Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/9029
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bucher, Carlos Alberto | |
dc.date.accessioned | 2023-12-21T18:33:41Z | - |
dc.date.available | 2023-12-21T18:33:41Z | - |
dc.date.issued | 2011-02-23 | |
dc.identifier.citation | BUCHER, Carlos Alberto. Expressão de genes relacionados à absorção e metabolismo de nitrogênio em arroz sob alto e baixo suprimento de nitrato. 2011. 83 f. Tese (Doutorado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2011. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9029 | - |
dc.description.abstract | O nitrogênio é um dos elementos minerais que mais limita o desenvolvimento das plantas. Assim, aumentar a eficiência de uso de nitrogênio (EUN) é um fator é essencial para uma agricultura sustentável, levando a um aumento da produção de alimentos com menor uso de insumos e menos impactos ao ambiente. A EUN envolve a eficiência de absorção e acúmulo e a eficiência de utilização de N para produção. Compreender os mecanismos envolvidos nesses processos e como eles são controlados é fundamental para a melhoria da EUN nas plantas cultivadas. Para isso, é essencial entender a resposta e comportamento das plantas a diferentes regimes de N, principalmente à limitação de N. O uso de plantas ou variedades com diferenças na EUN é outro fator importante para verificar os principais mecanismos envolvidos. Este trabalho teve por objetivo desse trabalho foi verificar o metabolismo e a expressão de genes envolvidos na absorção e assimilação de nitrogênio nas variedades de arroz Piauí e IAC-47 sob diferentes condições de disponibilidade desse nutriente. O metabolismo de N foi avaliado através da quantificação das frações nitrogenadas no tecido e atividade enzimática, a expressão de genes que codificam para transportadores de N de alta e baixa afinidade e enzimas de assimilação de N. Foram realizados dois experimentos: o primeiro para verificar o comportamento das plantas quando cultivadas sob alto e baixo suprimento de N; e o segundo, para verificar as repostas ao ressuprimento de N. O acúmulo de massa foi maior na variedade IAC-47 em todos os tratamentos. Quando as plantas foram cultivadas por um longo período sob baixo suprimento de N foi observado maior teor de nitrato (NO3 -) no tecido da variedade Piauí, adaptada a condições de baixa fertilidade, assim como uma alta atividade da nitrato redutase e glutamina sintetase nas raízes dessas plantas. Sob alto suprimento de NO3 -, por um longo período, a variedade Piauí apresentou maiores teores de NO3 - nas bainhas e raízes, mas não foram observas diferenças na atividade de enzimas. A expressão dos transportadores de nitrato na variedade Piauí foi mais elevada nas raízes das plantas sob baixo suprimento de NO3 - quando comparado as plantas sob alto suprimento de N. Na variedade IAC-47 a expressão dos transportadores de NO3 - teve comportamento oposto ao observado para a Piauí. Quando as plantas receberam NO3 -, após um período de 72 horas sem N, houve um rápido aumento, após 6 horas do ressuprimento, na expressão do gene que codifica para o transportador de NO3 - de alta afinidade OsNRT2.1 e glutamina sintetase plastidial (GS2) nas raízes da variedade Piauí, e 24 horas após o ressuprimento a expressão foi maior na variedade IAC-47. A eficiência da variedade Piauí esta relacionada ao controle diferenciado dos mecanismos de absorção e assimilação de N, que permite a maior expressão dos transportadores de nitrato de alta afinidade em tecido com altos teores de N solúvel, alto status de N, indicando que o controle do sistema de absorção de N pode ser essencial para a eficiência no uso de nitrogênio. | por |
dc.description.sponsorship | Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Nitrogen usage efficiency | eng |
dc.subject | Eficiência de uso de N | por |
dc.subject | Expressão gênica | por |
dc.subject | Variedades locais | por |
dc.subject | Gene expression | eng |
dc.subject | Local variety plants | eng |
dc.title | Expressão de genes relacionados à absorção e metabolismo de nitrogênio em arroz sob alto e baixo suprimento de nitrato | por |
dc.type | Tese | por |
dc.description.abstractOther | Nitrogen is one of the nutrient elements most limiting for plant growth. Thus, increasing plant nitrogen usage efficiency (NUE) is an essential factor for sustainable agriculture, leading to an increased food production with less fertilizer input and less environment impact. NUE in plant involves the uptake and accumulation efficiency, and N use efficiency for grain production. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crops. Therefore, is essential to comprehend plants response to different N regimes, mainly N limitation. The usage of plants or varieties with differences in nutrient use efficiency is another important factor to determine the main mechanisms involved in these processes. The objectives of this study were to evaluate N metabolism and expression of genes involved in N uptake and assimilitation of two rice varieties (Piauí and IAC-47), under different N supply conditions. The N metabolism was evaluated by quantification of nitrogen fractions in plant tissue and enzymatic activity, expression of genes that code for high and low affinity N transporters, and N assimilation enzymes. Two experiments were conducted: the first, to investigate the plants behavior when grown under high and low N supply; and the second to verify plants response to NO3 - resupply. The IAC-47 variety showed greatest mass accumulation in all treatments. When plants were grown for a long period under low N supply it was observed a higher nitrate (NO3 -) content in the tissue of Piauí variety, which is adapted to low fertility conditions, as well as a high activity of nitrate reductase and glutamine synthetase in the roots of these plants. When under high NO3 - supply for a long period, Piauí variety had higher NO3 - concentrations in roots and sheaths, but no differences were observed in enzymes activity. The nitrate transporters expression was higher in roots of Piauí plants under low supply of NO3 - when compared to Piauí plants under high N supply. Nitrate transporters expression in roots of IAC-47 plants showed a pattern opposite to the one observed for Piauí plants. When plants were resupplied with NO3 -, after a 72 hours period without N, there was a rapid increase, after 6 hours of resupply, in the expression of high affinity nitrate transporters genes (OsNRT2.1) and the plastidial glutamine synthetase (GS2) in the Piauí variety roots, and a higher expression of these in IAC-47 roots after a 24 hours of N resupply. The efficiency of Piauí variety is related to the differentiated control of N absorption and assimilation mechanisms, which allow bigger expression of high affinity nitrate transporters in tissue with high levels of soluble N, high N status, indicating that the control of nitrogen uptake system may be essential for the nitrogen usage efficient. | por |
