Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9066
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLã, Otavio Raymundo
dc.date.accessioned2023-12-21T18:34:03Z-
dc.date.available2023-12-21T18:34:03Z-
dc.date.issued2010-02-26
dc.identifier.citationLÃ, Otavio Raymundo. Efeito do período de estocagem, tempo de incubação e da temperatura de secagem na avaliação de parâmetros químicos e biológicos e na disponibilidade de metais de lodo de esgoto. 2010. 113 f. Tese (Doutorado em Agronomia e Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2010.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9066-
dc.description.abstractA utilização agrícola de lodos de esgoto tem se tornado, cada vez mais, uma prática adotada pelas companhias de saneamento, para resolver, em parte, o problema da disposição final do resíduo. Como o lodo para ser utilizado geralmente necessita estar seco, e que o processo de secagem pode alterar a distribuição de metais, o objetivo geral deste trabalho foi avaliar o efeito da temperatura de secagem e do tempo de estocagem em parâmetros químicos e na disponibilidade e distribuição de metais. Os objetivos específicos foram: (i) estudar em como a temperatura de secagem (ao ar, 40°C e 65°C) do lodo, associada ao tempo de estocagem (zero – fresco, e um ano), influencia na disponibilidade de metais e quais as possíveis alterações químicas provocadas no lodo; (ii) avaliar em como os elevados teores de ferro presentes e a atividade microbiana afetam a disponibilidade de metais no lodo estudado em função da variação da temperatura de secagem e (iii) caracterizar a fração orgânica solúvel lixiviada por espectrometria de absorção no infravermelho, nas amostras de lodo secas em diferentes temperaturas e estocadas por um ano. O lodo fresco e estocado por um ano, após secagem em estufa com circulação forçada de ar, foi moído e submetido às análises químicas. Na avaliação da disponibilidade e distribuição de metais foi utilizado o método de extração seqüencial do BCR. A secagem do lodo ao ar favoreceu o aumento da disponibilidade de metais, porém, em temperaturas maiores esta diminuiu devido à ligação dos metais com compostos mais estáveis. A redução de carbono orgânico total devido à volatilização e biodegradação foi favorecida pelo aumento de temperatura. A diminuição nos teores de ferro e zinco com o aumento do tempo e da temperatura de secagem a peso constante e o pH próximo da neutralidade favorecem a readsorção e/ou precipitação de metais para formas menos lábeis. O lodo de esgoto úmido, estocado em condições refrigeradas (4ºC), foi submetido aos diferentes tempos e temperaturas de secagem na estufa e, após ser re-umedecido e incubado (28 ± 1ºC) por zero, um e três dias. Para avaliação da atividade microbiana e disponibilidade de metais foi utilizado o método de fumigação extração e o extrator Mehlich 3, respectivamente. O aumento dos teores de carbono orgânico solúvel e ferro foi diretamente relacionado ao aumento do tempo de incubação e temperatura de secagem. Para a lixiviação, as amostras de lodos secas foram empacotadas em colunas de PVC de 50 mm e relacionados à massa do lodo úmido, em base seca. O aumento na temperatura de secagem do lodo causou o aumento no teor de carbono orgânico dissolvido no extrato lixiviado, não havendo, porém, aumento correspondente no teor de metais nesse extrato.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectResíduos orgânicos – Reaproveitamentopor
dc.subjectLodo residualpor
dc.subjectMetaispor
dc.subjectExtração (Química)por
dc.subjectOrganic waste - Reuseeng
dc.subjectResidual sludgeeng
dc.subjectMetalseng
dc.subjectExtraction (Chemistry)eng
dc.titleEfeito do período de estocagem, tempo de incubação e da temperatura de secagem na avaliação de parâmetros químicos e biológicos e na disponibilidade de metais de lodo de esgotopor
dc.title.alternativeEffect of storage period, incubation time and temperature drying in the evaluation of parameters and chemical and biological availability of metals in sewage sludgeeng
dc.typeTesepor
dc.description.abstractOtherAgricultural use of sewage sludge has become, increasingly, a practice adopted by sanitation companies to solve partly the problem of final disposal of waste. As the sludge to be used generally need to be dry and that the drying process can alter the distribution of metals, the general aim of this study was to evaluate the effect of drying temperature and storage time on chemical parameters and the metal availability and distribution. The specific objectives were: (i) to study how the drying temperature (air, 40°C and 65°C) sludge, associated with the storage time (zero-fresh, and one year), influenced the availability of metals and the possible chemical changes induced in the sludge, (ii) to evaluate how the high content of iron