisms. The results showed that morin hydrate induces dose-dependent larval mortality, delays development, and reduces female fertility, even when exposure occurs only at juvenile stages. Significant depletion of lipids, carbohydrates, and proteins was observed, associated with alterations in metabolic pathways and the induction of oxidative stress, establishing a physiological state similar to starvation. This energy imbalance persisted into adulthood, impairing reproduction and decreasing vector competence for Mayaro virus. Moreover, toxicity tests in mice revealed no relevant adverse effects, supporting the selective and environmentally safe potential of the compound. Collectively, the findings demonstrate that morin hydrate acts as a multifunctional metabolic modulator, simultaneously impairing survival, metabolism, development, and reproduction of A. aegypti, representing a promising alternative for the development of sustainable and selective vector control strategies. | en |
| dc.contributor.advisor1 | Pontes, Emerson Guedes | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-2679-238X | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1562085358907265 | pt_BR |
| dc.contributor.referee1 | Pontes, Emerson Guedes | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-2679-238X | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/1562085358907265 | pt_BR |
| dc.contributor.referee2 | Lima, Marco Edilson Freire de | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0003-0563-3483 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/8392420706762318 | pt_BR |
| dc.contributor.referee3 | Chaves, Douglas Siqueira de Almeida | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0002-0571-9538 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/1864237318361425 | pt_BR |
| dc.contributor.referee4 | Gondim, Katia Calp | - |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/4058529639765821 | pt_BR |
| dc.contributor.referee5 | Martins Júnior, Ademir de Jesus | - |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/0370224663642100 | pt_BR |
| dc.creator.ID | https://orcid.org/0000-0002-2333-210X | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/1407400988697500 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Química | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Química | pt_BR |
| dc.relation.references | ADEVA-ANDANY, M. et al. Comprehensive review on lactate metabolism in human health. Mitochondrion, v. 17, p. 76–100, 2014. AHMAD, S.; PARDINI, R. S. Mechanisms for regulating oxygen toxicity in phytophagous insects. Free Radical Biology and Medicine, v. 8, n. 4, p. 401–413, 1990. AHMAD, Sami. Oxidative stress from environmental pollutants. Archives of insect biochemistry and physiology, v. 29, n. 2, p. 135–157, 1995. ALABASTER, Amy et al. Deficiencies in acetyl-CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and blood meal digestion in Aedes aegypti. Insect Biochemistry and Molecular Biology, v. 41, n. 12, p. 946–955, 2011. ALEMDAR, Nihal Turkmen et al. Acetamiprid-induced testicular toxicity in mice: ameliorative effect and potential mechanisms of morin. BMC complementary medicine and therapies, v. 25, n. 1, 1 dez. 2025. ALQURASHI, S.; ENGLISH, S.; WALL, R. Nutritional requirements for reproduction and survival in the blowfly Lucilia sericata. Medical and Veterinary Entomology, v. 34, n. 2, p. 207–214, 1 jun. 2020. ALTO, Barry W.; BETTINARDI, David. Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages. The American journal of tropical medicine and hygiene, v. 88, n. 3, p. 497–505, mar. 2013. ALVES, Marcela de Souza et al. Efficacy of lemongrass essential oil and citral in controlling Callosobruchus maculatus (Coleoptera: Chrysomelidae), a post-harvest cowpea insect pest. Crop Protection, v. 119, p. 191–196, 2019. ALVES, Marcela S. et al. Essential Oils composition and toxicity tested by fumigation against Callosobruchus maculatus (Coleoptera: Bruchidae) pest of stored cowpea. Revista Virtual de Quimica, v. 7, n. 6, p. 2387–2399, 1 nov. 2015. ALVES-BEZERRA, Michele et al. Adipokinetic hormone receptor gene identification and its role in triacylglycerol metabolism in the blood-sucking insect Rhodnius prolixus. Insect Biochemistry and Molecular Biology, v. 69, p. 51–60, 2016. 172 ALVES-BEZERRA, Michele et al. Deficiency of glycerol-3-phosphate acyltransferase 1 decreases triacylglycerol storage and induces fatty acid oxidation in insect fat body. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, v. 1862, n. 3, p. 324–336, 1 mar. 2017. ARIAS-CASTRO, Juddy Heliana; MARTINEZ-ROMERO, Hector Jairo; VASILIEVA, Olga. Biological and chemical control of mosquito population by optimal control approach. Games, v. 11, n. 4, p. 1–25, 1 dez. 2020. ARRESE, E. L. et al. Lipid storage and mobilization in insects: Current status and future directions. Insect Biochemistry and Molecular Biology, v. 31, n. 1, p. 7–17, 2001. ARRESE, Estela L.; SOULAGES, Jose L. Insect Fat Body: Energy, Metabolism, and Regulation. Annual Review of Entomology, v. 55, n. 1, p. 207–225, 2010. ASSIS, Wiviane Alves de et al. The characterization of the fat bodies and oenocytes in the adult females of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. Arthropod Structure and Development, v. 43, n. 5, p. 501–509, set. 2014. ATTARDO, Geoffrey M.; HANSEN, Immo A.; RAIKHEL, Alexander S. Nutritional regulation of vitellogenesis in mosquitoes: Implications for anautogeny. Insect Biochemistry and Molecular Biology, v. 35, n. 7, p. 661–675, 1 jul. 2005. AUMILLER, Jared J.; JARVIS, Donald L. Expression and functional characterization of a nucleotide sugar transporter from Drosophila melanogaster: relevance to protein glycosylation in insect cell expression systems. Protein expression and purification, v. 26, n. 3, p. 438, 2002. AURADE, Ravindra M. et al. Inhibition of P-glycoprotein ATPase and its transport function of Helicoverpa armigera by morin, quercetin and phloroglucinol. Pesticide Biochemistry and Physiology, v. 101, n. 3, p. 212–219, nov. 2011. AZEEZ, Odunayo Ibraheem; MEINTJES, Roy; CHAMUNORWA, Joseph Panashe. Fat body, fat pad and adipose tissues in invertebrates and vertebrates: The nexus. Lipids in Health and Disease, 2014. Disponível em: <http://www.lipidworld.com/content/13/1/71>. Acesso em: 1 jul. 2019 AZUMA, M; Effect of pectolinaringenin, a flavonoid from Clerodendrum phlomidis, on total protein, glutathione S-transferase and esterase activities of Earias vittella and Helicoverpa armigera. Phytoparasitica, v. 42, n. 3, p. 323–331, 1 jul. 2014. 173 BAI, Shuai et al. Regulatory mechanisms of microbial homeostasis in insect gut. Insect science, v. 28, n. 2, p. 286–301, 1 abr. 2021. BAKER, Doha H. Abou. An ethnopharmacological review on the therapeutical properties of flavonoids and their mechanisms of actions: A comprehensive review based on up to date knowledge. Toxicology Reports, v. 9, p. 445–469, 2022. BARBEHENN, Raymond V.; PETER CONSTABEL, C. Tannins in plant-herbivore interactions. Phytochemistry, v. 72, n. 13, p. 1551–1565, set. 2011. BARLETTA, Ana Beatriz Ferreira et al. Microbiota activates IMD pathway and limits Sindbis infection in Aedes aegypti. Parasites & Vectors, v. 10, n. 1, p. 103, 23 fev. 2017. BARREAUX, Antoine M. G. et al. Larval environment influences vector competence of the malaria mosquito Anopheles gambiae. MalariaWorld Journal, v. 7, p. 8, 2016. BECKER, A. et al. The regulation of trehalose metabolism in insects. Experientia, v. 52, 1996. BERG, Jeremy M. et al. Biochemistry. 9. ed. New York: Macmillan, 2019. v. 14 BESERRA, Eduardo B.; FERNANDES, Carlos R. M.; RIBEIRO, Paulino S. Larval density as related to life cycle, size and fecundity of aedes (Stegomyia) aegypti (l.) (Diptera: Culicidae) in laboratory. Neotropical Entomology, v. 38, n. 6, p. 847–852, 2009. BILLKER, O. et al. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature, v. 392, n. 6673, p. 289–292, 19 mar. 1998. BOOTS, Agnes W.; HAENEN, Guido R. M. M.; BAST, Aalt. Health effects of quercetin: from antioxidant to nutraceutical. European journal of pharmacology, v. 585, n. 2–3, p. 325–337, 13 maio 2008. BOROVSKY, Dov. Biosynthesis and Control of Mosquito Gut Proteases. IUBMB Life, 1 ago. 2003. Disponível em: <http://doi.wiley.com/10.1080/15216540310001597721>. Acesso em: 27 nov. 2020 BOUÉ, Stephen M.; RAINA, Ashok K. Effects of plant flavonoids on fecundity, survival, and feeding of the Formosan subterranean termite. Journal of Chemical Ecology, v. 29, n. 11, p. 2575–2584, nov. 2003. 174 BRAVO, Alejandra; GILL, Sarjeet S.; SOBERÓN, Mario. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, v. 49, n. 4, p. 423–435, 15 mar. 2007. BRETSCHER, Heidi; O’CONNOR, Michael B. The Role of Muscle in Insect Energy Homeostasis. Frontiers in Physiology, v. 11, p. 580687, 22 out. 2020. BRIEGEL, H.; KNÜSEL, I.; TIMMERMANN, S. E. Aedes aegypti: size, reserves, survival, and flight potential. Journal of vector ecology : journal of the Society for Vector Ecology, v. 26, n. 1, p. 21–31, 2001. BRIEGEL, Hans. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. Journal of Insect Physiology, v. 36, n. 3, p. 165–172, jan. 1990. BUSTIN, Stephen A. et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, v. 55, n. 4, p. 611–622, 2009. CAICEDO, Edgar Yaset et al. The epidemiology of mayaro virus in the americas: A systematic review and key parameter estimates for outbreak modelling. PLoS Neglected Tropical Diseases, v. 15, n. 6, 1 jun. 2021. CAMINADE, Cyril et al. Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proceedings of the National Academy of Sciences of the United States of America, v. 114, n. 1, p. 119–124, 3 jan. 2017. CANAVOSO, Lilián E. et al. Fat Metabolism in Insects. Annual Review of Nutrition, v. 21, n. 1, p. 23–46, 2001. CANSADO-UTRILLA, Cintia et al. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. Microbiome, v. 9, n. 1, 1 dez. 2021. CAO, Hui; CHEN, Xiaoqing. Structures Required of Flavonoids for Inhibiting Digestive Enzymes. Anti-Cancer Agents in Medicinal Chemistry, v. 12, n. 8, p. 929–939, 20 set. 2012. CARAGATA, Eric P. et al. Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Microbial ecology, v. 67, n. 1, p. 205–218, 1 jan. 2014. 175 CARAGATA, Eric P.; TIKHE, Chinmay V.; DIMOPOULOS, George. Curious Entanglements: Interactions between Mosquitoes, their Microbiota, and Arboviruses. Current opinion in virology, v. 37, p. 26, 1 ago. 2019. CARRIERE, Frédéric et al. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology, v. 105, n. 3, p. 876–888, 1 set. 1993. CHADEE, Dave D.; MARTINEZ, R. Landing periodicity of the mosquito Aedes aegypti in Trinidad in relation to the timing of insecticidal space‐spraying. Journal Vector Ecology, v. 25, n. 2, p. 158– 163, 2000. CHADEE, Dave D.; SUTHERLAND, Joan M.; GILLES, Jeremie R. L. Diel sugar feeding and reproductive behaviours of Aedes aegypti mosquitoes in Trinidad: With implications for mass release of sterile mosquitoes. Acta Tropica, v. 132, n. 1, p. S86–S90, 1 abr. 2014. CHAGAS, Maria S. Do Socorro et al. Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxidative Medicine and Cellular Longevity, v. 2022, n. 1, p. 9966750, 1 jan. 2022. CHAPMAN, R. F. The Insects Structure and Function. 5. ed. New York: Cambridge University Press, 2013. CHO, Y. M. et al. A 13-week subchronic toxicity study of dietary administered morin in F344 rats. Food and Chemical Toxicology, v. 44, n. 6, p. 891–897, jun. 2006. CHOTIWAN, Nunya et al. Expression of fatty acid synthase genes and their role in development and arboviral infection of Aedes aegypti. Parasites & vectors, v. 15, n. 1, 1 dez. 2022. CHOWAŃSKI, Szymon et al. Insulin-Like Peptides and Cross-Talk With Other Factors in the Regulation of Insect Metabolism. Frontiers in Physiology, v. 12, p. 701203, 29 jun. 2021. CLEMENTS, A. N. The biology of mosquitoes. v. 3, p. 1–571, 2011. CLIFTON, Mark E.; NORIEGA, Fernando G. The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. Journal of Insect Physiology, v. 58, n. 7, p. 1007–1019, 2012. 176 COFFEL, Ethan D.; HORTON, Radley M.; DE SHERBININ, Alex. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environmental Research Letters, 1 jan. 2018. Disponível em: <http://stacks.iop.org/1748- 9326/13/i=1/a=014001?key=crossref.1628e439fe93adb84839f0550336785b> CONTRERAS, Altagracia et al. Inositol in Disease and Development: Roles of Catabolism via myo- Inositol Oxygenase in Drosophila melanogaster. International journal of molecular sciences, v. 24, n. 4, 1 fev. 2023. COON, Kerri L. et al. Mosquitoes rely on their gut microbiota for development. Molecular ecology, v. 23, n. 11, p. 2727, 2014. COOPER, Arthur J. L.; JEITNER, Thomas M. Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain. Biomolecules, v. 6, n. 2, 26 mar. 2016. CORY, Hannah et al. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Frontiers in Nutrition, v. 5, p. 87, 21 set. 2018. COSTANZO, K. S. et al. The effect of photoperiod on life history and blood-feeding activity in Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Journal of Vector Ecology, v. 40, n. 1, p. 164–171, 1 jun. 2015. CRUZAT, Vinicius et al. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients, v. 10, n. 11, p. 1564, 1 nov. 2018. DA SILVA, Renato Martins et al. Hypometabolic strategy and glucose metabolism maintenance of Aedes aegypti egg desiccation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, v. 227, p. 56–63, 1 jan. 2019. DARYANAVARD, Hana et al. Flavonols modulate plant development, signaling, and stress responses. Current opinion in plant biology, v. 72, p. 102350, 1 abr. 2023. DAVID, Mariana R. et al. Aedes aegypti oviposition-sites choice under semi-field conditions. Medical and Veterinary Entomology, v. 37, n. 4, p. 683–692, 1 dez. 2023. 177 DE CURCIO, Juliana Santana et al. Detection of Mayaro virus in Aedes aegypti mosquitoes circulating in Goiânia-Goiás-Brazil. Microbes and Infection, v. 24, n. 4, 1 jun. 2022. DEL RIO, Daniele et al. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants and Redox Signaling, v. 18, n. 14, p. 1818–1892, 10 maio 2013. DHADIALLA, Tarlochan S.; CARLSON, Glenn R.; LE, Dat P. New insecticides with ecdysteroidal and juvenile hormone activity. Annual Review of Entomology, v. 43, n. Volume 43, 1998, p. 545–569, 1 jan. 1998. DILLON, R. J.; DILLON, V. M. The gut bacteria of insects: nonpathogenic interactions. Annual review of entomology, v. 49, p. 71–92, 2004. DONG, Yuemei; MANFREDINI, Fabio; DIMOPOULOS, George. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS pathogens, v. 5, n. 5, maio 2009. DOS SANTOS, Luan Valim et al. Differential expression of brummer and levels of TAG in different developmental stages Aedes aegypti (Diptera: Culicidae), including fasted adults. Archives of Insect Biochemistry and Physiology, v. 115, n. 1, 1 jan. 2024. DOU, Xiaoyi et al. Multiple endocrine factors regulate nutrient mobilization and storage in Aedes aegypti during a gonadotrophic cycle. Insect Science, 19 set. 2022. DREȚCANU, Georgiana et al. Chemical Structure, Sources and Role of Bioactive Flavonoids in Cancer Prevention: A Review. Plants, v. 11, n. 9, p. 1117, 1 maio 2022. DUNCAN, Robin E. et al. Regulation of lipolysis in adipocytes. Annual review of nutrition, v. 27, p. 79–101, 2007. DUS, Monica; AI, Minrong; SUH, Greg S. B. Taste-independent nutrient selection is mediated by a brain-specific Na+ /solute co-transporter in Drosophila. Nature neuroscience, v. 16, n. 5, p. 526–528, maio 2013. ELBEIN, Alan D. et al. New insights on trehalose: a multifunctional molecule. Glycobiology, v. 13, n. 4, p. 17R-27R, 1 abr. 2003. 178 ESTEVES, Adriana; EHRLICH, Ricardo. Invertebrate intracellular fatty acid binding proteins. Comparative Biochemistry and Physiology - C Toxicology and PharmacologyElsevier Inc., , mar. 2006. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S1532045605002413>. Acesso em: 7 maio. 2020 FAN, Zeyun et al. Biological and Physiological Changes in Spodoptera frugiperda Larvae Induced by Non-Consumptive Effects of the Predator Harmonia axyridis. Agriculture 2024, Vol. 14, Page 1566, v. 14, n. 9, p. 1566, 10 set. 2024. FARNESI, Luana Cristina et al. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation. Journal of Insect Physiology, v. 83, p. 43–52, 1 dez. 2015. FELIG, P. et al. Amino acid metabolism during prolonged starvation. The Journal of clinical investigation, v. 48, n. 3, p. 584–594, 1969. FELIG, Philip. The glucose-alanine cycle. Metabolism: clinical and experimental, v. 22, n. 2, p. 179– 207, 1973. FELTON, Gary W.; SUMMERS, Clinton B. Antioxidant systems in insects. Archives of insect biochemistry and physiology, v. 29, n. 2, p. 187–197, 1995. FERREIRA, A. H. P. et al. Secretion of β-glycosidase by middle midgut cells and its recycling in the midgut of Tenebrio molitor larvae. JInsP, v. 48, n. 1, p. 113–118, 2002. FORD, P. S.; VAN HEUSDEN, M. C. Triglyceride-Rich Lipophorin in Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, v. 31, n. 3, p. 435–441, 1 maio 1994. FOSTER, W. A. Mosquito Sugar Feeding and Reproductive Energetics. Annual Review of Entomology, v. 40, n. 1, p. 443–474, 1995a. FOSTER, W. A. Mosquito Sugar Feeding and Reproductive Energetics. Annual Review of Entomology, v. 40, n. Volume 40, 1995, p. 443–474, 1 jan. 1995b. FRABASILE, Sandra et al. The citrus flavanone naringenin impairs dengue virus replication in human cells. Scientific Reports, v. 7, n. 1, p. 1–11, 3 fev. 2017. 179 FRAGA, César G. et al. The effects of polyphenols and other bioactives on human health. Food & Function, v. 10, n. 2, p. 514–528, 20 fev. 2019. FRAMPTON, Geoff K. et al. Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environmental toxicology and chemistry, v. 25, n. 9, p. 2480–2489, set. 2006. FRANCO, Rodrigo; CIDLOWSKI, John A. Glutathione Efflux and Cell Death. Antioxidants & Redox Signaling, v. 17, n. 12, p. 1694, 15 dez. 2012. FREDRIKSON, Gudrun; TORNQVIST, Hans; BELFRAGE, Per. Hormone-sensitive lipase and monoacylglycerol lipase are both required for complete degradation of adipocyte triacylglycerol. Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism, v. 876, n. 2, p. 288–293, 1986. GÄDE, Gerd; AUERSWALD, Lutz. Mode of action of neuropeptides from the adipokinetic hormone family. General and Comparative Endocrinology, v. 132, n. 1, p. 10–20, 1 jun. 2003. GAIO, Analiz De O. et al. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: Culicidae) (L.). Parasites and Vectors, v. 4, n. 1, p. 1–10, 14 jun. 2011. GALATI, Giuseppe; O’BRIEN, Peter J. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radical Biology and Medicine, v. 37, n. 3, p. 287–303, 1 ago. 2004. GAUTAM, Himanshi; SHARMA, Ashish; TRIVEDI, Prabodh Kumar. The role of flavonols in insect resistance and stress response. Current Opinion in Plant Biology, v. 73, 1 jun. 2023. GENTILE, Carla et al. Circadian clock of Aedes aegypti: effects of blood-feeding, insemination and RNA interference. Memórias do Instituto Oswaldo Cruz, v. 108, p. 80–87, 1 dez. 2013. GEORGE, David R. et al. Present and future potential of plant-derived products to control arthropods of veterinary and medical significance. Parasites and Vectors, v. 7, n. 1, 15 jan. 2014. GILBERT, Lawrence; GILL, Sarjeet. Insect pharmacology. 1. ed. [S.l.]: Academic Press, 2010. 180 GODOY, Raquel Soares Maia et al. The larval midgut of Anopheles, Aedes, and Toxorhynchites mosquitoes (Diptera, Culicidae): a comparative approach in morphophysiology and evolution. Cell and Tissue Research, v. 393, n. 2, p. 297–320, 1 ago. 2023. GONDIM, Katia C. et al. Lipid metabolism in insect disease vectors. Insect Biochemistry and Molecular Biology, v. 101, n. August, p. 108–123, 2018. GONG, Gang et al. Isorhamnetin: A review of pharmacological effects. Biomedicine & Pharmacotherapy, v. 128, p. 110301, 1 ago. 2020. GRAF, Brigitte A.; MILBURY, Paul E.; BLUMBERG, Jeffrey B. Flavonols, Flavones, Flavanones, and Human Health: Epidemiological Evidence. https://home.liebertpub.com/jmf, v. 8, n. 3, p. 281– 290, 21 set. 2005. GRÖNKE, Sebastian et al. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metabolism, v. 1, n. 5, p. 323–330, 2005. GRÖNKE, Sebastian et al. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biology, v. 5, n. 6, p. 1248–1256, 2007. GROSSMAN, Genelle L. et al. Evidence for two distinct members of the amylase gene family in the yellow fever mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, v. 27, n. 8–9, p. 769–781, ago. 1997. GROSSO, Giuseppe et al. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Molecular Nutrition & Food Research, v. 61, n. 4, p. 1600930, 1 abr. 2017. GULIA-NUSS, Monika et al. Insulin-like peptides and the target of rapamycin pathway coordinately regulate blood digestion and egg maturation in the mosquito Aedes aegypti. PLoS ONE, v. 6, n. 5, p. e20401, 2011. HAKIM, Raziel S.; BALDWIN, Kate; SMAGGHE, Guy. Regulation of midgut growth, development, and metamorphosis. Annual review of entomology, v. 55, p. 593–608, 1 jan. 2010. HALARNKAR, Premjit P.; BLOMQUIST, Gary J. Comparative aspects of propionate metabolism. Comparative Biochemistry and Physiology -- Part B: Biochemistry and, v. 92, n. 2, p. 227–231, 1989. 181 HAO, Baocheng et al. Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Current Issues in Molecular Biology, v. 46, n. 4, p. 2884, 1 abr. 2024. HARPER, A. E.; MILLER, R. H.; BLOCK, K. P. Branched-chain amino acid metabolism. Annual review of nutrition, v. 4, p. 409–454, 1984. HARRISON, Ruby E. et al. The mosquito Aedes aegypti requires a gut microbiota for normal fecundity, longevity and vector competence. Communications biology, v. 6, n. 1, 1 dez. 2023. HAY, William T. et al. Biopesticide synergy when combining plant flavonoids and entomopathogenic baculovirus. Scientific Reports, v. 10, n. 1, p. 6806, 1 dez. 2020. HE, Ya Zhou et al. E93 confers steroid hormone responsiveness of digestive enzymes to promote blood meal digestion in the midgut of the mosquito Aedes aegypti. Insect Biochemistry and Molecular Biology, v. 134, 1 jul. 2021. HECKER, Hermann. Structure and function of midgut epithelial cells in culicidae mosquitoes (insecta, diptera). Cell and Tissue Research, v. 184, n. 3, p. 321–341, nov. 1977. HEGEDUS, Dwayne et al. New insights into peritrophic matrix synthesis, architecture, and function. Annual Review of Entomology, v. 54, n. Volume 54, 2009, p. 285–302, 7 jan. 2009. HEIER, Christoph; KÜHNLEIN, Ronald P. Triacylglycerol metabolism in drosophila melanogaster. Genetics, v. 210, n. 4, p. 1163–1184, 2018. HEMINGWAY, Janet; RANSON, Hilary. Insecticide resistance in insect vectors of human disease. Annual review of entomology, v. 45, p. 371–391, 2000. HERRERA-MAYORGA, Verónica et al. Insecticidal Activity of Organic Extracts of Solidago graminifolia and Its Main Metabolites (Quercetin and Chlorogenic Acid) against Spodoptera frugiperda: An In Vitro and In Silico Approach. Molecules, v. 27, n. 10, 1 maio 2022. HOLM, C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochemical Society Transactions, v. 31, n. 6, p. 1120–1124, 2003. 182 HOLTOF, Michiel et al. Extracellular nutrient digestion and absorption in the insect gut. Cell and Tissue Research, 2019. Disponível em: <https://doi.org/10.1007/s00441-019-03031-9>. Acesso em: 7 maio. 2020 HORNE, Irene; HARITOS, Victoria S.; OAKESHOTT, John G. Comparative and functional genomics of lipases in holometabolous insects. Insect Biochemistry and Molecular Biology, v. 39, n. 8, p. 547–567, 2009. HORVATH, Thomas D.; DAGAN, Shai; SCARAFFIA, Patricia Y. Unraveling mosquito metabolism with mass spectrometry-based metabolomics. Trends in parasitology, v. 37, n. 8, p. 747, 1 ago. 2021. HOU, Yuan et al. Temporal Coordination of Carbohydrate Metabolism during Mosquito Reproduction. PLoS Genetics, v. 11, n. 7, p. 1–24, 2015. HU, J. S. et al. Mechanisms of TiO2 NPs-induced phoxim metabolism in silkworm (Bombyx mori) fat body. Pesticide Biochemistry and Physiology, v. 129, p. 89–94, maio 2016. HUA, Ziqi et al. Morin-Based Nanoparticles for Regulation of Blood Glucose. ACS Applied Materials and Interfaces, v. 16, n. 17, p. 21400–21414, 1 maio 2024. HUBBARD, Troy D.; MURRAY, Iain A.; PERDEW, Gary H. Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation. Drug Metabolism and Disposition, v. 43, n. 10, p. 1522–1535, 1 out. 2015. HYUN, Hwang Bo et al. The flavonoid morin from Moraceae induces apoptosis by modulation of Bcl-2 family members and Fas receptor in HCT 116 cells. International Journal of Oncology, v. 46, n. 6, p. 2670–2678, 1 jun. 2015. INABA, Kazue et al. Molecular action of larvicidal flavonoids on ecdysteroidogenic glutathione S- transferase Noppera-bo in Aedes aegypti. BMC Biology, v. 20, n. 1, 1 dez. 2022. ISABEL, Guillaume et al. AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. American Journal of Physiology-regulatory Integrative and Comparative Physiology, v. 288, n. 2, p. 531–538, 1 fev. 2005. ISLAM, Md Asiful et al. Dietary Phytochemicals: Natural Swords Combating Inflammation and Oxidation-Mediated Degenerative Diseases. Oxidative Medicine and Cellular Longevity, v. 2016, n. 5137431, 2016. 183 ISMAN, Murray B. Botanical Insecticides in the Twenty-First Century-Fulfilling Their Promise? Annual review of entomology, v. 65, p. 233–249, 2020. ISOE, Jun; SCARAFFIA, Patricia Y. Urea Synthesis and Excretion in Aedes aegypti Mosquitoes Are Regulated by a Unique Cross-Talk Mechanism. PLoS ONE, v. 8, n. 6, p. e65393, 5 jun. 2013. IWAMURA, Takuya; GUZMAN-HOLST, Adriana; MURRAY, Kris A. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nature Communications, v. 11, n. 1, p. 2130, 2020. JAGADESHWARAN, U. et al. Cellular mechanisms of acid secretion in the posterior midgut of the larval mosquito (Aedes aegypti). The Journal of Experimental Biology, v. 213, n. 2, p. 295, 15 jan. 2009. JIMÉNEZ-MARTÍNEZ, Mariana Lizbeth et al. Amino acid and acylcarnitine profile of Aedes aegypti (L) post-blood feeding, after permethrin exposure, and during the life cycle. Insect Biochemistry and Molecular Biology, v. 181, p. 104328, 1 jun. 2025. JIN, Hana et al. Morin, a flavonoid from Moraceae, suppresses growth and invasion of the highly metastatic breast cancer cell line MDA-MB-231 partly through suppression of the Akt pathway. International Journal of Oncology, v. 45, n. 4, p. 1629–1637, 2014. JOHNSON, M. B.; BUTTERWORTH, F. M. Maturation and aging of adult fat body and oenocytes in Drosophila as revealed by light microscopic morphometry. Journal of Morphology, v. 184, n. 1, p. 51– 59, 1985. JOY, Teresa K. et al. The impact of larval and adult dietary restriction on lifespan, reproduction and growth in the mosquito Aedes aegypti. Experimental gerontology, v. 45, n. 9, p. 685, 1 set. 2010. KACZMAREK, Agata et al. Insect Lipids: Structure, Classification, and Function. In: Advances in Experimental Medicine and Biology. [S.l.]: Springer, Cham, 2024. v. 1 p. 1–45. KALHAN, Satish C.; HANSON, Richard W. Resurgence of serine: An often neglected but indispensable amino acid. Journal of Biological Chemistry, v. 287, n. 24, p. 19786–19791, 8 jun. 2012. 184 KANG, David S. et al. Larval stress alters dengue virus susceptibility in Aedes aegypti (L.) adult females. Acta Tropica, v. 174, p. 97–101, 1 out. 2017. KANNANGARA, Jade R.; MIRTH, Christen K.; WARR, Coral G. Regulation of ecdysone production in Drosophila by neuropeptides and peptide hormones. Open Biology, v. 11, n. 2, 2 fev. 2021. KANTOR, Asher M. et al. Infection Pattern of Mayaro Virus in Aedes aegypti (Diptera: Culicidae) and Transmission Potential of the Virus in Mixed Infections With Chikungunya Virus. Journal of medical entomology, v. 56, n. 3, p. 832–843, 1 maio 2019. KAWABATA, Kyuichi; YOSHIOKA, Yasukiyo; TERAO, Junji. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules 2019, Vol. 24, Page 370, v. 24, n. 2, p. 370, 21 jan. 2019. KAWIECKI, Anna B.; CHRISTOFFERSON, Rebecca C. Zika Virus-Induced Antibody Response Enhances Dengue Virus Serotype 2 Replication in Vitro. Journal of Infectious Diseases, v. 214, n. 9, p. 1357–1360, 1 nov. 2016. KAZEK, Michalina et al. Conidiobolus coronatus induces oxidative stress and autophagy response in Galleria mellonella larvae. PloS one, v. 15, n. 2, 1 fev. 2020. KHAN, Shahidul Ahmed; KOJOUR, Maryam Ali Mohmmadie; HAN, Yeon Soo. Recent trends in insect gut immunity. Frontiers in immunology, v. 14, 2023. KHRAPUNOV, Sergei et al. Structure, Function, and Thermodynamics of Lactate Dehydrogenases from Humans and the Malaria Parasite P. falciparum. Biochemistry, v. 60, n. 47, p. 3582–3595, 30 nov. 2021. KICINSKA, Anna; JARMUSZKIEWICZ, Wieslawa. Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules, v. 25, n. 13, p. 3060, 1 jul. 2020. KOIRALA, B. K. Sonu; MOURAL, Timothy; ZHU, Fang. Functional and Structural Diversity of Insect Glutathione S-transferases in Xenobiotic Adaptation. International Journal of Biological Sciences, v. 18, n. 15, p. 5713, 2022. KRAEMER, Moritz U. G. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus. eLife, v. 4, n. JUNE2015, p. 1–18, 2015. 185 KROTH, N. et al. Oviposition preferences of the mosquito Aedes aegypti Linnaeus, 1762 (Culicidae): An urban environment bioassay. Bulletin of Entomological Research, v. 109, n. 6, p. 762–770, 1 dez. 2019. KUMAR, Sanjeev et al. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America, v. 100, n. 24, p. 14139–14144, 25 nov. 2003. KUMAR, Shashank et al. Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal, v. 2013, n. 1, p. 162750, 1 jan. 2013. KUNIEDA, T. et al. Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Molecular Biology, v. 15, n. 5, p. 563, out. 2006. KURAISHI, Takayuki; HORI, Aki; KURATA, Shoichiro. Host-microbe interactions in the gut of Drosophila melanogaster. Frontiers in physiology, v. 4, 2013. KURUVILLA, A. Herbal formulations as pharmacotherapeutic agents. Indian Journal of Experimental Biology, v. 40, n. 1, p. 7–11, 2002. LASS, Achim et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell metabolism, v. 3, n. 5, p. 309–319, maio 2006. LEE, Gyunghee; PARK, Jae H. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics, v. 167, n. 1, p. 311–323, maio 2004. LEHANE, M. J. Peritrophic matrix structure and function. Annual Review of Entomology, v. 42, n. Volume 42, 1997, p. 525–550, 1 jan. 1997. LEMAITRE, Bruno; MIGUEL-ALIAGA, Irene. The digestive tract of Drosophila melanogaster. Annual review of genetics, v. 47, p. 377–404, 2013. LENNICKE, Claudia; COCHEMÉ, Helena M. Redox signalling and ageing: insights from Drosophila. Biochemical Society transactions, v. 48, n. 2, p. 367–377, 1 abr. 2020. 186 LETA, Samson et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. International Journal of Infectious Diseases, v. 67, p. 25–35, 2018. LI, Bing Hui; TIAN, Wei Xi. Inhibitory Effects of Flavonoids on Animal Fatty Acid Synthase. Journal of Biochemistry, v. 135, n. 1, p. 85–91, jan. 2004. LI, Cailan et al. Potential of natural flavonols and flavanones in the treatment of ulcerative colitis. Frontiers in Pharmacology, v. 14, p. 1120616, 2023. LI, Meili et al. Temperature dependent developmental time for the larva stage of Aedes aegypti. Mathematical Biosciences and Engineering 2022 5:4396, v. 19, n. 5, p. 4396–4406, 2022. LI, Xi et al. Morin hydrate inhibits TREM-1/ TLR4-mediated inflammatory response in macrophages and protects against carbon tetrachloride-induced acute liver injury in mice. Frontiers in Pharmacology, v. 10, n. SEP, p. 477455, 20 set. 2019. LI, Yan; PAXTON, James W. The effects of flavonoids on the ABC transporters: consequences for the pharmacokinetics of substrate drugs. Expert opinion on drug metabolism & toxicology, v. 9, n. 3, p. 267–285, mar. 2013. LIANG, Jian et al. Evaluation of toxicity studies of flavonoid fraction of Lithocarpus polystachyus Rehd in rodents. Regulatory Toxicology and Pharmacology, v. 88, p. 283–290, 1 ago. 2017. LIMA-CAMARA, Tamara Nunes. Arboviroses emergentes e novos desafios para a saúde pública no Brasil. Revista de Saúde Pública, v. 50, n. 36, 2016. LISEC, Jan et al. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, v. 1, n. 1, p. 387–396, jun. 2006. LIU, Kuanqing; SUTTER, Benjamin M.; TU, Benjamin P. Autophagy sustains glutamate and aspartate synthesis in Saccharomyces cerevisiae during nitrogen starvation. Nature Communications, v. 12, n. 1, p. 57, 1 dez. 2021. LIVAK, Kenneth J.; SCHMITTGEN, Thomas D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, v. 25, n. 4, p. 402–408, 1 dez. 2001. 187 LOCASALE, Jason W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nature reviews. Cancer, v. 13, n. 8, p. 572–583, ago. 2013. LONG, Kanya C. et al. Experimental transmission of Mayaro virus by Aedes aegypti. The American journal of tropical medicine and hygiene, v. 85, n. 4, p. 750–757, out. 2011. LORD, Caleb C.; BROWN, J. Mark. Distinct roles for α-β hydrolase domain 5 (ABHD5/CGI-58) and adipose triglyceride lipase (ATGL/PNPLA2) in lipid metabolism and signaling. Adipocyte, v. 1, n. 3, p. 123–131, 2012. LORENZ, Matthias W.; GÄDE, Gerd. Hormonal regulation of energy metabolism in insects as a driving force for performance. Integrative and comparative biology, v. 49, n. 4, p. 380–392, out. 2009. LOWRY, O. H. et al. Protein measurement with the Folin phenol reagent. The Journal of biological chemistry, v. 193, n. 1, p. 265–275, 1951. LU, Kai et al. Adipokinetic Hormone Receptor Mediates Lipid Mobilization to Regulate Starvation Resistance in the Brown Planthopper, Nilaparvata lugens. Frontiers in Physiology, v. 9, 29 nov. 2018. LV, Huanhuan et al. Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxidative Medicine and Cellular LongevityHindawi Limited, , 2019. MACHADO, Samara Rosendo et al. The DEAD-box RNA helicase Dhx15 controls glycolysis and arbovirus replication in Aedes aegypti mosquito cells. PLOS Pathogens, v. 18, n. 11, p. e1010694, 1 nov. 2022. MACLEOD, Hannah J.; DIMOPOULOS, George; SHORT, Sarah M. Larval Diet Abundance Influences Size and Composition of the Midgut Microbiota of Aedes aegypti Mosquitoes. Frontiers in Microbiology, v. 12, 18 jun. 2021. MADEO, Frank et al. Spermidine in health and disease. Science, v. 359, n. 6374, 26 jan. 2018. MAJEROWICZ, David; GONDIM, Katia C. Insect lipid metabolism: Insights into gene expression regulation. In: Recent Trends in Gene Expression. [S.l.: S.n.]. p. 147–189. MANACH, Claudine et al. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, v. 79, n. 5, p. 727–747, 1 maio 2004. 188 MANZATO, Veronica Moraes et al. A versatile inhibitor of digestive enzymes in Aedes aegypti larvae selected from a pacifastin (TiPI) phage display library. Biochemical and Biophysical Research Communications, v. 590, p. 139–144, 29 jan. 2022. MARTINEZ-IBARRA, Jose Alejandro et al. Influence of Plant Abundance on Nectar Feeding by Aedes aegypti (Diptera: Culicidae) in Southern Mexico. Journal of Medical Entomology, v. 34, n. 6, p. 589–593, 1 nov. 1997. MARTINS, G. F. et al. Isolation, primary culture and morphological characterization of oenocytes from Aedes aegypti pupae. Tissue and Cell, v. 43, n. 2, p. 83–90, 1 abr. 2011a. MARTINS, G. F.; PIMENTA, P. F. P. Structural Changes in Fat Body of Aedes aegypti Caused by Aging and Blood Feeding. Journal of Medical Entomology, v. 45, n. 6, p. 1102–1107, 2008. MARTINS, Gf. O corpo gorduroso de Aedes (Stegomyia) aegypti (Diptera; Nematocera)(Linnaeus, 1762): Estudo morfológico do órgão em diferentes idades e condições alimentares, isolamento, cultivo primário. [S.l.: S.n.]. MARTINS, Gustavo Ferreira et al. Histochemical and ultrastructural studies of the mosquito Aedes aegypti fat body: Effects of aging and diet type. Microscopy Research and Technique, v. 74, n. 11, p. 1032–1039, 2011b. MARTINS, Gustavo Ferreira et al. A comparative study of fat body morphology in five mosquito species. Memorias do Instituto Oswaldo Cruz, v. 106, n. 6, p. 742–747, 2011c. MARTINS, Gustavo Ferreira et al. Insights into the transcriptome of oenocytes from aedes aegypti pupae. Memorias do Instituto Oswaldo Cruz, v. 106, n. 3, p. 308–315, 2011d. MASUMURA, Makoto et al. Glucose stimulates the release of bombyxin, an insulin-related peptide of the silkworm Bombyx mori. General and Comparative Endocrinology, v. 118, n. 3, p. 393–399, 2000. MATTHEWS, Dwight E. An overview of phenylalanine and tyrosine kinetics in humans. Journal of Nutrition, v. 137, n. 6, 2007. MATTILA, Jaakko; HIETAKANGAS, Ville. Regulation of carbohydrate energy metabolism in Drosophila melanogaster. Genetics, v. 207, n. 4, p. 1231–1253, 1 dez. 2017. 189 MEKAPOGU, A. R. Finney’s probit analysis spreadsheet calculator (Version 2021). Disponível em: <https://probitanalysis.wordpress.com/>. Acesso em: 25 abr. 2023. MERRITT, R. W.; DADD, R. H.; WALKER, E. D. Feeding Behavior, Natural Food, and Nutritional Relationships of Larval Mosquitoes. Annual Review of Entomology, v. 37, n. 1, p. 349–374, 1 jan. 1992. MEYER, Heiko; VITAVSKA, Olga; WIECZOREK, Helmut. Identification of an animal sucrose transporter. Journal of Cell Science, v. 124, n. 12, p. 1984–1991, 15 jun. 2011. MISRA, Jyoti R. et al. Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes & development, v. 25, n. 17, p. 1796–1806, 1 set. 2011. MITCHELL, Martin J. et al. Effects of plant flavonoids and other allelochemicals on insect cytochrome P-450 dependent steroid hydroxylase activity. Insect Biochemistry and Molecular Biology, v. 23, n. 1, p. 65–71, 1993. MORAES, Bruno et al. Deficiency of Acetyl-CoA Carboxylase Impairs Digestion, Lipid Synthesis, and Reproduction in the Kissing Bug Rhodnius prolixus. Frontiers in Physiology, v. 13, p. 934667, 22 jul. 2022. MORDECAI, Erin A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLOS Neglected Tropical Diseases, v. 11, n. 4, p. e0005568, 27 abr. 2017. MOREIRA, Daniel C.; HERMES-LIMA, Marcelo. Dynamics of Redox Metabolism during Complete Metamorphosis of Insects: Insights from the Sunflower Caterpillar Chlosyne lacinia (Lepidoptera). Antioxidants, v. 13, n. 8, p. 959, 1 ago. 2024. MORIMOTO, Masanori et al. Insect antifeedant activity of flavones and chromones against Spodoptera litura. Journal of agricultural and food chemistry, v. 51, n. 2, p. 389–393, 15 jan. 2003. MOYES, Catherine L. et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Neglected Tropical DiseasesPublic Library of Science, , 20 jul. 2017. 190 MURPHY, Michael P. How mitochondria produce reactive oxygen species. The Biochemical journal, v. 417, n. 1, p. 1–13, 1 jan. 2009. MURPHY, Thomas A.; WYATT, G. R. The Enzymes of Glycogen and Trehalose Synthesis in Silk Moth Fat BodyTHE JOURNAL OF BIOLOGICAL CHEM~~RY. [S.l.: S.n.]. MUTHA, Rakesh E.; TATIYA, Anilkumar U.; SURANA, Sanjay J. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Future Journal of Pharmaceutical Sciences 2021 7:1, v. 7, n. 1, p. 1–13, 20 jan. 2021. MUTHU, Chelliah et al. Bioefficacy of pectolinaringenin from Clerodendrum phlomidis Linn. F. against Anopheles stephensi and bhendi fruit borer, Earias vittella fab. Brazilian Archives of Biology and Technology, v. 58, n. 3, p. 358–366, 2015. MUTHUKRISHNAN, J.; PUSHPALATHA, E. Effects of plant extracts on fecundity and fertility of mosquitoes. Journal of Applied Entomology, v. 125, n. 1–2, p. 31–35, 1 mar. 2001. NAOWABOOT, Jarinyaporn; WANNASIRI, Supaporn; PANNANGPETCH, Patchareewan. Morin attenuates hepatic insulin resistance in high-fat-diet-induced obese mice. Journal of Physiology and Biochemistry, v. 72, n. 2, p. 269–280, 1 jun. 2016. NAPPI, A. J.; CHRISTENSEN, B. M. Melanogenesis and associated cytotoxic reactions: Applications to insect innate immunity. Insect Biochemistry and Molecular Biology, v. 35, n. 5, p. 443–459, 2005. NÄSSEL, Dick R.; BROECK, Jozef Vanden. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cellular and Molecular Life Sciences: CMLS, v. 73, n. 2, p. 271, 1 jan. 2015. NÄSSEL, Dick R.; ZANDAWALA, Meet. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Progress in Neurobiology, v. 179, 1 ago. 2019. NATAL, Delsio. Bioecologia do Aedes aegypti. Biológico, São Paulo, v. 64, n. 2, p. 205–207, 2002. NATION, James L. Insect Physiology and and Biochemistry. 3. ed. GAINESVILLE: CRC Press, 2016. v. 672 191 NEINAST, Michael; MURASHIGE, Danielle; ARANY, Zoltan. Branched Chain Amino Acids. Annual review of physiology, v. 81, p. 139–164, 10 fev. 2019. NEIRA, Marco et al. Estimation of Aedes aegypti (Diptera: Culicidae) population size and adult male survival in an urban area in Panama. Memórias do Instituto Oswaldo Cruz, v. 109, n. 7, p. 879, 1 nov. 2014. NIJVELDT, Robert J. et al. Flavonoids: a review of probable mechanisms of action and potential applications. The American Journal of Clinical Nutrition, v. 74, n. 4, p. 418–425, 1 out. 2001. OCDE. Acute Oral Toxicity: Up-and-Down Procedure. [S.l.: S.n.]. Disponível em: <http://www.oecd.org/termsandconditions/.>. OEI, Steven et al. Higher intake of dietary flavonols, specifically dietary quercetin, is associated with lower odds of frailty onset over 12 years of follow-up among adults in the Framingham Heart Study. American Journal of Clinical Nutrition, v. 118, n. 1, p. 27–33, 1 jul. 2023. OLIVEIRA, Jose Henrique M. et al. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathogens, v. 7, n. 3, mar. 2011. OO, Adrian et al. Deciphering the potential of baicalin as an antiviral agent for Chikungunya virus infection. Antiviral Research, v. 150, p. 101–111, 1 fev. 2018. PALANKER, Laura et al. Drosophila HNF4 Regulates Lipid Mobilization and β-Oxidation. Cell metabolism, v. 9, n. 3, p. 228, 4 mar. 2009. PANCHE, A. N.; DIWAN, A. D.; CHANDRA, S. R. Flavonoids: an overview. Journal of Nutritional Science, v. 5, p. e47, 8 jan. 2016. PARK, Cheol et al. Morin, a flavonoid from moraceae, induces apoptosis by induction of BAD protein in human leukemic cells. International journal of molecular sciences, v. 16, n. 1, p. 645–659, 30 dez. 2014. PARK, Cheol et al. Morin, a Flavonoid from Moraceae, Induces Apoptosis by Induction of BAD Protein in Human Leukemic Cells. OPEN ACCESS Int. J. Mol. Sci, v. 16, p. 646, 2015. 192 PATWARDHAN, Bhushan et al. Ayurveda and Traditional Chinese Medicine: A Comparative Overview. Evidence-Based Complementary and Alternative Medicine, v. 2, n. 4, p. 465–473, 1 jan. 2005. PAVELA, Roman et al. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta TropicaElsevier B.V., , 1 maio 2019. PAVELA, Roman; BENELLI, Giovanni. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends in Plant ScienceElsevier Ltd, , 1 dez. 2016. PAWLAK, Dariusz et al. Tryptophan metabolism via the kynurenine pathway in experimental chronic renal failure. Nephron, v. 90, n. 3, p. 328–335, 2002. PEGG, Anthony E. Functions of polyamines in mammals. Journal of Biological Chemistry, v. 291, n. 29, p. 14904–14912, 15 jul. 2016. PEREIRA, Thiago Nunes et al. Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus. PLoS neglected tropical diseases, v. 14, n. 4, p. 1–13, 1 abr. 2020. PERERA, Rushika et al. Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells. PLOS Pathogens, v. 8, n. 3, p. e1002584, mar. 2012. PETCHAMPAI, Natthida et al. Distinctive regulatory properties of pyruvate kinase 1 from Aedes aegypti mosquitoes. Insect Biochemistry and Molecular Biology, v. 104, p. 82–90, 1 jan. 2019. PINGALE, Tanvi Dayanand; GUPTA, Girdhari Lal. Acute and sub-acute toxicity study reveals no dentrimental effect of formononetin in mice upon repeated i.p. dosing. Toxicology mechanisms and methods, v. 33, n. 8, p. 688–697, 2023. PIRAHANCHI, Yasaman; SHARMA, Sandeep. Biochemistry, Lipase. In: StatPearls. [S.l.]: StatPearls Publishing, 2019. POMPKA, Anna; SZULIŃSKA, Elżbieta; KAFEL, Alina. Starvation and cadmium affect energy reserves and oxidative stress in individuals of Spodoptera exigua. Ecotoxicology (London, England), v. 31, n. 9, p. 1346–1355, 1 nov. 2022. 193 POORAIIOUBY, Rana et al. Nutritional Quality during Development Alters Insulin-Like Peptides’ Expression and Physiology of the Adult Yellow Fever Mosquito, Aedes aegypti. Insects 2018, Vol. 9, Page 110, v. 9, n. 3, p. 110, 30 ago. 2018. POWELL, Jeffrey R.; TABACHNICK, Walter J. History of domestication and spread of Aedes aegypti--a review. Memórias do Instituto Oswaldo Cruz, 2013. PROCHÁZKOVÁ, D.; BOUŠOVÁ, I.; WILHELMOVÁ, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, v. 82, n. 4, p. 513–523, 1 jun. 2011. QUAGLIARIELLO, Vincenzo et al. Cardioprotective Effects of Nanoemulsions Loaded with Anti- Inflammatory Nutraceuticals against Doxorubicin-Induced Cardiotoxicity. Nutrients, v. 10, n. 9, p. 1304, 14 set. 2018. RAIKHEL, Alexander S.; DHADIALLA, Tarlochan S. Accumulation of yolk proteins in insect oocytes. Annual Review of Entomology, v. 37, n. 1, p. 217–251, 1 jan. 1992. RAJKUMAR, S.; JEBANESAN, A. Bioactivity of flavonoid compounds from Poncirus trifoliata L. (Family: Rutaceae) against the dengue vector, Aedes aegypti L. (Diptera: Culicidae). Parasitology Research, v. 104, n. 1, p. 19–25, 23 dez. 2008. RAJPUT, Shahid Ali et al. Proanthocyanidins Alleviates AflatoxinB1-Induced Oxidative Stress and Apoptosis through Mitochondrial Pathway in the Bursa of Fabricius of Broilers. Toxins 2019, Vol. 11, Page 157, v. 11, n. 3, p. 157, 10 mar. 2019. RAJPUT, Shahid Ali; WANG, Xiu qi; YAN, Hui Chao. Morin hydrate: A comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomedicine and PharmacotherapyElsevier Masson s.r.l., , 1 jun. 2021. RAUF, Abdur et al. Proanthocyanidins: A comprehensive review. Biomedicine & Pharmacotherapy, v. 116, p. 108999, 1 ago. 2019. REZENDE, Gustavo Lazzaro et al. Embryonic desiccation resistance in Aedes aegypti: Presumptive role of the chitinized Serosal Cuticle. BMC Developmental Biology, v. 8, n. 1, p. 1–14, 13 set. 2008. RICHARDS, A. G.; RICHARDS, P. A. The peritrophic membranes of insects. Annual review of entomology, v. 22, p. 219–240, 1977. 194 RIDDICK, Eric Wellington. Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials. Insects, v. 15, n. 12, 1 dez. 2024. RIVERA, Maria J. et al. Regulated inositol synthesis is critical for balanced metabolism and development in Drosophila melanogaster. Biology open, v. 10, n. 10, 1 out. 2021. RIVERO, A. et al. Energetic cost of insecticide resistance in Culex pipiens mosquitoes. Journal of medical entomology, v. 48, n. 3, p. 694–700, maio 2011. ROEL, Antonia Railda et al. The effect of sub-lethal doses of Azadirachta indica (Meliaceae) oil on the midgut of Spodoptera frugiperda (Lepidoptera, Noctuidae). Revista Brasileira de Entomologia, v. 54, n. 3, p. 505–510, 2010. ROIZ, David et al. The rising global economic costs of Aedes and Aedes-borne diseases. Research Square, v. 933, n. 173054, 8 maio 2024. ROMA, Gislaine Cristina; BUENO, Odair Corrêa; CAMARGO-MATHIAS, Maria Izabel. Morpho- physiological analysis of the insect fat body: A review. Micron, v. 41, n. 5, p. 395–401, jul. 2010. ROY, S. et al. Regulation of Reproductive Processes in Female Mosquitoes. In: Advances in Insect Physiology. [S.l.: S.n.]. v. 51 p. 115–144. ROY, S. G.; HANSEN, I. A.; RAIKHEL, A. S. Effect of insulin and 20-hydroxyecdysone in the fat body of the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol, v. 37, n. 12, p. 1317– 1326, 2007. RUVOLO, Maria Claudia Colla; LANDIM, Carminda da Cruz. Morphologic and morphometric aspects of oenocytes of Apis mellifera queens and workers in different phases of life. Memórias do Instituto Oswaldo Cruz, v. 88, n. 3, p. 387–395, 1993. SANG, Ming et al. Identification and evolution of two insulin receptor genes involved in Tribolium castaneum development and reproduction. Gene, v. 585, n. 2, p. 196–204, 10 jul. 2016. SANTOS, Daiane Rodrigues dos et al. New weapons against the disease vector Aedes aegypti: From natural products to nanoparticles. International Journal of PharmaceuticsElsevier B.V., , 25 ago. 2023. 