dc.contributor.advisor1 | Fernandes, Manlio Silvestre | |
dc.contributor.advisor1ID | 218057334 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/6269004387821466 | por |
dc.contributor.advisor-co1 | Sousa, Sonia Regina | |
dc.contributor.advisor-co1ID | 392748703 | por |
dc.contributor.advisor-co2 | Santos, Leandro Azevedo | |
dc.contributor.advisor-co2ID | 983.907.835-68 | por |
dc.contributor.advisor-co2Lattes | http://lattes.cnpq.br/4704465400011358 | por |
dc.creator.ID | 5586934744 | por |
dc.creator.Lattes | http://lattes.cnpq.br/9011597325479363 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Agronomia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Agronomia - Ciência do Solo | por |
dc.relation.references | AN, D.; SU, J.; LIU, Q.; ZHU, Y.; TONG, Y.; LI, J.; JING, R.; LI, B.; LI, Z. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant and Soil, v.284, p.73–84, 2006. ARAKI, R. & HASEGAWA H. Expression of rice (Orysa sativa L.) genes involved in highaffinity nitrate transport during the period of nitrate induction. Breeding Science, v.56, p.295- 302, 2006. ARAÚJO, E. S.; SOUZA, S. R.; FERNANDES, M. S. Características morfológicas e moleculares e acúmulo de proteína em grãos de variedades de arroz do Maranhão. Pesquisa Agropecuária Brasileira. v. 38, n. 11, p. 1281-1288, 2003. ASANO, T.; WAKAYAMA, M.; AOKI, N.; KOMATSU, S.; ICHIKAWA, H.; HIROCHIKA, H.; OHSUGI, R. Overexpression of a calcium-dependent protein kinase gene enhances growth of rice under low-nitrogen conditions. Plant Biotechnology. v. 27, p. 369- 373, 2010. ASHIKARI, M.; SAKAKIBARA,H.; LIN, S.; YAMAMOTO, T.; TAKASHI, T.; NISHIMURA, A.; ANGELES, E. R.; QIAN, Q.; KITANO, H.; MATSUOKA, M. Cytokinin oxidase regulates rice grain production. Science. v. 309, p.741-745, 2005. BALAZADEH, S.; RIANO-PACHO, D. M.; MUELLER-ROEBER, B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biology. v. 10, p 63–75, 2008. BAPTISTA, A. de J.; FERNANDES, M. S.; SOUZA, R. de S. Cinética de absorção de amônio e crescimento radicular das cultivares de arroz Agulha e Bico Ganga. Pesquisa Agropecuária Brasileira, v.35, n.7, p.1325-1330, 2000. BAXTER, I.; TCHIEU, J.; SUSSMAN, M. R.; BOUTRY, M.; PALMGREN, M. G.; GRIBSKOV, M.; HARPER, J. F.; AXELSEN, K. B. Genomic comparison of P-type ATPase ion pump in Arabidopsis and rice. Plant Physiology, v.132, p.618-628, 2003. BENNETZEN, J. L.; MA, J. X. The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Current Opinion in Plant Biology, v.6, n. 2, p. 128-133, 2003. BERNARD, S.M.; HABASH, D. Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist. v.182, p. 608–620. 2009. BEUVE, N.; RISPAIL, N.; LAINE, P.; CLIQUET. J.B.; OURRY, A.; LE DEUNFF, E. Putative role of gamma-aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant. Cell and Environment. v. 27, p. 1035-1046, 2004. BI, Y.-M.; KANT, S.; CLARK, J.; GIDDA, S.; MING, F.; XU, J.; ROCHON, A.; SHELP, B.J.; HAO, L.; ZHAO, R.; MULLEN, R.T.; ZHU, T.; ROTHSTEIN, S.J. Increased nitrogenuse efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant Cell Environ., v. 32, n.12, p. 1749-1760, 2009. BOBIK, K.; DUBY, G.; NIZET, Y.; VANDERMEEREN, C.; STIERNET, P.; KANCZEWSKA, J.; BOUTRY, M. Two widely expressed plasma membrane H+-ATPase 66 isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine. Plant Journal. v. 62, n. 2, p.291-301, 2010. BOUWMAN, A.F., BOUMANS, L.J.M., BATJES, N.H. Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochemical Cycles, v. 16, n .4, p. 1058-1071, 2002. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72, p. 248-254, 1976. BRAUER, E. K; ROCHONA, R.; BI, Y. M,; BOZZOA, G. G.; ROTHSTEIN, S. J.; SHELPA, B. J. Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase. Physiologia Plantarum, v. 141, n. 4, p. 361-372, 2011. BUCHANAN, R. B., GRUISSEM, W. & JONES, R. L. Biochemistry and Molecular Biology of Plants. 4. ed. Rockville, Maryland. 2000. 1367p. BUCHER, C. A.; FERNANDES, M. S.; SOUZA, S. R. Effects of fusicoccin and vanadate on proton extrusion and potassium uptake by rice. Journal of Plant Nutrition, v. 29, p. 485-496, 2006. BUCHER, C. A. Avaliação através de RT-PCR da expressão dos genes que codificam para enzimas de assimilação de nitrogênio em variedades de arroz. 2007. 37f. Dissertação (Mestrado em Agronomia, Ciência do Solo). Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2007. BURNS, M. J.; NIXON, G. J.; FOY, C.A.; HARRIS, N. Standardisation of data from realtime quantitative PCR methods –evaluation of outliers and comparison of calibration curves. BMC Biotechnology, v. 5, 2005. Disponivel em: <http://www.biomedcentral.com/1472- 6750/5/31> site on-line, n.p. Acesso em nov. 2008. BUSTIN, SA, NOLAN, T. Pitfalls of Quantitative Real-Time Reverse-Transcription Polymerase Chain Reaction. Journal of Biomolecular Techniques, v15, p155-166. 2004. CAI, C.; WANG, J-Y.; ZHU, Y.; SHEN, Q.; LI,B.; TONG, Y.; LI, Z. Gene structure and expression of the high affinity nitrate transport system in rice roots. Journal of Integrative Plant Biology. v. 50, n. 4, p. 443-451, 2008. CAKMAK, I.; HENGELER, C.; MARSCHNER, H. Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. Journal of Experimental Botany, v. 45, p. 1251–1257, 1994. CATALDO, D.; HARRON, M.; SCHARADER, L. E. & YOUNGS, V. L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communication in Soil Science and Plant Analysis, v.6, p.853-855, 1975. CAVICCHIOLI, R., CHIANG, R.C., KALMAN, L.V.; GUNSALUS, R.P. Role of the periplasmic domain of the Escherichia coli NarX sensor-transmitter protein in nitratedependent signal transduction and gene regulation. Mol. Microbiol. v.21, 901–911. 1996. CEREZO, M.; TILLARD, P.; FILLEUR, S.; MUNOS, S.; DANIEL-VEDELE, F.; GOJON, A. Major alterations of the regulation of root NO3 - uptake are associated with mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiology, v.127, p.262-271, 2001. CHO, Y.; JIANG, W.; CHIN, J. W.; PIAO, Z.; CHO, G.; MCCOUCH, S. R.; KOH, H. Z. Identification of QTLs associated with physiological nitrogen use efficiency in rice. Mol. Cells, v. 23, n. 1, p. 72-79, 2007. 67 CHOU, C.C., CHEN C.H, LEE, T.T, PECK, K. Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression. Nucleic Acids Res, v.32, n.12, e99. 