present and the microbial activity affect the availability of metals in the sludge studied, as a function of temperature of drying, and (iii) to characterize the soluble organic fraction leached by infrared absorption spectrometry in samples of dried sludge at different temperatures and stored for one year. Fresh and stored for one year sludge were dried with forced air circulation, grounded and chemical analyzed. The BCR sequential extraction was applied to assess the availability and distribution of metals. The drying of sewage sludge in the air encouraged increasing availability of metals, however, where temperature increased it diminished due to binding of metals with more stable compounds. The reduction of total organic carbon due to volatilization and biodegradation was favored by increased temperature. The decrease in the levels of iron and zinc, with increasing time and temperature drying to constant weight and pH close to neutral, favored readsorption and/or precipitation of metals to less labile forms. The wet sewage sludge, stored in refrigerated conditions (4°C), was subjected to different times and drying temperatures in the greenhouse and, after being re-moistened been and incubated (28 ± 1ºC) for zero, one and three days. The methods of fumigation extraction and Mehlich3 were used to assess the microbial activity and availability of metals, respectively. Increased levels of soluble organic carbon and iron were directly related to the increase of incubation time and temperature drying. For leaching, the dried sludge’s were packed in PVC columns of 50 mm and related to the mass of wet sludge, on a dry basis. The increase in drying temperature of the sludge increased the organic carbon dissolved in the leachate extract, without, however, a corresponding increase in metal content in this extract.eng
dc.contributor.advisor1Mazur, Nelson
dc.contributor.advisor1IDCPF: 385.266.467-53por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6933810980587122por
dc.contributor.advisor-co1Amaral Sobrinho, Nelson Moura Brasil do
dc.contributor.advisor-co2Barra, Cristina Maria
dc.contributor.referee1Pereira, Marcos Gervásio
dc.contributor.referee2Santelli, Ricardo Erthal
dc.contributor.referee3Soares, Fabiana dos Santos
dc.contributor.referee4Campos, David Vilas boas de
dc.creator.IDCPF: 746.726.497-68por
dc.creator.Latteshttp://lattes.cnpq.br/8264422167175735por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesABREU, C.A.; ABREU, M.F.; BERTON, R.S. Análise química do solo para metais traços, Tópicos em Ciência do Solo, Viçosa, MG. Sociedade Brasileira de Ciência do Solo, v. 2, p. 645-692, 2002. ABREU, C.A.; RAIJ, B. Van; TANAKA, R.T. Fontes de manganês para soja e seus efeitos na análise de solo. Revista Brasileira de Ciência do Solo, v. 20, n. 1, p. 91-97, 1996. ADAMS, F.; BURMESTER, C.; HUE, N.V.; LONG, F.L. A comparison of column displacement and centrifugue methods for obtaining soil solutions. Soil Science Society of American Journal, v. 44, p. 733-735, 1980. ADAMS, J.F.; ADAMS, F.; ODOM, J.W. Interaction of phosphorus rates and soil pH on soybean yield and soil solution composition of two phosphorus sufficient Ultisols. Soil Science Society of American Journal, v. 46, p. 323-328, 1982. ALLOWAY, B. J., JACKSON, A. P. The behavior of heavy metals in sewage sludge-amended soils. The Science of the Total Environment, London, p. 151 – 176, 1991. ALMENDROS, G.; GONZALEZ-VILA, F.J.; MARTIN, F. File-induced transformation of soil organic matter from an oak forest: an experimental approach to the effects of fire on humic substances. Soil Science, v. 149, n. 3, p. 158-168, 1990. ANDRADE, J.C.; ABREU, M.F. Análise química de resíduos sólidos para monitoramento e estudos agroambientais. Campinas, Instituto Agronômico, 2006, 178 p. ANDREOLI, C.V.; FERNANDES, F.; DOMASZAK, S.C. Reciclagem agrícola do lodo de esgoto. Curitiba: SANEPAR, 1997. 81p. ANDREOLI, C.V.; PEGORINI, E.S. Gestão pública do uso agrícola do lodo de esgoto. In: BETTIOL, W. & CAMARGO, O.A. (Eds). Impacto ambiental do uso agrícola do lodo de esgoto. Jaguariúna, EMBRAPA Meio Ambiente, 2000, p. 281-312. ANJOS, A.R.M. Lixiviação de espécies químicas em latossolos sucessivamente tratados com biossólido e disponibilidade de metais pesados para plantas de milho. Piracicaba, 1999. Tese (Doutorado)-Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 191p. ANJOS, A.R.M.; MATTIAZZO, M. E. Metais traços em plantas de milho cultivadas em Latossolos repetidamente tratados com biossólidos. Scientia Agricola, v. 57, p. 769-776, 2000. ANJOS, A.R.M.; MATTIAZZO, M.E. Extratores para Cd, Cu, Cr, Mn, Ni, Pb e Zn em latossolos tratados com biossólido e cultivado com milho. Scientia Agrícola, v. 58, n. 2, p. 337-344, 2001. ANTONIADIS, V.; ALLOWAY B.J. The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge amended soils. Environmental Pollution, v. 117, p. 515–521, 2002. BARTLETT, R.; JAMES, B. Studying dried, stored soil samples – some pitfalls. Soil Science Society of American Journal, v. 44, p. 721 – 724, 1980. BATSTONE, D.J.; KELLER, J.; ANGELIDAKI, I.; KALYUHNYI, S.V.; PAVLOTATHIS, S.G.; ROZZI, A.; SANDERS, W.T.M.; SIEGRST, H.; VAVILIN, V.A. Anaerobical digestion model No. 1 (ADM. IWA Scentific and Thecnical Report No.13, IWA Publishing, London, 2002, 77 p. 90 BAZIRAMAKENGA R.; SIMARD R.R.; Low molecular weight aliphatic acid contents of composted manures. Journal of Environmental Quality, v. 27, p 557–561. 