195 SANZ, Alberto; STEFANATOS, Rhoda K. A. The mitochondrial free radical theory of aging: a critical view. Current aging science, v. 1, n. 1, p. 10–21, 9 jan. 2008. SARAIVA, Felipe B. et al. Blood meal drives de novo lipogenesis in the fat body of Rhodnius prolixus. Insect Biochemistry and Molecular Biology, v. 133, 1 jun. 2021. SARAIVA, Raúl G. et al. Mosquito gut antiparasitic and antiviral immunity. Developmental and Comparative Immunology, v. 64, p. 53–64, 1 nov. 2016. SCARAFFIA, P. Y.; WELLS, M. A. Proline can be utilized as an energy substrate during flight of Aedes aegypti females. Journal of Insect Physiology, v. 49, n. 6, p. 591–601, 1 jun. 2003. SCARAFFIA, Patricia Y. et al. Ammonia metabolism in Aedes aegypti. Insect Biochemistry and Molecular Biology, v. 35, n. 5, p. 491–503, 2005. SCARAFFIA, Patricia Y. Disruption of Mosquito Blood Meal Protein Metabolism. In: Genetic Control of Malaria and Dengue. [S.l.]: Elsevier Inc., 2016. p. 253–275. SENTHIL-NATHAN, Sengottayan. A Review of Resistance Mechanisms of Synthetic Insecticides and Botanicals, Phytochemicals, and Essential Oils as Alternative Larvicidal Agents Against Mosquitoes. Frontiers in Physiology, v. 10, p. 1591, 25 fev. 2020. SHANBHAG, Shubha; TRIPATHI, Subrata. Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. The Journal of experimental biology, v. 212, n. Pt 11, p. 1731–1744, 1 jun. 2009. SHARMA, Arvind; NUSS, Andrew B.; GULIA-NUSS, Monika. Insulin-like peptide signaling in mosquitoes: The road behind and the road ahead. Frontiers in Endocrinology, v. 10, n. MAR, p. 1–9, 2019. SHETTY, Vinaya et al. Impact of disabled circadian clock on yellow fever mosquito Aedes aegypti fitness and behaviors. Scientific Reports, v. 12, n. 1, p. 1–14, 1 dez. 2022. SHI, Huicheng; YU, Xi; CHENG, Gong. Impact of the microbiome on mosquito-borne diseases. Protein & Cell, v. 14, n. 10, p. 743, 1 out. 2023. 196 SHI, Zuo Kun et al. Effects of starvation on the carbohydrate metabolism in Harmonia axyridis (Pallas). Biology Open, v. 6, n. 7, p. 1096–1103, 15 jul. 2017. SHUKLA, Ekta et al. Insect trehalase: physiological significance and potential applications. Glycobiology, v. 25, n. 4, p. 357–367, 1 abr. 2015. SIEGLAFF, Douglas H.; DUNCAN, Kelli Adams; BROWN, Mark R. Expression of genes encoding proteins involved in ecdysteroidogenesis in the female mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, v. 35, n. 5, p. 471–490, 2005. SILVA, Elaine R. M. N. et al. The influence of larval density on triacylglycerol content in Aedes aegypti (Linnaeus) (Diptera: Culicidae). Archives of Insect Biochemistry and Physiology, p. 1–11, 3 nov. 2020. SILVÉRIO, Maíra Rosato Silveiral et al. Plant Natural Products for the Control of Aedes aegypti: The Main Vector of Important Arboviruses. Molecules, v. 25, n. 15, p. 3484, 1 ago. 2020. SIM, Cheolho; DENLINGER, David L. Insulin signaling and the regulation of insect diapause. Frontiers in Physiology, v. 4 JUL, p. 54183, 22 jul. 2013. SIM, Shuzhen; JUPATANAKUL, Natapong; DIMOPOULOS, George. Mosquito Immunity against Arboviruses. Viruses, v. 6, n. 11, p. 4479, 19 nov. 2014. SINGH, K. R. P.; BROWN, A. W. A. Nutritional requirements of Aedes Aegypti L. Journal of Insect Physiology, v. 1, n. 3, p. 199–220, 1957. SINGH, Poonam et al. Untargeted metabolomics-based response analysis of temperature and insecticide exposure in Aedes aegypti. Scientific reports, v. 12, n. 1, 1 dez. 2022. SINHA, Krishnendu; GHOSH, Jyotirmoy; SIL, Parames C. Morin and Its Role in Chronic Diseases. Advances in Experimental Medicine and Biology, v. 928, p. 453–471, 1 set. 2016. SIRAJ, Amir S. et al. Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals. PLOS Neglected Tropical Diseases, v. 11, n. 7, p. e0005797, 19 jul. 2017. 197 SKOWRONEK, Patrycja; WÓJCIK, Łukasz; STRACHECKA, Aneta. Fat Body—Multifunctional Insect Tissue. Insects, v. 12, n. 6, p. 547, 11 jun. 2021. SØNDERGAARD, Leif. Homology between the mammalian liver and the Drosophila fat body. Trends in Genetics, v. 9, n. 6, p. 193, jun. 1993. SONI, Suha et al. Dengue, Chikungunya, and Zika: The Causes and Threats of Emerging and Re- emerging Arboviral Diseases. Cureus, 11 jul. 2023. SOUZA-NETO, Jayme A.; POWELL, Jeffrey R.; BONIZZONI, Mariangela. Aedes aegypti vector competence studies: A review. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, v. 67, p. 191, 1 jan. 2018. SOUZA-NETO, Jayme A.; POWELL, Jeffrey R.; BONIZZONI, Mariangela. Aedes aegypti vector competence studies: A review. Infection, Genetics and Evolution, v. 67, p. 191–209, 1 jan. 2019. STANLEY‐SAMUELSON, David W. et al. Fatty acids in insects: Composition, metabolism, and biological significance. Archives of Insect Biochemistry and Physiology, v. 9, n. 1, p. 1–33, 1 jan. 1988. STYER, Linda M. et al. Mortality and reproductive dynamics of Aedes aegypti (Diptera: Culicidae) fed human blood. Vector-Borne and Zoonotic Diseases, v. 7, n. 1, p. 86–98, 1 jan. 2007. TAN, Qian Qian et al. Describing the diapause-preparatory proteome of the beetle Colaphellus bowringi and identifying candidates affecting lipid accumulation using isobaric tags for mass spectrometry-based proteome quantification (iTRAQ). Frontiers in Physiology, v. 8, n. APR, p. 251, 26 abr. 2017. TARACENA, Mabel L. et al. Regulation of midgut cell proliferation impacts Aedes aegypti susceptibility to dengue virus. PLoS neglected tropical diseases, v. 12, n. 5, 21 maio 2018. TAVEIRA, Lúcia Antonia; FONTES, Luiz Roberto; NATAL, Délsio. Manual de diretrizes e procedimentos no controle do Aedes aegypti. Ribeirão Preto: [S.n.]. . Acesso em: 6 maio. 2020. TELANG, A. et al. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti). Medical and Veterinary Entomology, v. 26, n. 3, p. 271–281, 1 set. 2012. 198 TELANG, Aparna et al. Effects of larval nutrition on the endocrinology of mosquito egg development. Journal of Experimental Biology, v. 209, n. 4, p. 645–655, 2006. TELANG, Aparna; FRAME, Laura; BROWN, Mark R. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Journal of Experimental Biology, v. 210, n. 5, p. 854–864, 2007. TENNESSEN, Jason M. et al. The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metabolism, v. 13, n. 2, p. 139–148, 2 fev. 2011. TENYWA, Frank Chelestino et al. Sugar and blood: the nutritional priorities of the dengue vector, Aedes aegypti. Parasites & Vectors, v. 17, n. 1, p. 26, 1 dez. 2024. TERRA, Walter R.; FERREIRA, Clélia. Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology -- Part B: Biochemistry and, v. 109, n. 1, p. 1–62, set. 1994. TERRA, Walter R.; FERREIRA, Clélia. Biochemistry and Molecular Biology of Digestion. Insect Molecular Biology and Biochemistry, p. 365–418, 1 jan. 2011. TEULIER, Loïc et al. Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans. Proceedings of the Royal Society B: Biological Sciences, v. 283, n. 1834, 13 jul. 2016. TEVATIYA, Sanjay et al. Molecular and Functional Characterization of Trehalase in the Mosquito Anopheles stephensi. Frontiers in Physiology, v. 11, p. 575718, 19 nov. 2020. THOMPSON, S. Nelson. Trehalose - The Insect “Blood” Sugar. Advances in Insect Physiology, v. 31, p. 205–285, 2003. TIMMERMANN, S. E.; BRIEGEL, H. Larval growth and biosynthesis of reserves in mosquitoes. Journal of Insect Physiology, v. 45, n. 5, p. 461–470, 1 maio 1999. TOPRAK, Umut. The Role of Peptide Hormones in Insect Lipid Metabolism. Frontiers in PhysiologyFrontiers Media S.A., , 7 maio 2020. 