2004. n.p. Disponível em <http://nar.oxfordjournals.org/content/32/12/e99.full.pdf+html>. Acesso em out. 2009. CLARKSON, D.T., HOPPER, M.J., JONES, L.H.P. The effect of root temperature on the uptake of nitrogen and the relative size of the root system in Lolium perenne: I. Solutions containing both ammonium ion and nitrate ion. Plant Cell Environ. v. 9, p. 535-546, 1986. COOKSON, S.J.; WILLIAMS, L.E.; MILLER, A.J. Light–dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells. Plant Physiology. v.138, p. 1097–1105, 2005. CRAWFORD, N. M. & GLASS, A. D. M. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, v.3, n.10, p.389-395, 1998. CRAWFORD, N. M. Nitrate: Nutrient and signal for plant growth. The Plant Cell, v. 7, p. 859-868, 1995. CRUZ, F.; KALAOUN, S.; NOBILE, P.; COLOMBO, C.; ALMEIDA, J.; BARROS, L. M. G. ; ROMANO, E.; GROSSI-DE-SÁ, M. F.; VASLIN, M.; ALVES-FERREIRA, M. Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Molecular Breeding, v. 23, p. 607-616, 2009. CZECHOWSKI, T., BARI, R.P., STITT, M., SCHEIBLE, W.R., AND UDVARDI, M.K. Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: Unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J. v. 38, p. 366–379. 2004. CZECHOWSKI, T; STITT, M.; ALTMANN, T.; UDVARDI, M. K.; SCHEIBLE, W.R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology. v. 139, p. 5-17, 2005. DAVIES, D.B., SYLVESTER-BRADLEY, R., The contribution of fertiliser nitrogen to leachable nitrogen in the UK: a review. J. Sci. Food Agric. v. 68, p. 399–406, 1995. DE ANGELI, A.; MONACHELLO, D.; EPHRITIKHINE, G.; FRACHISSE, J.M.; THOMINE, S.; GAMBALE, F.; BARBIER-BRYGOO, H. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature, v. 442, n.24. p. 939-942. 2006. DE GROOT, C.C.; MARCELIS, L. F. M.; VAN DEN BOOGAARD, R.; KAISER, W. M.; LAMBERS, H. Interaction of nitrogen and phosphorus nutrition in determining growth. Plant and Soil. v. 248, n.1-2, p. 257-268. 2003. DECHORGNAT, J.; NGUYEN, C-T.; ARMENGAUD, P.; JOSSIER, M.; DIATLOFF, E.; FILLEUR, S.; DANIEL-VEDELE, F. From the soil to the seeds: the long journey of nitrate in plants. Journal of Experimental Botany. v. 62, p.1349–1359, 2011. DISTELFELD, A.; UAUY, C.; FAHIMA, T. Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytologist. v. 169, n.4, p. 753-763, 2006. DOWNS, C. G.; CHRISTEY, M. C.; DAVIES, K.M.; KING, G.A.; SEELYE, J.F.; SINCLAIR, B.K.; STEVENSON, D, G. Hairy roots of Brassica napus: II. Glutamine synthetase overexpression alters ammonia assimilation and the response to phosphinothricin. Plant Cell Rep, v. 14, p. 41–46, 1994. 68 DUBOIS, F.; TERCÉ-LAFORGUE, T.; GONZALES-MORO, M-B. ESTAVILLO, J-M.; SANGWAN, R.; GALLAIS, A.; HIREL, B. Glutamate dehydrogenase in plants: is there a new store for an old enzyme? Plant Physiology and Biochemistry, v.41, p.565-576, 2003. DUBY, G.; POREBA, W.; PIOTROWIAK, D.; BOBIK, K.; DERUA, R.,WAELKENS, E.; BOUTRY, M. Activation of plant plasma membrane H+-ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+-ATPase C-terminal region. Journal Biological Chemistry. v. 284, n. 7, p. 4213-4221, 2009. EULGEM, T. E SOMSSICH, I. E. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. v. 10, p. 366-371, 2007. FANG, Y.; YOU, J.; XIE, K.; XIE, W.; XIONG, L. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Molecular Genetics and Genomics. v. 280, p.547-56, 2008. FARNDEN, K. J. S.; ROBERTSON, J. G. Methods for studying enzime envolved in metabolism related to nitrogen. In: BERGSEN, F. J. ed. Methods for Evaluating Biological Nitrogen Fixation, Chichester: John Wiley, 1980. p. 265-314. FEHLBAUM, P.; GUIHAL. C.; BRACCO, L.; COCHET, O. A microarray configuration to quantify expression levels and relative abundance of splice variants. Nucleic Acids Res. v. 33, n. 5, e47, 2005. Disponível em < http://nar.oxfordjournals.org/content/33/5/e47.full.pdf>, acesso em out. 2009. FEI, H.; CHAILLOU, S.; HIREL, B.; MAHON, J. D.; VESSEY, J. K. Overexpression of a soybean cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plants grown in different concentrations of nitrate. Planta. v. 216, p. 467-474, 2003. FELKER, P. Microdetermination of nitrogen in seed protein extracts with the salicylatedichloroisocyanurate color reaction. Anal. Chem., v. 49, p. 1080-1080, 1977. FENG, H.; YAN, M.; FAN, X.; LI, B.; SHEN, B., MILLER, A. J.; XU, G. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. Journal of Experimental Botany, v.67, n. 7, p. 2319-2332, 2011. FERNANDES, M. S. Effects of environmental stress on the relationship of free amino-n to fresh weight of rice plants. Journal of Plant Nutrition. v. 14, n. 11, p. 1151-1164, 1991. FERNANDES, M. S. N-carriers, light and temperature influences on uptake and assimilation of nitrogen by rice. Turrialba, v.34, p.9-18, 1984. FERRAZ, A.S.D.; SOUZA, S.R.; STARK, E.M.L.M.; FERNANDES, M.S. Nitrogen use efficiency for gram and protein production by rice genotypes. Pesquisa Agropecuaria Brasileira, v. 32, n. 4, p. 435-442, 1997. FILLEUR, S.; DORBE, M.-F.; CEREZO, M.; ORSEL, M.; GRANIER, F.; GOJON, A.; DANIEL-VEDELE, F. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Letter, v.489, p.220-224, 2001. FORDE, B. G.; LEA, P. J. Glutamate in plants: metabolism, regulation, and signaling. Journal of Experimental Botany. v. 58, n. 9, p. 2339–2358, 2007. FRAISIER, V.; GOJON, A.; TILLARD, P.; DANIEL-VEDELE, F. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for posttranscriptional regulation by a reduced nitrogen source. Plant J., v. 23, p. 489-496, 2000. 69 FU, J.; SAMPALO, R.; GALLARDO, F.; CÁNOVAS, F. M.; KIRBY, E. G. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell and Environment, v.26, n.3, p.411– 418, 2003. FUENTES, S.I.; ALLEN, D.J.; ORTIZ-LOPEZ. A.; HERNÁNDEZ, G. Over‐expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. Journal of Experimental Botany., v. 52, n. 358, p. 1071-1081, 2001. GACHON, C. M. A.; CHARRIER, B. Real-time PCR: what relevance to plant studies? Journal of Experimental Botany, v. 55, p. 1445-1454, 2004. GANSEL, X.; MUNOS, S.; TILLARD, P.; GOJON, A. Differential regulation of the NO3 - and NH4 + transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with longdistance and local controls by N status of the plant. The Plant Journal, v. 26, p. 143–155, 2001. GARRIDO, F. R. S.; GARRIDO, R. G.; BUCHER, C. A.; SOUZA, S. R. ; FERNANDES, M. S. Rice varieties tonoplast and plasma membrane H+ATPases differential activities in response to nitrate pulses. Journal of Biological Sciences, v.8, n1, p. 107-112, 2008. GIBSON, U.E.; HEID, C.A.; WILLIMAS, P.M. A novel method for real time quantitative RT-PCR. Genome Res., v.6, p. 995-1001, 1996. GIRIN, T.; EL-KAFAFI, E. S.; WIDIEZ, T.; ERBAN, A.; HUBBERTEN, H.M.; KOPKA, J, HOEFGEN, R, GOJON, A.; LEPETIT, M. Identification of Arabidopsis mutants impaired in the systemic regulation of root nitrate uptake by the nitrogen status of the plant. Plant Physiology, v. 153, p. 1250–1260, 2010. GIRIN, T.; LEJAY, L.; WIRTH, J.; WIDIEZ, T.; PALENCHAR, P.M., NAZOA, P., TOURAINE, B, GOJON, A., LEPETIT, M. Identification of a 150 bp cis-acting element of the AtNRT2.1 promoter involved in the regulation of gene expression by the N and C status of the plant. Plant, Cell and Environment. v. 30, p. 1366–1380. 