1998. BELL, P.F.; JAMES B.R.; CHANEY R.L.; Heavy metal extractability in long-term sewage sludge and metal-amended soils. Journal of Environmental Quality, v. 20, p. 481–486, 1991. BENITE, A.C.M.; MACHADO, S.P.; MACHADO, B.C. Sideróforos. Uma resposta dos microorganismos. Química Nova, v. 25, n. 6B, p. 1155-1164, 2002. BENITES, V.M.; MADARI, B.; MACHADO, P.L.O.A. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado de baixo custo. Rio de Janeiro: Embrapa Solos, 2003. 7p. (Embrapa Solos. Comunicado Técnico, 16). BERGKVIST P.; JARVIS N.J. Modeling organic carbon dynamics and cadmium fate in long-term sludge amended soil. Journal Environmental Quality, v. 33, p. 181–191. 2004. BERTONCINI, E.I. Mobilidade de metais traços em solos tratados com lodo de esgoto. 1997. Tese (Doutorado em Agronomia)-Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP, 90p. BETTIOL, W.; CAMARGO, O.A. A disposição de lodo de esgoto em solo agrícola. In: BETTIOL, W.; CAMARGO, O.A. (Eds) Lodo de esgoto: impacto ambiental do uso agrícola. Jaguariúna: Embrapa Meio Ambiente, 2006, p. 25-36. BETTIOL, W., FERNANDES, S.A.P. Efeito do lodo de esgoto na comunidade microbiana e atributos químicos do solo. Jaguariúna, SP: Embrapa, 2004. 6 p. (Comunicado Técnico, 24). BIRCH, H.F. Mineralization of plant N following alternate wet and dry conditions. Plant and Soil, v. 20, p 43-49, 1964. BLAIS, J.F.; TYAGI, R.D., AUCLAIR, J.C. Bioleaching of metals sewage sludge: microorganisms and growth kinetics. Water Research, Great Britain, v. 27, n. 1, p. 101-110, 1993. BLOOM, P.R.; LEENHEER, J.A. Vibrational, eletronic, and high-energy spectroscopic methods for characterizing humic substances. In: HAYES, M.H.B.; MACCARTHY, P.; MALCOLM, R.L.; SWIFT, R.S. (Eds.) Humic substances II: In search of structure. New York: John Wiley, 1989. p. 410-446. BLOOMFIELD, C.; PRUDENT, G. The effects of aerobic and anaerobic incubation on the extractabilities of heavy metals in digested sewage sludge. Environmental Pollution, v. 8, p. 217-232, 1975. BOEIRA, R.C.; LIGO, M.A.V; DYNIA, J.F. Mineralização de nitrogênio em solo tropical tratado com lodos de esgoto. Pesquisa Agropecuária Brasileira, v. 37, n. 11, p. 1639-1647, 2002. BOEIRA, R.C.; MAXIMILIANO, V.C.B. Análise de nitrogênio em amostras de lodos e esgoto. Jaguariúna, SP: Embrapa, 2006, 5p. (Comunicado Técnico, 40). BOLTON, K.A.; EVANS, L.J. Elemental composition and speciation of some landfill leachates with particular reference to cadmium. Water, Air and Soil Pollution, v. 60, p. 43-53, 1991. BOTTNER, P. Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C- and 15N- labelled plant material. Soil Biology and Biochemistry, v. 17, p. 329-337, 1985. 91 BRASIL. CONAMA. CONSELHO NACIONAL DO MEIO AMBIENTE. Define critérios e procedimentos, para o uso agrícola de lodos de esgoto gerados em estações de tratamento de esgoto sanitário e sus produtos derivados, e dá outras providências. Resolução nº 375, de 29 de agosto de 2006. DOU nº 167, de 30/08/2006, pág. 141-146. Disponível em: <http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=506>. Acesso em: 06 jul. 2010. BRASIL. Ministério das Cidades. Secretaria Nacional de Saneamento Ambiental. Programa de Modernização do Setor Saneamento. Sistema Nacional de Informações sobre Saneamento. diagnóstico dos serviços de água e esgotos: 2004. Brasília, 2005. 275p. Disponível em: <http://www.snis.gov.br>. Acesso em: 11 jun. 2006. BROOKES, P.C.; KRAGT, J.F.; POWLSON, D.S.; JENKINSON, D.S. Chloroform fumigation and the release of soil nitrogen: The effects of fumigation time and temperature. Soil Biology and Biochemistry, v.17, n. 6, p. 831-835, 1985. BROOKES, P.C., OCIO, J.A.; WU, J. The soil microbial biomass, its measurements properties and role in soil nitrogen and carbon dynamics following substrate incorporations. Soil microorganims, v. 35, p. 39-51, 1990. BROOKES, P.C.; POULSON, D.S.; JENKISON, D.S. Phosphorous in the soil microbial biomass. Soil Biology and Biochemistry, v. 16, p. 169-175, 1984. CAMARGO, F.A.; ZONTA, E.; SANTOS, G.A.; ROSSIELO, R.O.P. Aspectos fisiológicos e caracterização de toxidez a ácidos orgânicos voláteis em plantas. Ciência Rural, Santa Maria, v. 31, n. 3, p. 523-529, 