199 TURAGA, Uday et al. Xenobiotic resistance in mosquito eggs: current understanding and data gaps. PeerJ, v. 13, n. 5, p. e19523, 2025. TURGAY-İZZETOĞLU, Gamze; GÜLMEZ, Mehtap. Characterization of fat body cells at different developmental stages of Culex pipiens. Acta Histochemica, v. 121, n. 4, p. 460–471, maio 2019. TZOU, Phoebe; DE GREGORIO, Ennio; LEMAITRE, Bruno. How Drosophila combats microbial infection: A model to study innate immunity and host-pathogen interactions. Current Opinion in Microbiology, v. 5, n. 1, p. 102–110, 1 fev. 2002. ULLAH, Asad et al. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules, v. 25, n. 5243, 2020. UPSHUR, Irvin Forde et al. Temperature and sugar feeding effects on the activity of a laboratory strain of aedes aegypti. Insects, v. 10, n. 10, 16 out. 2019. VACHON, Vincent; LAPRADE, Raynald; SCHWARTZ, Jean Louis. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. Journal of Invertebrate Pathology, v. 111, n. 1, p. 1–12, 15 set. 2012. VALZANIA, Luca et al. Blood feeding activates the vitellogenic stage of oogenesis in the mosquito Aedes aegypti through inhibition of glycogen synthase kinase 3 by the insulin and TOR pathways. Developmental Biology, v. 454, n. 1, p. 85–95, 30 maio 2019. VAN DER HORST, D. J. et al. Alternative lipid mobilization: the insect shuttle system. Mol Cell Biochem, v. 239, n. 1–2, p. 113–119, out. 2002. VAN HANDEL, E. The obese mosquito. J. Physiol., v. 181, p. 478–486, 1965. VAN HANDEL’, Emile. Rapid determination of glycogen and sugars in mosquitoesJ. Arut. Mosq. Corvrnol Assoc. [S.l.: S.n.]. VANDOCK, Kurt P.; MITCHELL, Martin J.; FIORAVANTI, Carmen F. Effects of plant flavonoids on manduca sexta (tobacco hornworm) fifth larval instar midgut and fat body mitochondrial transhydrogenase. Archives of Insect Biochemistry and Physiology, v. 80, n. 1, p. 15–25, jun. 2012. 200 VEENSTRA, J. A. Do insects really have a homeostatic hypotrehalosaemic hormone? Biological reviews of the Cambridge Philosophical Society, v. 64, n. 4, p. 305–316, 1989. VENANCIO, T. M. et al. The Aedes aegypti larval transcriptome: A comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Molecular Biology, v. 18, n. 1, p. 33–44, fev. 2009. VENKATEISH, V. P.; RAJAMANIKANDAN, Sundarraj; PERUMAL, Madan Kumar. Morin inhibits the activity of pancreatic lipase and adipogenesis. European Journal of Pharmacology, v. 977, 15 ago. 2024. VOTYAKOVA, Tatyana V.; REYNOLDS, Ian J. Detection of hydrogen peroxide with Amplex Red: Interference by NADH and reduced glutathione auto-oxidation. Archives of Biochemistry and Biophysics, v. 431, n. 1, p. 138–144, 1 nov. 2004. WALSKI, Tomasz et al. Diversity and functions of protein glycosylation in insects. Insect biochemistry and molecular biology, v. 83, p. 21–34, 1 abr. 2017. WALTHER, Tobias C.; FARESE, Robert V. The life of lipid droplets. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009. . Acesso em: 8 maio. 2020 WANG, Sha Sha et al. Regulation of Carbohydrate Metabolism by Trehalose-6-Phosphate Synthase 3 in the Brown Planthopper, Nilaparvata lugens. Frontiers in Physiology, v. 11, p. 575485, 17 set. 2020. WANG, Xueli et al. Hormone and receptor interplay in the regulation of mosquito lipid metabolism. Proceedings of the National Academy of Sciences of the United States of America, v. 114, n. 13, p. E2709–E2718, 2017. WEAVER, Scott C.; REISEN, William K. Present and future arboviral threats. Antiviral Research, fev. 2010. WIGGINS, K.; EASTMOND, B.; ALTO, B. W. Transmission potential of Mayaro virus in Florida Aedes aegypti and Aedes albopictus mosquitoes. Medical and veterinary entomology, v. 32, n. 4, p. 436–442, 1 dez. 2018. WIGGLESWORTH, V. B. The Storage of Protein, Fat, Glycogen and Uric Acid in the Fat Body and other Tissues of Mosquito Larvae. Journal of Experimental Biology, v. 19, n. 1, p. 56–77, 1942. 201 WROŃSKA, Anna Katarzyna et al. Lipids as a key element of insect defense systems. Frontiers in GeneticsFrontiers Media S.A., , 2023. WU, Guoyao. Functional amino acids in nutrition and health. Amino acids, v. 45, n. 3, p. 407–411, set. 2013. WYATT, G. R.; LOUGHHEED, T. C.; WYATT, S. S. The chemistry of insect hemolymph: Organic components of the hemolymph of the hemolymph oh the silkworm, Bombyx mori, and two other species. The Journal of General Physiology, v. 39, n. 6, p. 853, 1956. XUE, Hui et al. Regulation of amino acid metabolism in Aphis gossypii parasitized by Binodoxys communis. Frontiers in Nutrition, v. 9, p. 1006253, 29 set. 2022. YAFEI, Zhang; YONGMEI, Xi. Fat Body Development and its Function in Energy Storage and Nutrient Sensing in Drosophila melanogaster. Journal of Tissue Science & Engineering, v. 06, n. 01, p. 1–8, 2015. YAMASHITA, Atsushi et al. Glycerophosphate/Acylglycerophosphate acyltransferases. BiologyMDPI AG, , 19 nov. 2014. YANG, Mengmeng et al. Knockdown of two trehalose-6-phosphate synthases severely affects chitin metabolism gene expression in the brown planthopper Nilaparvata lugens. Pest management science, v. 73, n. 1, p. 206–216, 1 jan. 2017. YEE, W. L.; FOSTER, W. A. Diel Sugar-Feeding and Host-Seeking Rhythms in Mosquitoes (Diptera: Culicidae) Under Laboratory Conditions. Journal of Medical Entomology, v. 29, n. 5, p. 784–791, 1 set. 1992. YU, Hai Zhong et al. Inhibition of trehalase affects the trehalose and chitin metabolism pathways in Diaphorina citri (Hemiptera: Psyllidae). Insect Science, v. 28, n. 3, p. 718–734, 1 jun. 2021. YU, Jing et al. Update on glycerol-3-phosphate acyltransferases: The roles in the development of insulin resistance. Nutrition and Diabetes, v. 8, n. 1, 1 dez. 2018. YUAN, Qiong et al. Metabolism of asparagine in the physiological state and cancer. Cell Communication and Signaling : CCS, v. 22, n. 1, p. 163, 6 mar. 2024. 202 YUAN, Wei; AHMAD, Shoaib; NAJAR, Ajaz. Morin, a plant derived flavonoid, modulates the expression of peroxisome proliferator-activated receptor-γ coactivator-1α mediated by AMPK pathway in hepatic stellate cells. American Journal of Translational Research, v. 9, n. 12, p. 5662, 2017. ZANDI, Keivan et al. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virology journal, v. 8, 2011. ZECHNER, Rudolf et al. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. Journal of Lipid Research, v. 50, n. 1, p. 3–21, 2009. ZHANG, Dao Wei et al. Insect Behavior and Physiological Adaptation Mechanisms Under Starvation Stress. Frontiers in physiology, v. 10, n. MAR, 2019a. ZHANG, Dao Wei et al. Insect behavior and physiological adaptation mechanisms under starvation stress. Frontiers in Physiology, v. 10, n. MAR, 2019b. ZHANG, Qian; YAN, Yaping. The role of natural flavonoids on neuroinflammation as a therapeutic target for Alzheimer’s disease: a narrative review. Neural Regeneration Research, v. 18, n. 12, p. 2582, 1 dez. 2023a. ZHANG, Qian; YAN, Yaping. The role of natural flavonoids on neuroinflammation as a therapeutic target for Alzheimer’s disease: a narrative review. Neural Regeneration Research, v. 18, n. 12, p. 2582, 1 dez. 2023b. ZHANG, Yu Jie et al. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, Vol. 20, Pages 21138-21156, v. 20, n. 12, p. 21138–21156, 27 nov. 2015. ZIEGLER, Rolf; IBRAHIM, Mohab M. Formation of lipid reserves in fat body and eggs of the yellow fever mosquito, aedes aegypti. Journal of Insect Physiology, v. 47, n. 6, p. 623–627, 2001. ZIMMERMANN, Robert et al. Fate of fat: The role of adipose triglyceride lipase in lipolysis. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, jun. 2009. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S1388198108001881>. Acesso em: 8 maio. 2020 | pt_BR |
| dc.subject.cnpq | Química | pt_BR |
| dc.subject.cnpq | Química | pt_BR |
| Aparece nas coleções: | Doutorado em Química | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Arquivos associados a este item:
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| LUAN VALIM DOS SANTOS.pdf | 2,75 MB | Adobe PDF | Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.