2007. GLASS, A. D. M. Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Critical Reviews in Plant Sciences, v.22, p.453–470, 2003. GLASS, A. D. M.; BRITTO, D. T.; KAISER, B. N.; KINGHORN, J. R.; KRONZUCKER, H. J.; KUMAR, A.; OKAMOTO, M.; RAWAT, S.; SIDDIQI, M. Y.; UNKLES, S. E.; VIDMAR, J. J. The regulation of nitrate and ammonium transport system in plants. Journal of Experimental Botany, v.53, p.855-864, 2002. GLASS, A. D.; SHAFF, J. E.; KOCHIAN, L. V. Studies of the uptake of nitrate in barley, IV. Electrophysiology. Plant Physiology. n. 99, p. 456–463, 1992. GOJON, A.; NACRY, P.; DAVIDIAN, J. C. Root uptake regulation: a central process for NPS homeostasis in plants. Current Opinion in Plant Biology. 12, 328–338, 2009. GOOD, A. G.; SHRAWAT, A. K.; MUENCH, D.G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, v. 9 n. 12, p.598-605, 2004. GREENLAND, D. J. Nitrate fluctuations in tropical soils. Journal Agricultural Science. v. 50, p. 82–91, 1958. GREGERSEN, P. L.; HOLM, P. B. Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnology Journal. v.5, n.1, p. 192-206, 2007. 70 GUTIERREZ, L.; MAURIAT, M.; PELLOUX, J.; BELLINI, C.; WUYTSWINKEL. O. Towards a systematic validation of references in Real-Time RT-PCR. The Plant Cell, v. 20, p.1734–1735, 2008. HABASH, D. Z.; MASSIAH, A. J.; RONG, H. L.; WALLSGROVE, R. M.; LEIGH, R. A. The role of cytosolic glutamine synthetase in wheat. Annals of Applied Biology, v.138, n.1, p.83–89, 2001. HARADA, H.; KUROMORI, T.; HIRAYAMA, T.; SHINOZAKI, K.; LEIGH, R. A. Quantitative trait loci analysis of nitrate storage in Arabidopsis leading to an investigation of the contribution of the anion channel gene, AtCLC-c, to variation in nitrate levels. Journal of Experimental Botany. v.55, p. 2005-2014, 2004. HERMANS, C.; VERBRUGGEN, N. Physiological characterization of magnesium deficiency in Arabidopsis thaliana. Journal of Experimental Botany. v. 418, p. 2153-2161, 2005. HIRAI, M.Y.; YANO, M.; GOODENOWE, D.B.; KANAYA, S.; KIMURA, T. A.; WAZUHARA, M.; ARITA, M.; FUJIWARA, T., SAITO, K. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, v. 101, p. 10205-10210, 2004. HIREL, B.; BERTIN, P.; QUILLERÉ, I.; BOURDONCLE, W.; ATTAGNANT, C.; DELLAY, C.; GOUY, A.; CADIOU, S.; RETAILLIAU, C.; FALQUE, M. & GALLAIS, A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiology, v.125, p.1258-1270, 2001. HIREL, B.; GOUIS, J. L.; NEY, B.; GALLAIS, A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, v.58, p.2339-2358, 2007. HIREL, B.; LEA, P. J. Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. In: FOYER, C. H.; NOCTOR, G. (Org.). The biochemistry, molecular biology and genetic manipulation of primary ammonia assimilation, Netherlands, Kluwer Academic, 2002. p.71-92, HO, C.H.; LIN, S.H.; HU, H.C.; TSAY, Y.F. CHL1 functions as a nitrate sensor in plants. Cell . v. 138, p. 1184–1194, 2009. HOAGLAND, D. R. & ARNON, D. I. The water-culture method for growing plants without soil. California Agricultural Experiment Station, Berkeley, California, 1950. 347p. HU, H.; DAI, M.; YAO, J. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences, v. 103, p. 12987–12992, 2006. HU, H.; WANG, Y.; TSAY, Y. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. The Plant Journal. v. 57, p. 264–278, 2009. HU, Z. H.; LI, P.; ZHOU, M.Q.; ZHANG, Z.; WANG, L.; ZHU L.; ZHU, Y. Mapping of quantitative trait loci (QTLs) for rice protein and fat content using doubled haploid lines. Euphytica. v. 135, p. 47–54, 2004. 71 ISHIMARU, K.; KASHIWAGI, T.; HIROTSU, N.; MADOKA, Y. Identification and physiological analyses of a locus for rice yield potential across the genetic background. Journal of Experimental Botany. v.56, n.420, p 2745-2753, 2005. ISHIYAMA, K., HAYAKAWA, T. AND YAMAYA, T. Expression of NADH-dependent glutamate synthase protein in the epidermis and exodermis of rice roots in response to the supply of nitrogen. Planta, v. 204, p. 288–294, 1998. ISHIYAMA, K.; INOUE, E.; TABUCHI, M.; YAMAYA, T.; TAKOSASHI, H. Biochemical backgrounds of compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol. v. 45, p. 1640-1647, 2004a. ISHIYAMA, K.; INOUE, E.; WATANABE-TAKOSASHI, A.; OBARA, M.; YAMAYA, T.; TAKOSASHI, H. Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J. Biol. Chem. v. 279, p. 16598-16605, 2004b. IZAWA, T. & SHIMAMOTO, K. Becoming a model plant: the importance of rice to plant science. Trends in Plant Science, v.1, n.2, p.95-99, 1996. JAIN, M.; NIJHAWAN, A.; TYAGI, A. K; KHURANA, J. P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Bioch. Bioph. Res. Comm. v. 345, p 646–651, 2006. JAWORSKI, E. G. Nitrate Reductase assay in intact plant tissues. Biochemical Byophysical Research Communications, v.43, n.6, p.1274-1279, 1971. JIANG, L.; DAI, T.; JIANG, D.; CAO, W.; GAN, X.; WEI, S. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Research. v. 88, p. 239-250, 2004. KANNAN, S.; NIELSEN, S. S.; MASON, A. C. Protein digestibility-corrected amino acid scores for bean and bean-rice infant weaning food products. Journal of Agricultural and Food Chemistry. v. 49, n.10, p. 5070-5074, 2001. KANT, K.; BI, Y. M.; ROTHSTEIN, S. J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany, v. 62, n. 4, p. 1499-1509, 2011. KIM, B. R.; NAM, H.Y.; KIM, S.U.; KIM, S.I.; CHANG, Y.J. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnology Letters. v. 25, p. 1869-1872, 2003. KIRK, G. J. D.; KRONZUCKER, H. J. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: Modeling study. ANNALS OF BOTANY, v.96, p.639-646, 2005. KLEIN, D. Quantification using real-time PCR technology: applications and limitations. Trends in Molecular Medicine. V.8 n.6, p.257-260, 2002. KOTHAPALLIT R, YODER SJ, MANE S, LOUGHRAN TPJ: Microarray results: how accurate are they? BMC Bioinformatics. v. 3, n. 1, p. 22-32. 2002. KRAPP, A.; SALIBA-COLOMBANI, V.; DANIEL-VEDELE, F. Analysis of C and N metabolisms and of C/N interactions using quantitative genetics. Photosynthesis Research. v.83, p. 251–263, 2005. 72 KREBS, M.; BEYHL, D.; GÖRLICHA, E.; AL-RASHEID, K. A. S.; MARTEN, I.; STIERHOFD, Y-D.; HEDRICH, R.; SCHUMACHERA, K. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. PNAS, v. 107, n. 7, p. 3251–3256, 2010. KROUK, G. TRANCHINA, D.; LEJAY, L.; CRUIKSHANK, A.A.; SHASHA, D.; CORUZZI, G. M.; GUTIERREZ, R.A. A systems approach uncovers restrictions for signal interactions regulating genome-wide responses to nutritional cues in Arabidopsis. PLoS Computional Biology. 