2001. CAMARGO, O.A.; BERTON, R.S. A disposição de rejeitos em solos agricultáveis. In: ANDRADE, J.C.; ABREU, M.F. (Eds). Análise química de resíduos sólidos para monitoramento e estudos agroambientais. Campinas: Instituto Agronômico, 2006, 178p. CAMOBRECO, V.J., RICHARDS, B.K.; STEENHUIS, T.S.; PEVERLY,J.H.; McBRIDE, M.B. Movement of heavy metals through undisturbed and homogenized soil columns. Soil Science, v. 161, p. 740-750, 1996. CANELLAS, L.P.; SANTOS, G.A.; RUMJANEK, V.M.; MORAES, A.A.; GURIDI, F. Distribuição da matéria orgânica e características de ácidos húmicos em solos com adição de resíduos de origem urbana. Pesquisa Agropecuária Brasileira, v. 36, n. 12, p. 1529-1538, 2001. CANELLAS, L.P.; VELLOSO, A.C.X.; MARCIANO, C.R.; RAMALHO, J.F.G.P.; RUMJANEK, V.M.; RESENDE, C. E.; SANTOS, G.A. Propriedades químicas de um Cambissolo cultivado com cana-de-açúcar, com preservação do palhiço e adição de vinhaça por longo tempo. Revista Brasileira de Ciência do Solo, v.27, p. 935-944, 2003. CANELLAS, L.P.; ESPINDOLA, J.A.A.; REZENDE, C.E.; DE CAMARGO, P.B.; ZANDONADI, D.B.; RUMJANEK, V.M.; GUERRA, J.G.M.; TEIXEIRA, M.G. & BRAZ-FILHO, R. Organic matter quality in a soil cultivated with perennial herbaceous legumes. Sci. Agric. v. 6, p. 53-61, 2004 CARNEIRO, C.; SOTTOMAIOR, A.P.; ANDREOLI, C.V. R. Dinâmica de nitrogênio em lodo de esgoto sob condições de estocagem. Revista Brasileira de Ciência do Solo, v. 29, p. 987-994, 2005. CASTILHO, P. Del; DALENBERGER, J.W. BRUNT, K.; BRUINS, A. P. Dissolved organic matter, cadmium, copper and zinc in pig slurry and soil solution-size exclusion chromatography fractions. International Journal of Environmental and Analytical Chemistry, v. 50, p. 91-107, 1993 92 CETESB – Companhia de Tecnologia de Saneamento Ambiental do Estado de São Paulo. Aplicação de lodos de sistemas de tratamento biológico em áreas agrícolas: critérios para projeto e operação (Norma P 4.320), CETESB, São Paulo, 1999, 32p. CHAE, Y.M.; TABATABAI, M.A. Mineralization of nitrogen in soils amended with organic wastes. Journal Environmental Quality, v. 15, n. 2, p. 193-198, 1986. CHANEY, R.L.; RYAN, J.A. Toxic metals and toxic compounds in MSW-composts: research results on phytoavaiability, bioavailability, fate, etc. In: HOITINK, H.A.; KEENER, H.M. (Eds), in Science Engineering of Composting: Design Environmental, Microbiological and Utilization Aspects. Worthington: Renascence Publ., 1993, p. 451–506. CHANG, A.C.; WARNEKE, J.E.; PAGE, A.L.; LUND, L.J. Accumulation of heavy metals in sewage sludge treated soils. Journal of Environmental Quality, v.13, p. 879, 1984. CHERNICHARO, C.A.L. Reatores Anaeróbios. 2ª. Ed. Belo Horizonte, MG, Departamento de Engenharia Sanitária e Ambiental – UFMG; Companhia de Saneamento do Paraná, 2007, 379p. CLINE G.R.; O’CONNOR G.A.; Cadmium sorption and mobility in sludge amended soil. Soil Science, v. 138, p. 248–254. 1984. COPPOLA, S.; DUMONTET S.; PONTONIO M.; BASILE G.; MARINO P.; Effect of cadmium bearing sewage sludge on crop plants and microorganisms in two different soils. Agricultural and Ecosystem Environment, v. 20, p. 181-194. 1998. COREY, R.B.; KING, L.D.; LUE-HING, C.; FANNING, D.S.; STREET, J.J.; WALKER, J.M. Effects of sludge properties on accumulation of trace elements by crops. In: PAGE, A.L.; LOGAN, T.J.; RYAN, J.A. (Eds.) Land application of sludge – food chain implications. Chelsea: Lewis Publishers, 1987, p. 25-51. CORREA, R.S.; WHITE, R.E. WEATHERLEY, A.J. Biosolids effectiveness to yield rygrass based on their nitrogen content. Scientia Agrícola, v. 62, n. 3, p. 274-280, 2005. COX, D.A. Pelletized sewage sludge as fertilizer for contained plants: plant growth and nitrogen leaching losses. Journal of Plant Nutrition, v. 18, n. 12, p. 2783-2795, 1995 DAHLGREN, R.A. Comparison of soil solution extraction procedures: effect on solute chemistry. Communications in Soil Science Plant Analysis, v. 24, n. 15&16, p. 1783-1794, 1993. DANG, Y.P.; CHHABRA, R.; VERMA, K.S. Effect of Cd, Ni, Pb and Zn on growth and chemical composition of onion and fenugreek. Communications in Soil Science and Plant Analysis, v.21, p.717-735, 1990. DAVIS, R.D.; CARLTON-SMITH, C.H. The preparation of sewage sludges of controlled metal content for experimental purposes. Environmental Pollution (Ser. B), v. 2, p. 167–177, 1981. DE POLLI, H; GUERRA, J.G.M. Determinação do carbono da biomassa microbiana no solo: método da fumigação-extração. Seropédica: Embrapa-CNPAB, 1997. 10p. (Embrapa-CNPAB. Documento 37). DICK, D.P.; SANTOS, J.H.Z. & FERRANTI, E.M. Chemical characterization and infrared spectroscopy of soil organic matter from two Southern Brazilian soils. R.Bras. Ci. Solo, v. 27, p. 29-39, 2003. DOMMERGUES, Y.R., BELSER, L.W., SCHIMIDT, E.L. Limiting factors for microbial growth and activity in soil. Advances in Microbia l Ecology, v. 2, p. 49-104, 1978. 93 DYNIA, J.F.; BOEIRA, R.C.; SOUZA, M.D. Nitrato no perfil de um latossolo vermelho distroférrico cultivado com milho sob aplicações seqüenciais de lodo de esgoto. In: BETTIOL, W.; CAMARGO, O.A. (Eds) Lodo de esgoto: impacto ambiental do uso agrícola. Jaguariúna: Embrapa Meio Ambiente, 2006, p. 79-90. EDMEADES, D.C.; WHEELER, D.M. CLINTON, O.E. The chemical composition and ionic strength of soil solutions from New Zealand topsoils. Australian Journal Soil Research, v. 23,p. 151-165, 1985. EMBRAPA. Manual de métodos de análise de solo. 2a. ed. Rio de Janeiro: Centro Nacional de pesquisa de Solos, 1997, 212 p. EPA. Test methods for evaluating solid waste, Physical/Chemical Methods. 3th ed. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. U.S. Government Printing Office: Washington, DC, 1995; SW-846. http://www.epa.gov/epaoswer/ /hazwaste/test/main.htm. FAUSTINO, A. S. Estudos físico-químicos do efluente produzido por fossa séptica biodigestora e o impacto do seu uso no solo. 2007. 106 p. Dissertação (Mestrado em Química). Universidade Federal de São Carlos. São Carlos, SP, 2007. FLYHAMMAR, P. Use of sequential extraction on anaerobically degraded municipal solid waste. The Science of Total Environment, v. 212, p. 203-215, 1998. FOX, T.R.; COMERFIELD, N.B. Low molecular weight organic acid in selected forest soils of the south-eastern USA. Soil Science Society of American Journal, v. 54, p. 1763–1767, 1990. FRENKEL, H.; VULKAN, R.; MINGELGRIN, U.; BEN-ASHER, J. Transport of sludge-borne copper and zinc under saturated conditions. In: I.K. ISKANDER et al. (Eds), extended abstract, 4th International Conference on the Biogeochemistry of Trace Elements, Berkeley, CA, p. 23-26, June, 1997. GIBSON, M.J.; FARMER, J.G. Multi-step sequential chemical extraction of heavy metals from urban soils. Enviromental Pollution, ser. B, v. 11, p.117-135, 1986, 1986. GILLMAN, G.P.; BELL, L.C. Soil solution studies on weathered soils from tropical north Quensland. Australian Journal Soil Research, v. 16, p. 67-77, 1978. GONÇALVES, A.S.; MONTEIRO, M.T.; GUERRA, J.G.M.; DE-POLLI, H. Biomassa microbiana em amostras de solos secadas ao ar e re-umedecidas. Pesquisa Agropecuária Brasileira, Brasília, v. 37, n. 5, p.651-658, maio, 2002. GRAY, C.W.; McLAREN, R.G. Effects of air drying of sample storage on soil solution properties of biosolids amended soil. Communications in Soil Science and Plant Analysis, v. 34, n. 15 & 15, p. 2327-2338, 2003. GRUBE, M.; LIN, J.G.; LEE, P.H.; KOKOREVICHA, S. “Evaluation of sewage sludge based compost by FTIR spectroscopy”. Geoderma, v. 130, p. 324-333, 2006. GUERRINI, I.A.; TRIGUEIRO, R.M. Atributos físicos e químicos de substratos compostos por biossólidos e casca de arroz carbonizada. Revista Brasileira de Ciência do Solo, v. 28, n. 6, p. 1069-1076, 2004. GUISQUIANI P.L.; CONCEZZI L.; BUSINELLI M.; MACCHIONI A.; Fate of pig sludge liquid fraction in calcareous soil: agricultural and environmental implication. Journal of Environmental Quality, v. 27, p. 364–371, 1998. HAMON R.E.; HOLM P.E.; LORENZ S.E.; McGRATH S.P.; CHRISTENSEN T.H.; Metal uptake by plants from sludge amended soils: Caution is required in the plateau interpretation. Plant and Soil, v. 216. p. 53–64, 1999. 94 HAMON R.E.; LORENZ S.E.; HOLM P.E.; CHRISTENSEN T.H.; McGRATH S.P., Changes in trace metal species and other components of the rizosphere during growth of radish. Plant and Environment, v. 18, p 749–756, 1995. HARTER, R.D., NAIDU, R. Role of metal-organic complexation in metal sorption by soils. Advances in Agronomy, v. 55, p. 219-263, 1995. HARTER, R.D.; NAIDU, R. An assessment of environmental and solutions parameter impact on trace-metal sorption by soils. Soil Science Society of American Journal, v.65, n.3, p. 597-612, 2001. HE, Z.L.; ALVA, A.K.; YAN, P.; LI, Y.C.; CALVERT, V.V.; STOFFELLA, P.J.; BANKS, D.J. Nitrogen mineralization and transformation from composts and biosolids during field incubation in a sand soil. Soil Science, v. 65, p. 161–169, 2000. HETTIACHCHI G.M.; RYAN J.A.; CHANEY R.L.; La FLEUR C.M. Sorption and desorption of cadmium by different fractions of biosolids amended soils. Journal Environmental Quality, v. 32, p. 1684–1693, 2003. HOODA P.S.; ALLOWAY B.J.; Sorption of Cd and Pb by selected temperate and semi-arid soils: Effects of sludge application and ageing of sludge soil. Water, Air and Soil Pollution, v. 74, p. 235–250, 1994. ILLERA, V.;WALTER, I.; SOUZA; P.; CALA, V. Short-terms effects of biosolids and municipal solid waste applications on heavy metals distribution in a degraded soil under a semi-arid environmental. The Science of the Total Environment, v. 255, p. 29-44, 2000. INMAN, J.C.; McINTOSH, M.S.; FOSS, J.E.; WOLF, D.C. Nitrogen and phosphorus movement in compost-amended soils. Journal