5, e1000326, 2009. on line, n.p. Disponível em <http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000326> acesso em: mai. 2009. KROUK, G.; CRAWFORD, N.M.; CORUZZI, G.M.; TSAY, Y.F. Nitrate signaling: adaptation to fluctuating environments. Current Opinion in Plant Biology. v.13, p. 1-8 2010. KROUK, G.; TILLARD, P.; GOJON, A. Regulation of the high-affinity NO3 - uptake system by NRT1.1-mediated NO3 - demand signaling in Arabidopsis. Plant Physiol., v. 142, p.1075- 1086, 2006. LANCIEN, M, MARTIN, M, HSIEH, M, H, LEUSTEK T, GOODMAN H, CORUZZI G M. Arabidopsis glt 1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilation pathway. Plant Journal. v. 29, p.347-358, 2002. LEA, P.J.; AZEVEDO, R. A. Nitrogen use efficiency. 2. Amino acid metabolism. Annals of Applied Biology. v. 151, p. 269–275. 2007. LEEGOOD, R.C.; LEA, P.J.; ADCOCK, M.D.; HAUSLER, R.E. The regulation and control of photorespiration. Journal of Experimental Botany. v.46, p. 1397–1414. 1995. LI, C.; SANG, T. Rice domestication by reducing shattering. Science. v. 311, n. 5769, p. 1936 – 1939, 2006. LI, W.; WANG, Y.; OKAMOTO, M.; CRAWFORD, N. M.; SIDDIQI, M. Y.; GLASS, A. D. M. Dissection of the AtNRT2.1:AtNRT2.2 inducible high affinity nitrate transporter gene cluster. Plant Physiology, v.143, p.425–433, 2007. LIAN, X.; WANG, S.; ZHANG, J.; FENG, Q.; ZHANG, L.; FAN, D.; LI, X.; YUAN, D.; HAN, B.; ZHANG, Q. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Molecular Biology, v. 60, p.617-631, 2006. LIAN, X.; XING, Y.; XU, H.Y.C.; LI, X.; ZHANG, Q. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theoretical and Applied Genetics. v.112, p.85–96, 2005. LIMAMI, A.; PHILLIPSON, B.; AMEZIANE, R;. PERNOLLET, N.; JIANG, Q.; ROY, R.; DELEENS, E.; CHAUMONT-BONNET, M.; GRESSHOFF, P. M.; HIREL, B. Does root glutamine synthetase control plant biomass production in Lotus japonicus L. Planta. v. 209, p. 495-502, 1999. LIN, C.; KOH, S.; STACEY, G.; YU, S.; LIN, T. & TSAY, Y. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiology, v.122, p.379-388, 2000. 73 LIN, H.; SALUS, S. S.; SCHUMAKER, K. S. Salt sensitivity and the activities of the H+- ATPases in cotton seedlings. Crop Science, v. 7, n. 1, p. 190-197, 1997. LINKOHR, B.I.; WILLIAMSON, L.C.; FITTER, A.H.; LEYSER, H.M.O. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant Journal. v. 29, p. 751–760. 2002. LITTLE, D.Y.; RAO, H.; OLIVA, S.; DANIEL-VEDELE, F.; KRAPP, A.; MALAMY, J.E. The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proceedings of the National Academy of Sciences, v. 102, p. 13693-13698, 2005. LIU, K.-H. & TSAY, Y.-F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. The EMBO Journal, v.22, p.1005–1013. 2003. LIU, K.-H.; HUANG, C-Y.; TSAYA, Y-F. CHL1 is a dual-affinity nitrate transporter of arabidopsis involved in multiple phases of nitrate uptake. The Plant Cell, v.11, p. 865-874, 1999. LIVAK, K.J.; CHMITTGEN, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- CT method. Methods. v. 25, p. 402–408. 2001. LORKOWSKI, S.; CULLEN, P. High-throughput analysis of mRNA expression: microarrays are not the whole story. Expert Opinion on Therapeutic Patents. v. 14, n.3, p. 377-403, 2004. LOTHIER, J.; GAUFICHON, L.; SORMANI, R.; LEMAÎTRE, T.; AZZOPARDI, M.; MORIN, H.; CHARDON, F.; REISDORF-CREN, M.; AVICE, J. C.; MASCLAUXDAUBRESSE, C. The cytosolic glutamine synthetase GLN1;2 plays a role in the control of plant growth and ammonium homeostasis in Arabidopsis rosettes when nitrate supply is not limiting. Journal of Experimental Botany, v.62, n. 4, p. 1375-1390. 2011. MACDUFF, J. H. & JACKSON, S. B. Growth and preferences for ammonium or nitrate upatke by barley in relation to root temperature. Journal of Experimental Botany, v.42, n.237, p.521-530, 1991. MAE, T.; KAI, N.; MAKINO, A.; OHIRA, K. Relation between ribulose bisphosphate carboxylase content and chloroplast number in naturally senescing primary leaves of wheat. Plant Cell Physiol., v.25, p.333-336. 1984. MAH, N.; THELIN, A.; LU, T.; NIKOLAUS, S.; KUHBACHER, T.; GURBUZ, Y, EICKHOFF, H.; KLOPPEL, G.; LEHRACH, H.; MELLGARD, B.; COSTELLO, C.M.; SCHREIBER, S. A comparison of oligonucleotide and cDNA-based microarray systems. Physiol Genomics, v. 16, n. 3, p.361-370, 2004. MALAGOLI, P.; LAINE, P.; DEUNFF, E.; ROSSATO, L.; NEY, B.; OURRY, A. Modelling nitrogen uptake in oilseed rape cv. Capitol during a growth cycle using influx kinetics of root nitrate transport systems. Plant Physiology. v. 134, p. 388–400. 2004. MANFIELD, I.W.; DEVLIN, P. F.; JEN, C.; WESTHEAD, D.R.; GILMARTIN, P M. Conservation, convergence, and divergence of light-responsive, circadian-regulated, and tissue-specific expression patterns during evolution of the arabidopsis GATA gene family. Plant Physiology, v. 143, p. 941–958, 2007. MARSHALL, E. Getting the noise out of gene arrays. Science, v. 306, n. 5696, p. 630-631, 2004. 74 MARTIN, A.; LEE, J.; KICHEY, T.; GERENTES, D.; ZIVY, M.; TATOUT, C.; DUBOIS, F.; BALLIAU, T.; VALOT, B.; DAVANTURE, M.; TERCÉ-LAFORGUE, T.; QUILLERÉ, I.; COQUE, M.; GALLAIS, A.; GONZALEZ-MORO, M.-B.; BETHENCOURT, L.; HABASH, D. Z.; LEA, P. J.; CHARCOSSET, A.; PEREZ, P.; MURIGNEUX, A.; SAKAKIBARA, H.; EDWARDS, K. J.; HIREL, B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. The Plant Cell, v.18, p.3252–3274, 2006. MASCLAUX-DAUBRESSE, C.; DANIEL-VEDELE, F.; DECHORGNAT, J.; CHARDON, F.; GAUFICHON, L, SUZUKI, A. Nitrogen uptake, assimilation and remobilization in plants, challenges for sustainable and productive agriculture. Annals of Botany, v. 105, p. 1141– 1157, 2010. MENDONCA, M. L. Estudos dos mecanismos de tolerância ao alumínio e sua variabilidade genotípica em arroz (Oryza Sativa, L.). 1991. 176f. Dissertação (Mestrado em Agronomia - Ciências do Solo). Universidade Federal Rural do Rio de Janeiro, Seropédica. 1991. MICHAEL, T.P., MOCKLER, T.C., BRETON, G., MCENTEE, C., BYER, A., TROUT, J.D, HAZEN, S.P., SHEN, R., PRIEST, H.D., SULLIVAN, C, M. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genetics, v. 4: e14, 2008. Disponível em <www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.0040014> , acesso em jun. 2008. MILLER, A. J. E SMITH, S. J. Nitrate transport and compartmentation in cereal root cells. Journal of Experimental Botany. v. 47, n. 300, p. 843-854. 1996. MILLER, A.J., FAN, X., SHEN, Q., AND SMITH, S.J. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. Journal of Experimental Botany . v. 59, p.111–119, 2008. MILLER, A.J., FAN, X.R., ORSEL, M., SMITH, S.J., WELLs D.M. Nitrate transport and signalling. Journal of Experimental Botany, v. 58, p. 2297-2306. 2007. MUÑOS, S.; CAZETTES, C.; FIZAMES, C, GAYMARD, F, TILLARD, P, LEPETIT, M, LEJAY, L, GOJON, A. Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell, v. 16, p. 2433-2447, 2004. NARDOTO, G.B.; BUSTAMANTE, M.C. Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesquisa Agropecuária Brasileira, v.38, n.8, p.955-962, 2003. NAVARRO, F.J, MARTIN, Y., SIVERIO, J.M. Phosphorylation of the yeast nitrate transporter Ynt1 is essential for delivery to the plasma membrane during nitrogen limitation. J Biol Chem. v.283, n.3, p.1208-31217, 2008. NICOT, N.; HAUSMAN, J. H.; HOFFMANNL.; EVERS, D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, v. 56, n. 421, p. 2907–2914, 2005. NORTH, K.A.; EHLTING, B., KOPRIVOVA, A., RENNENBERG, H., KOPRIVA, S. Natural variation in Arabidopsis adaptation to growth at low nitrogen conditions. Journal of Experimental Botany. v. 47, p. 912–918, 2009. 75 NUNES-NESI, A.; FERNIE, A. R.; STITT, M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant. v.3, n. 6, p. 973-996. 2010. OBARA, M.; KAJIURA, M.; FUKUTA, Y.; YANO, M.; HAYASHI, M., YAMAYA T, SATO, T. Mapping of QTLs associated with cytosolic glutamine synthetase and NADHglutamate synthase in rice (Oryza sativa L.). Journal of Experimental Botany, v. 52, p. 1209-1217, 2001. OKAMOTO, M.; KUMAR, A.; LI, W.; WANG, Y, SIDDIQI, M.Y, CRAWFORD, N.M, GLASS, A.D.M. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene. AtNRT3.1. Plant Physiology. v. 140, p. 1036–1046, 2006. OKAMOTO, M.; VIDMAR, J. J.; GLASS, A. D. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiology, v.44, p.304–317, 2003. OLIVEIRA, I. C.; BREARS, T.; KNIGHT, T. J.; CLARK, A.; CORUZZI, G. M. Overexpression of cytosolic Glutamine Synthetase: relation to nitrogen, light, and photorespiration. Plant Physiology, v.129, p.1–11, 2002. ORSEL, M.; CHOPIN, F.; LELEU, O.; SMITH, S. J.; KRAPP, A.; DANIEL-VEDELE, F.; MILLER, A. J. Characterization of a two component high affinity nitrate uptake system in Arabidopsis; physiology and protein–protein interaction. Plant Physiology, v.142, p.1304– 1317, 2006. ORSEL, M.; KRAPP, A.; DANIEL-VEDELE, F. Analysis of the NRT2 nitrate transporter family in Arabidopsis: structure and gene expression. Plant Physiology, v.129, p.886–896, 2002. ORTEGA, J.L, MOGUEL-ESPONDA, S., POTENZA, C, CONKLIN, C.F.; QUINTANA, A.; SENGUPTA-GOPALAN, C. The 3’-untranslated region of a soybean cytosolic glutamine synthetase (GS(1)) affects transcript stability and protein accumulation in transgenic alfalfa. Plant J. v. 45, p. 832–846, 2006. PALMGREN & M.G, CHRISTENSEN, G. Functional comparisons between plant plasma membrane H1-ATPase isoforms expressed in yeast. J Biol Chem. v 269, p. 3027–3033, 1994. PALMGREN, M. G. Plant plasma membrane H+-ATPase: powerhouses for nutrient uptake. Annual Review of Plant Physiology and Plant Molecular Biology, v.52, p.817-845, 2001. PEAT, L. J. & TOBIN, A. K. The effect of nitrogen nutrition on the cellular localization of glutamine synthetase isoforms in barley roots. Plant Physiol. v. 111, p. 1109–1117. 1996. PEIRSON, S.N; BUTLER, J.N.; FOSTER, R.G. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Research, v.31, -e73, 2003. Disponível em <http://nar.oxfordjournals.org/content/31/14/e73.full.pdf+html> Acesso em nov. 2009. PEOPLES, M. B.; HERRIDGE, D. F.; LADHA, J. K. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant Soil, v.174, p.3–28, 1995. 76 PFAFFL, M.W. A new mathematical model for relative quantification in real-time RT- PCR. Nucleic Acids Research, v. 29, e45. 2001. Disponível em < http://nar.oxfordjournals.org/content/29/9/e45.full> , Acesso em: nov. 2009. PLETT, D.;TOUBIA, J.; GARNETT, T.; TESTER, M.; KAISER, B. N.; BAUMANN, U. Dichotomy in the NRT Gene Families of Dicots and Grass Species. PLoS One. v. 5, n. 12, e15289, 2010. QIN, L.; PRINS, P.; JONES, J.T.; POPEIJUS, H.; SMANT, G.; BAKKER, J. & HELDER, J. GenEST, a powerful bidirectional link between cDNA sequence data and gene expression profiles generated by cDNA-AFLP. Nucleic Acids Research, v.29, n.7, p.1616-1622, 2001. QUAGGIOTTI, S.; RUPERTI, B.; BORSA, P.; DESTRO, T. & MALAGOLI, M. Expression of a putative high-affinity NO3 - transporter and of an H+-ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. Journal of Experimental Botany, v.54, n.384, p.1023-1031, 2003. QUESADA, A., KRAPP, A., TRUEMAN, L.J., DANIEL-VEDELE, F., FERNANDEZ, E., FORDE, B.G., CABOCHE, M. PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family. Plant Mol. Biol., v.34, 265–274, 1997. RAMAMOORTHY, R.; JIANG, S.; KUMAR, N.; VENKATESH, P. N.; RAMACHANDRAN, S. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant and Cell Physiology, n. 49, v. 6, p. 865-879, 2008. REED, A. J.; BELOW, F. E.; HAGEMAN, R. H. Grain protein accumulation and the relationship between leaf nitrate reductase and the protease activities during grain development in maize: variation between genotypes. Plant Physiology. v. 64, p. 164-170, 1980. REMANS, T., NACRY, P., PERVENT, M., GIRIN, T., TILLARD, P., LEPETIT, M., GOJON, A. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiology. v. 140, p.909–921. 2006. RICHARD-MOLARD, C.; KRAPP, A.; BRUN, F.; NEY, B.; DANIEL-VEDELE, F.; CHAILLOU, S. Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two arabidopsis genotypes, Journal of Experimental Botany . v.59, p. 779–791, 2008. RODRIGUES, F.S.; SOUZA, R.S.; RODRIGUES, F.S. & FERNANDES, M.S. Nitrogen metabolism in rice cultivated under seasonal flush of nitrate. Journal of Plant Nutrition, v.27, p.395-409, 2004. RUBIN, G.; TOHGE, T.; MATSUDA, F.; SAITO, K.; SCHEIBLE, W.R. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. The Plant Cell. v. 21, p. 3567–3584, 2009. RUFFEL, S.; FREIXES, S.; BALZERGUE, S.; TILLARD, P.; JEUDY, C.; MARTINMAGNIETTE, M.L.; VAN DER MERWE, M.J.; KAKAR, K.; GOUZY J.; FERNIE A.R.; UDVARDI, M.; SALON, C.; GOJON, A.; LEPETIT, M. Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. Plant Physiology. v. 146, p. 2020-2035, 2008. 77 SAKAKIBARA, H. Cytokinins: activity, biosynthesis and translocation. Annual Review of Plant Biology. 57, 431–449. 2006. SAKAMOTO, T.; MORINKA, Y.; OHNISHI, T.; SUNOHARA, H.; FUJIOKA, S.; UEGUGUCHI-TANAKA, M.; MIZUTANI, M.; SAKATA,K.; YOSHIDA, S. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. National Biotechnol. v. 24, p. 105-109, 2006. SANDHU, D.; GILL, K. Gene-containing regions of wheat and the other grass genomes Plant Physiology. n.128, p. 803-811, 2002. SANTI, S.; LOCCI, G.; MONTE, R.; PINTON, R. & VARANINI, Z. Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. Journal of Experimental Botany, v. 54, n. 389, p. 1851- 1864, 2003. SANTI, S.; LOCCI, G.; PINTON, R.; CESCO, S.; VARANINI, Z. Plasma membrane H+- ATPase in maize roots induced for NO3 - Uptake. Plant Physiology, v.109, p.1277-1283, 1995. SANTOS, A.M. dos; BUCHER, C. A.; STARK, E. M. L. M.; FERNANDES, M. S.; SOUZA, S. R. Efeito da disponibilidade de nitrato em solução nutritiva sobre a absorção de nitrogênio e atividade enzimática de duas cultivares de arroz. Bragantia. v. 68, p. 215-220, 2009a. SANTOS, A. M. s; STARK, E. M. L. M.; FERNANDES, M. S.; SOUZA, S. R. Effects of seasonal nitrate flush on nitrogen metabolism and soluble fractions accumulation in two rice varieties. Journal of Plant Nutrition, v. 30, p. 1371-1384, 2007. SANTOS, L.A., SANTOS, W. A.; SPERANDIO, M. L.; BUCHER, C. A.; SOUZA, S.R. FERNANDES, M. S. Nitrate uptake kinetics and metabolic parameters in two rice varieties grown in high and low nitrate. Journal of Plant Nutrition. v. 34, p.1–15, 2011. SANTOS, L.A.; BUCHER, C. A.; SOUZA, S.R. FERNANDES, M. S. Effects of nitrogen stress on proton-pumping and nitrogen metabolism in rice. Journal of Plant Nutrition, v. 32, p. 549–564, 2009b. SANTOS, L. A. Absorção e Remobilização de NO3 - em arroz (Orysa sativa L.): atividade das bombas de prótons e a dinâmica do processo. 2006. 88 p. Dissertação (Mestrado em Agronomia - Ciências do Solo). Universidade Federal Rural do Rio de Janeiro, Seropédica. 2006. SCHATCHTMAN, D. P.; SHIN, R. Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol. v. 58, p.47-69, 2007. SCHEIBLE, W.R.; MORCUENDE, R.; CZECHOWSKI, T.; FRITZ, C.; OSUNA, D, PALACIOS-ROJAS, N.; SCHINDELASCH, D.; THIMM, O.; UDVARDI, M.K.; STITT M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology, v. 136, p.2483–2499. 2004. SHEIBLE, W.; GONZÁLEZ-FONTES, A.; LAUERE, M.; MÜLLER-RÖBER, B.; CABOCHE, M.; STITT, M. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. The Plant Cell, v. 9, p. 783-798, 1997. SHI, W. M.; XU W. F.; LI S. M.; ZHAO X. Q.; DONG G.Q. Responses of two rice cultivars differing in seedling-stage nitrogen use to growth under low-nitrogen conditions. Plant and Soil, v.326, p.291-302, 2010. 78 SHRAWAT, A. K. & GOOD, A. G. Genetic engineering approaches to improving nitrogen use efficiency. ISB News Report, p.1-5, 2008. Disponível em < http://www.nbiap.vt.edu/news/2008/artspdf/may0801.pdf>. Acesso em jul. 2008. SILVA, D.; WITTWER,C.T. Monitoring hybridization during polymerase chain reaction. J. Chromatogr. B Biomed. Sci. Appl. v.28, p. 3-13.2000. SIVASANKAR, S.; ROTHSTEIN, S., OAKS, A. Regulation of the accumulation and reduction of nitrate and carbon metabolites in Zea mays L. seedlings. Plant Physiol. v. 114, p. 583–589, 1997. SONDERGAARD, T. E.; SCHULZ, A.; PALMGREN, M. G. Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiology, v.136, p.2475-2482, 2004. SONODA, Y.; IKEDA, A.; SAIKI, S.; von WIRÉN, N.; YAMAYA, T.; YAMAGUCHI, J. Distinct expression and function of three ammonium transporter genes (OsAMT1;1–1;3) in rice. Plant Cell Physiology, v.44, p.726–734, 2003. SOUZA, S.R. & FERNANDES, M.S. Nitrogen-acquisition by plants in a sustainable environment. In: Singh, R.P. & Jaiwal, P.K. (eds.) Biotechnological approaches to improve nitrogen use efficiency in plants, Studium Press, LLC, Houston, Texas, USA, 2006, p.41-62. SOUZA, S.R.; STARK, E.M.L.M.; FERNANDES, M.S. Nitrogen remobilization during the reproductive period in two Brazilian rice varieties. Journal of Plant Nutrition, n. 21, p. 10, p. 2049-2063, 1998. SOUZA, S.R.; STARK, E.M.L.M.; FERNANDES, M.S.; MAGALHÃES, J.R. Effects of supplemental nitrogen on nitrogen-assimilation enzymes, free amino nitrogen, soluble sugars, and crude protein of rice. Communications in Soil Science and Plant Analysis, n. 30, v. 5- 6, p. 711-724, 1999. SOUZA, S.R.; STARK, E.M.L.M.; MAGALHÃES, J.R.; FERNANDES, M.S. Supplemental Nitrogen Applied during the Senescence on Two Rice Varieties: Evaluation of Nitrate Reductase and Glutamine Synthetase Activities and Crude Protein. Physiol. Mol. Biol. Plants, v.8, n.1, p.87-95, 2002. SPERANDIO, M. V.S.; SANTOS, L.A.; BUCHER, C. A.; FERNANDES, .M.S.; SOUZA, S. R. Isoforms of plasma membrane H+-ATPase in rice root and shoot are differentially induced by starvation and resupply of NO3 − or NH4 +. Plant Science. v. 180, n. 2, p. 251-258, 2011. STITT, M.; MULLER, C.; MATT, P.; GIBON, Y.; CARILLO, P.; MORCUENDE, R.; SCHEIBLE, W.R.; KRAPP, A.. Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany, v. 53, p. 959–970, 2002. SUN, H.; HUANG Q-M.; SU, J. Highly effective expression of glutamine synthetase genes gs1 and gs2 in transgenic rice plants increases nitrogen-deficiency tolerance. Journal of Plant Physiology and Molecular Biology. v. 31, n. 5, p. 492-498, 2005. SWARBRECK, S.M.; DEFOIN-PLATEL, M.; HINDLE; M.; SAQ, M.; HABASH, D. Z. New perspectives on glutamine synthetase in grasses. Journal of Experimental Botany, v. 62, n. 4, p. 1511–1522, 2011. SZE, H., & M.G. PALMGREN. Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. The Plant Cell. v. 11,: n. 67, p. 677- 689, 1999. 79 TABUCHI, M.; ABIKO, T.; YAMAYA, T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental Botany, v.58, n.9, p.2319– 2327, 2007. TABUCHI, M.; SUGIYAMA, K.; ISHIYAMA, K.; INOUE, E.; SATO, T.; TAKOSASHI, H.; YAMAYA, T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. The Plant Journal, v.42, p.641–651, 2005. TAKAYANAGI, S.; TAKAGI, Y.; ARAKI R.; HASEGAWA, H. High-affinity nitrate uptake by rice (Oryza sativa) coleoptiles. Journal of Plant Research, v. 124, n.2, p. 305-309.2010. TAMURA, W.; HIDAKA, Y.; TABUCHI, M.; KOJIMA, S.; HAYAKAWA, T.; SATO, T.; OBARA, M.; KOJIMA, M.; SAKAKIBARA, H.; YAMAYA, T. Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants. Amino Acids, v. 39, p.1003–1012. 2010. TAN, P.K.; DOWNEY, T.J.; SPITZNAGEL, E.L.J.; XU, P.; FU, D.; DIMITROV, D.S.; LEMPICKI, R.A., RAAKA, B.M., CAM, M.C. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res., v. 31, n. 19, p.5676-5684. 2003. TARIS, N.; LANG, R. P.; CAMARA, M. D. Sequence polymorphism can produce serious artefacts in real-time PCR assays: hard lessons from Pacific oysters. BMC Genomics, v. 9, 2008. Disponível em <http://www.biomedcentral.com/1471-2164/9/234> Acesso em: dez. 2009 TENG, Y-B.; LI, Y-J.; FANG, P.; LA G-X. Characterization of nitrogen metabolism in the low-nitrogen tolerant lnt1 mutant of Arabidopsis thaliana under nitrogen stress. Pedosphere, v. 20, n. 5, p. 623–632, 2010. TESTER, M.; DAVENPORT, R. Na+ tolerance and Na+ transport in higher plants. Annal of Botany, v. 91, p. 503–527, 2003. TICHOPAD, A., DILGER, M., SCHWARZ, G., PFAFFL, M.W. Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res. 31, E122. 2003. Disponível em <http://nar.oxfordjournals.org/content/31/20/e122.abstract> , Acesso em nov. 2009. TOBIN, A.K. & YAMAYA, T. Cellular compartmentation of ammonium assimilation in rice and barley. Journal Experimental Botany. v. 52, p.591-604, 2001. TONG, Y.; ZHOU, J.-J.; MILLER, A. J. A two-component high-affinity nitrate uptake system in barley. Plant Journal, v.41, p.442-450, 2005. TSAY Y.-F., CHIU C.-C., TSAI C.-B., HO C.-H. & HSU P.