of Environmental Quality, v.11, p.529-532, 1982. JENKINSON, D.S.; POWLSON, D.S. The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biology and Biochemistry, v. 8, n. 3, p.209 – 213, 1976. JENKIS, S.H.; COOPER, J.S. The solubility of heavy metals hidroxides in water, sewage, and sewage sludge. III The solubility of heavy metals present in digest sewage sludge. International Journal Air and Water Pollution, v. 8, p. 695-703, 1964. JOERGENSEN, R.G., BROOKES, P.C. JENKINSON, D.S. Survival of the soil microbial biomass at elevated temperatures. Soil Biology and Biochemistry, v. 22, n. 8, p. 1129-1136, 1990. JONES, R.L.; HINESLY, T.D. Nitrate from sewage-sludge amended lysimeters. Environmental Pollution, v. 51, p. 19-30, 1988. JORDÃO, E.P.; PESSOA, C.A. Tratamento de esgotos domésticos. 4ª. edição, Rio de Janeiro, 2005, 932 p. KAIZER, K.; ZECH, W. Competitive sorption of dissolved organic matter fractions to soils and related mineral phases. Soil Science Society of America Journal, v. 61, p 64-69, 1997. KARATHANASIS, A.D., Colloid induced transport of herbicides and heavy metals in subsuperfície environments. Agronomy Abstracts, 319p, 1996. KEENEY, D.R.; NELSON, D.W.; Nitrogen Inorganic forms in methods of soils analysis, PAGE, A.L.; MILLER, R.H.; KEENEY, D.R. (Eds.), American Society Agronomy, Inc. And Soil Science Society of America, Inc.: Madison, W1, 1982, p. 643-669. KELLING, K.A.; WALSH, L.M.; KEENEY, D.R.; RYAN, J.A.; PETERSON, A.E. A field study of the agricultural use of sewage sludge: II. Effect on soil N and P. Journal of Environmental Quality, v. 6, p. 345-352, 1977. 95 KIEFT, T.L.; SOROKER, E.; FIRESTONE, M.K. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology and Biochemistry, Great Britain, v. 19, n. 2, p. 119-126, 1987. KIEHL, E.J. Fertilizantes orgânicos. São Paulo: Editora Agronômica Ceres, 1985. 492p. KING, L.D.; HAJJAR, L.M. The residual effect of sewage sludge on heavy metal content of tobacco and peanut. Journal of Environmental Quality, v.19, p.738-748, 1990. KOCH, A.L. Shrinkage of growing Escherichia coli cells by osmotic challenge. Journal of Bacteriology, v. 159, p.919-924, 1984. KRISHNAMURTI G.S.R.; CIESLINSKI G.; HUANG P.M.; Van REES K.C.J.; Kinetics of cadmium release from soils as influenced by organic acids: implication in cadmium availability. Journal of Environmental Quality, v. 26, p. 271–277, 1997. LÃ, O.R.; AMARAL SOBRINHO, N.M.; MAZUR, N.; VELLOSO, A.C.X.; BARRA, C.M. Avaliação da extração seqüencial de Tessier, Keller e Miller na determinação de ferro nativo em três tipos de solos: orgâ nico, brunizen e latossolo. Química Nova, v. 26, p. 323–330, 2003. LAMY, I.; BOURGEOIS, S.; BERMOND, A.; Soil cadmium mobility as a consequence of sewage sludge disposal. Journal of Environmental Quality, v. 22, p. 731-737, 1993. LEGRET, M. Speciation of heavy metals in sewage sludge and sludge-amended soil. International Journal of Environmental Analytical Chemistry. v. 51 (1), p. 161-165, 1993. LEITA, L.; NOBILI, M.; MONDINI, C.; MUHLHACHOVA, G.; MARCHIOL, L.; BRAGATO, G.; CONTIN, M. Influence of inorganic and organic fertilization on soil microbial biomass, metabolic quotient and heavy metal bioavailability, Biology Fertilization Soils, v. 28, p. 371–376, 1999. LE RICHE, H.H.; WEIR, A.H. A method of studying trace elements in soil fractions. Journal of Soil Science, v. 14, p. 225–235, 1963. LIBARDI, P.L.; REICHARDT, K. Destino de uréia aplicada a um solo tropical. Revista Brasileira de Ciência do Solo, v. 2, p. 40-44, 1978. LI, Z.; RYAN, J.A.; CHEN, J.N.; AL-ALBED, S.R. Adsorption of cadmium on biosolids amended soils. Journal Environmental Quality, v. 30, p. 903–911, 2001. LOGAN, T.J.; LYNDSAY, B.J.; GOINS, L.E.; RYAN, J.A. Field assessment of sludge metal bioavalability to crops: sludge rate response. Journal of Environmental Quality, v.26, n.2, p.534-550, 1997. LUDUVICE, M. Processos de estabilização de lodos, In: ANDREOLI, S.; FERNANDES, F. (Eds). Lodo de esgotos: tratamento e disposição final. Belo Horizonte, MG, Departamento de Engenharia Sanitária e Ambiental – UFMG, p. 123–157, 2001. MACHADO, M.F.S.; FIGUEIREDO, R.F.; CORAUCCI-FILHO, B. Produção brasileira de lodos de esgotos. Sanare, v. 22, p. 66-74, 2004. MAGESAN, G.N.; WHITE, R.E.; SCOTTER, D.R.; BOLAN, N.S. Effect of prolonged storage of soil lysimeters on nitrate leaching. Agriculture, Ecosystems and Environment, v. 88, p. 73–77, 2002. MATTIAZZO, M.E.; ANDRADE, C.A. Aplicabilidade do biossólido em plantações florestais: IV. Lixiviação de N inorgânico e toxicidade de metais traços. In: BETTIOL, W.; CAMARGO, O.A. (Eds), Impacto ambiental do uso agrícola do lodo de esgoto. Jaguariúna: Embrapa Meio Ambiente, 2000, p. 203-213. MAZUR, N. Níquel, chumbo, zinco e cobre em solos que receberam composto de resíduos sólidos urbanos. 1997. 