-K. Nitrate transporters and peptide transporters. FEBS Letters. v. 581, p. 2290–2300. 2007. UAUY, C.; BREVIS, J.C.; DUBCOVSKY, J. The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. Journal of Experimental Botany. v. 57, n. 11, p. 2785-2794, 2006. UDVARDI, M. K.; CZECHOWSKI, T.; SCHEIBLE, W.R. Eleven Golden Rules of Quantitative RT-PCR. The Plant Cell, v. 20, p.1736–1737, 2008. UNNO H, UCHIDA T, SUGAWARA H, KURISU, G.;SUGIYAMA, T.;YAMAYA, T.;SAKAKIBAR, H.;HASE, T.;KUSUNOKI, M. Atomic structure of plant glutamine synthetase: a key enzyme for plant productivity. Journal of Biol Chem. v. 29, n. 281, p.29287-29296, 2006. 80 VERT, G.; CHORY, J. Toggle switch in plant nitrate uptake. Cell. v. 138, n. 6, p. 1064-1066, 2009. VIDMAR, J. J.; ZHUO, D.; SIDDIQI, M. Y.; SCHJOERRING, J. K.; TOURAINE, B. & GLASS, A. D. M. Isolation and characterization of HvNRT2.3 and HvNRT2.4, cDNAs encoding high-affinity nitrate transporters from roots of Hordeum vulgare. Plant Physiology, v.122, p.783-792, 2000. WANG, H.; GARVIN, D. F.; KOCHIAN, L. V. Nitrate-induced genes in tomato roots. array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiology, v.127, p.345-359, 2001. WANG, R.; GUEGLER, K.; LABRIE, S. T. & CRAWFORD, N. M. Genomic analysis of a nutrient response in arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. The Plant Cell, v.12, p.1491-1509, 2000. WANG, R.; OKAMOTO, M.; XING, X. & CRAWFORD, N.M. microarray analysis of the nitrate response in arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiology, v.132, p.556-567, 2003. WANG, R.C., XING, X., WANG, Y., TRAN, A., CRAWFORD, N.M. A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiology, v. 151, p. 472–478, 2009. WETSELAAR, R. Nitrate distribution in tropical soils. II. Extent of capillary accumulation of nitrate during a long dry period. Plant and Soil, v. 15, p.121-133. 1961. WIRTH J., CHOPIN F., SANTONI V., VIENNOIS G., TILLARD P., KRAPP A., LEJAY L., DANIEL-VEDELE F.&GOJON A. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. Journal of Biological Chemistry. v. 282, p. 23541-23552, 2007. XU, W.F.; SHI, W.M. expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT–PCR. Annals of Botany. v. 98, n. 5, p. 965–974. 2006. YAN, F.; ZHU, Y.; MÜLLER, C.; ZÖRB, C.; SCHUBERT, S. Adaptation of H+-Pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol. v.129, p. 50-63, 2002. YANAGISAWA, S.; AKIYAMA, A.; KISAKA, H.; UCHIMIYA, H.; MIWA, T. Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low nitrogen conditions. Proceeding of the National Academy of Sciences, v.101, p. 7833–7838. 2004. YANG, SCHEFFLER, B. E., WESTON L. A. Recent developments in primer design for DNA polymorphism and mRNA profiling in higher plants. Plant Methods, n 2, p. 1746- 4811-2, 2006. YAUK, CL.; BERNDT, ML.; WILLIAMS, A.; DOUGLAS, G.R. Comprehensive comparison of six microarray technologies. Nucleic Acids Res. n 32, v15, e124. 2004. Disponível em <http://nar.oxfordjournals.org/content/32/15/e124.abstract> Acesso em nov. 2009. YEMM, E.W. & COCKING, E.C. The determination of amino-acid with ninhydrin. Anal. Biochem., v.80, p.209-213, 1955. 81 YEMM, E.W. & WILLIS, A.I. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J., v.57, p.508-514, 1957. YONG, Z.; KOTUR, Z.; GLASS, A.D. Characterization of an intact two-component highaffinity nitrate transporter from Arabidopsis roots. The Plant Journal, v. 63, p. 739–748, 2010. ZHANG, N.; GIBON, Y.; GUR, A.; CHEN, C.; LEPAK, N.; HOHNE, M.; ZHANG, Z.; KROON, D.; TSCHOEP, H.; STITT, M.; BUCKLER, E. Fine quantitative trait loci mapping of carbon and nitrogen metabolism enzyme activities and seedling biomass in the maize ibm mapping population. Plant Physiology. v. 154, p. 1753-1765, 2010. ZHAO, D.; OOSTERHUIS, D.M.; BEDNARZ, C.W. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica, v .39, p.103–109, 2001. ZHAO, X-Q., SHI, W.M. Expression analysis of the glutamine synthetase and glutamate synthase gene families in young rice (Oryza sativa) seedlings. Plant Science. v. 170, n. 4, p. 748-754, 2006. ZHOU, J. L.; WANG, X. F.; JIAO, Y. L.; QIN, Y. H.; LIU, X. G.; HE, K.; CHEN, C.; MA, L. G.; WANG, J.; XIONG, L. Z.; ZHANG, Q. F.; FAN, L. M.; DENG, X. W. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Molecular Biology. v. 63, n. 5, p. 591-608, 2007. ZHOU, J.J.; FERNANDEZ, E.; GALVAN, A.; MILLER, A. J. A high affinity nitrate transport system from Chlamydomonas requires two gene products. FEBS Letts.v.466, p.225–227, 2000. ZHOU, Y.; CAI, H.; XIAO, J.; LI, X.; ZHANG, Q.; LIAN, X. Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet, v. 118, p. 1381–1390, 2009. ZHU, Y.; DI, T.; XU, G.; CHEN, X.; ZENG, H.; YAN, F.; SHEN,Q. Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant, Cell and Environmen. v. 32, p. 1428-1440, 2009. ZHUO, D.; OKAMOTO, M.; VIDMAR, J. J.; GLASS, A. D. M. Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. The Plant Journal, v.17, n.5, p.563-568, 1999. ZOZAYA-HINCHLIFFE, M.; POTENZA, C.; ORTEGA, J. L.; SENGUPTA-GOPALAN, C. Nitrogen and metabolic regulation of the expression of plastidic glutamine synthetase in alfalfa (Medicago sativa). Plant Science. v. 168, p. 1041-1052, 2005. | por |
dc.subject.cnpq | Agronomia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/4630/2011%20-%20Carlos%20Alberto%20Bucher.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/19274/2011%20-%20Carlos%20Alberto%20Bucher.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/25585/2011%20-%20Carlos%20Alberto%20Bucher.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/32010/2011%20-%20Carlos%20Alberto%20Bucher.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/38384/2011%20-%20Carlos%20Alberto%20Bucher.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/44786/2011%20-%20Carlos%20Alberto%20Bucher.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/51145/2011%20-%20Carlos%20Alberto%20Bucher.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/57634/2011%20-%20Carlos%20Alberto%20Bucher.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/1163 | |
dc.originais.provenance | Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2016-08-09T12:24:30Z No. of bitstreams: 1 2011 - Carlos Alberto Bucher.pdf: 775464 bytes, checksum: 84e941a946068132678bc3f55c09561d (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2016-08-09T12:24:30Z (GMT). No. of bitstreams: 1 2011 - Carlos Alberto Bucher.pdf: 775464 bytes, checksum: 84e941a946068132678bc3f55c09561d (MD5) Previous issue date: 2011-02-23 | eng |
Appears in Collections: | Doutorado em Agronomia - Ciência do Solo |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2011 - Carlos Alberto Bucher.pdf | 2011 - Carlos Alberto Bucher | 757.29 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.