129 p. Tese de Doutorado (Ciência do Solo), UFV, Viçosa, MG. 96 McBRIDE, M.B. Toxic metal accumulation from agricultural use of sewage sludge: Are USEPA regulations protective? Journal of Environmental Quality, v. 24, p. 5-18, 1995. McBRIDE, M.B.; RICHARDS, B.K.; STEENHUIS, T.; RUSSO, J.J.; SAUVE, S. Mobility and solubility of toxic metals and nutrient in soil fifteen years sludge application. Soil Science, v. 162, p. 487-500, 1997. McBRIDE, M.B., RICHARDS, B.K., STEENHUIS,T.; SPIERS, G. Long-term leaching of trace elements in a heavily sludge-amended silty clay loam soil. Soil Science, v. 164, p. 613– 623, 1999. McGRATH, S.P.; CEGARRA, J. Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil. Soil Science, v. 43, p. 313–321, 1992. McLAREN, R.G.; CLUCAS L.M. Fractionation of copper, nickel, and zinc in metal-spiked sewage sludge. Journal of Environmental Quality, v. 30, p. 1968–1975, 2001. McLAREN, R.G.; RITCHIE, G.S.P. The long term fate of copper fertilizer applied to a lateristic sandy soil in Western Australia. Australian Journal Soil Research, v. 93, p. 39–50, 1993. McLEAN, J.E.; BLEDSOE, B.E. Ground Water Issue: Behavior of Metals in Soils, Environmental Protect Agency, EPA, 1992, 25 p. MEHLICH, A. Mehlich 3 soil test extractant. A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, v. 15, p. 1409-1416, 1984. MELO, W.J.; MARQUES, M.O. Potencial do lodo de esgoto como fonte de nutrientes para as plantas. In: BETTIOL, W. ; CAMARGO, O.A. (Eds) Impacto ambiental do uso agrícola do lodo de esgoto. Jaguariúna: EMBRAPA Meio Ambiente, 2000. 312p. MELO, W.J., MARQUES, M.O., MELO, V.P. 2002. O uso agrícola do biossólido e as propriedades do solo. In TSUTIYA, M.T.; COMPARINI, J.B.; SOBRINHO, P.A.; HESPANHOL, I.; CARVALHO, P.C.T.; MELFI, A.J.; MELO, W.J.; MARQUES, M.O. Biossólidos na agricultura. São Paulo: Associação Brasileira de Engenharia Sanitária e Ambiental – ABES. 2002, p. 289-363. MENZIES, N.W.; BELL, L.C. Evaluation of the influence of sample preparation and extraction technique on soil solution composition, Australian Journal of Soil Research, v. 26, p. 451-464, 1988. MESQUITA, A.A.; AMARAL SOBRINHO, N.M.B.; OLIVEIRA, C.; MAZUR, N.; SANTOS, F.S. Remediação de solos tratados com lodo rico em zinco. Revista Brasileira de Ciência do Solo, V. 10, n. 3, p. 738-744, 2004. MESSIAS, A.S.; SILVA, H.A.; LIMA, V.N.; SOUZA, J.E.G. Avaliação da mobilidade de micronutrientes em solo tratado com lodo de esgoto. Revista Brasileira de Gestão e Desenvolvimento Regional, v. 3, n. 3, p. 193-211, 2007. MEURER, E. J.; RHENHEIMER, D.; BISSANI, C. A. Fenômeno de sorção em solos. In: MEURER, J. E. (Ed.). Fundamentos de química do solo. 2a. ed. Porto Alegre: Gênesis, 2004, 281p. MORAL, R.; PEDREÑO, N.; GÓMEZ, I.; MATAIX, J. Quantitative analysis of organic wastes: effects of sample preparation in the determination of metals. Communications in Soil Science Plant Analysis, v. 27, n. 3 & 4, p. 753-761, 1996. MUNN, K.J.; EVENS, J. & CHALK, P.M. Mineralization of soil and legume nitrogen in soils treated with metal-contaminated sewage sludge. Soil Biol. Biochem., v. 32, p.:2031-2043, 2000. 97 NAIDU, R., HARTER, R.D., Effect of different organic ligands on cadmium sorption by and extractability from soils. Soil Science Society of America Journal, v. 62, p. 644–650, 1998. NEIL, R.H.; SPOSITO, G.; Effects of soluble organic matter and sewage sludge amendment on cadmium sorption by soils at low cadmium concentrations. Soil Science, v. 142, p. 164– 172, 1986. NELSON, L.E. Changes in water soluble Mn due to soil sample preparation and storage. Communications in Soil Science Plant Analysis, v. 8, p 479-487, 1977. OAKE, R.J.; BOOKER, C.S.; DAVIS, R.D. Fractionation of heavy metals in sewage sludge. Water Science Technology, v. 17, p. 587-598, 1984. OBRADOR, A.; RICO, M.I.; ALVAREZ, J.M.; NOVILLO, J. Influence of thermal treatment on sequential extraction and leaching behavior of trace metals in a contaminated sewage sludge. Bioresource Technology, v. 76, p. 259-264, 2001. OBRADOR, A.; RICO, M.I.; MINGOT, J.I.; ALVAREZ, J.M. Metal mobility and potential bioavailability in organic matter-rich soil-sludge mixtures: effect of soil type and contact time. The Science of the Total Environment, v. 206, p. 117-126, 1997. O’CONNOR G.A.; ESSINGTON M.E.; ELRASHIDI M.; BOWMAN R.S. Nickel and zinc sorption in sludge amended soils, Soil Science, v. 135, p. 228–235, 1983. OLIVEIRA, C. Avaliação do potencial de contaminação de dois solos agrícolas com lodo enriquecido cádmio, chumbo e zinco. 1998. 186 p. Tese (Doutorado em Agronomia) Seropédica: UFRRJ. OLIVEIRA, F.C. Disposição de lodo de esgoto e composto de lixo urbano num Latossolo Vermelho Amarelo cultivado com cana de açúcar. 2000. 247 p. Tese (Doutorado em Solos e Nutrição de Plantas)-Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo. OLIVEIRA, F.C.; MARQUES, M.O.; BELLINGIERI, P.A.; PERECIN, D. Lodo de esgoto como fonte de macronutrientes para a cultura do sorgo granífero. Scientia Agrícola, v. 52, n. 2, p. 360-367, 1995. OLIVEIRA, F.C.; MATTIAZZO, M.E. Mobilidade de metais traços em um latossolo amarelo distrófico tratado com lodo de esgoto e cultivado com cana de açúcar. Scientia Agrícola, Piracicaba, v. 58, n. 4, p. 1-10, 2001. OLIVEIRA, F.C.; MATTIAZZO, M.E.; MARCIANO, C.R.; ABREU JÚNIOR, C.H. Fitodisponibilidade e teores de metais traços em um Latossolo Amarelo Distrófico e em plantas de cana de açúcar adubadas com composto de lixo urbano. Revista Brasileira de Ciência do Solo, v.26, n.3, p737-746, 2002. OUYANG, Y.; SHINDE, D.; MANSELL, R.S.; HARRIS, W. Colloid enhanced transport of chemicals in subsurface environments: A review. Critical Review Environmental Science and Technology, v. 26, p. 189-204, 1996. PAGLIA, E.C.; SERRAT, B.M.; FREIRE, C.A.L.; VEIGA, A.M.; BORSATTO, R.S. Doses de potássio na lixiviação do solo com lodo de esgoto. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 11, n. 1, p. 94-100, 2007. PARKER, C. F; SOMMERS, L. E. Mineralization of nitrogen in sewage sludge. Journal of Environmental Quality, v. 12, nº 1, p. 150-156, 1983. PÉREZ-CID, B.; FERNÁNDEZ ALBORÉS, A.; FERNÁNDEZ GÓMEZ, E.; FALQUÉ LÓPEZ, E. Use of microwave single extractions for metal fractionation in sewage sludge samples. Analytica Chimica Acta, v. 431, p. 209-218, 2001. 98 PÉREZ-CID, B.; LAVILLA, I.; BENEDICHO, C. Analytical assessment of to sequential extraction schemes for metal partitioning in sewage sludge. Analyst, v. 121, p. 1479-1484, 1996. PICCOLO, A.; STEVENSON, F.J. “Infrared spectra of Cu2+, Pb2+ e Ca2+ complexes of soil humic substances, Geoderma, v. 27, p. 195-208, 1982. PRATT, P.F. Nitrogen use e nitrate leaching in irrigated agriculture. In: HAUCK, R.D., ed. Nitrogen in crop production. Madison, American Society of Agronomy, 1984. 804p. PRETSCH, E.; CLERC, T.; SEIBL, J. SIMON, W. Tablas para la elucidación estructural de compuestos orgánicos por métodos espectroscópicos. Editorial Alhambra, 1980, 397 p. PULS, R.W.; BOHN, H.L. Sorption of cadmium, nickel and zinc by kaolinite and montmorillonite suspensions. Soil Sci. Soc. Am. J., v. 52, p. 1289- 1292, 1988. QIAN, P.; WOLT, J.D. Effects of drying and time of incubation on the composition of displaced soil solution. Soil Science, v. 149, p. 367-374, 1990. QUEVAUVILER, Ph; URE, A.; MUNTAU, H.; GRIEPINK, B. Improvement of analytical measurements within the BCR-Programme: single and sequential extraction procedures applied to soil and sediment analysis. International Journal of Environmental Analytical Chemistry. v. 51 (1), p. 129-134, 1993. QURESHI, S.; RICHARDS, B.K.; HAY, A.G.; ISAI, C.C.; McBRIDE, M.B.; BAVEYE, P.; STEENHUIS, T.S. Effect of Microbial Activity on Trace Element Release from Sewage Sludge. Environmental Science Technology, v. 37, n. 15, p. 3361-3366, 2003. RAURET, G.; LÓPEZ-SANCHEZ, J.F.; SAHUQUILO, A.; RUBIO, R.; DAVDSON, C.; URE, A.; QUEVAUVILLER, PH. Improvement of the BCR three step sequential procedure prior to the certification of new sediment and soil reference materials. Journal Environmental Monitoring, v. 1, p. 57–61, 1999. RAVEH, A.; AVNIMELECH, Y. The effect of drying on the colloidal properties and stability of humic compounds. Plant and Soil, v. 50, p. 545-552, 1978. REICHARDT, K.; LIBARDI, P.L.; VICTÓRIA, R.L.; VIEGAS, G.P. Dinâmica do nitrogênio num solo cultivado com milho. Revista Brasileira de Ciência do Solo, v.3, p.17-20, 1979. RICHARDS, B.K.; STEENHUIS, T.S.; PEVERLY, J.H.; McBRIDE, M.B. Metal mobility at an old, heavily loaded sludge application site. Environmental Pollution, v. 99, p. 365-377, 1998. ROSS, D.J.; SPEIR, T.W.; TATE, K.R. & ORCHARD, V.A. Effects of sieving on estimations of microbial biomass, and carbon, and nitrogen mineralization, in soil under pasture. Aust. J. Soil Res, v. 23, p. 319-324, 1985. ROSS, D.S.; BARTLETT, R.J. Effects of extraction methods and sample storage on properties of solutions obtained from forested spodosols. Journa l Environmental Quality, v. 19, p. 108–113, 1990. RUDD, T.; LAKE, D.L.; MEHROTRA, I.; STERRITT, R.M.; KIRK, P.W.W.; CAMPBELL, J.A.; LESTER, J.N. Characterization of metal forms in sewage sludge by chemical extraction and progressive acidification. The Scie nce of the Total Environment, v. 74, p. 149–175, 1988. RUSSEL, E.W. Soil conditions and plant growth, 10a.ed. London: Longman, 1973, 849p. SAEG Sistema para Análises Estatísticas, versão 9.1: Fundação Arthur Bernardes – UFV – Viçosa, 2007. 99 SANCHEZ-MONEDERO, M.A.; ROIG, A.; MARTÍNEZ-PARDO, C.; CEGARRA, J.; PAREDES, C. A microanalisis method for determining total organic carbon in extracts of humic substances. Relationship between total carbon and oxidable carbon. Bioresource Technology, v. 57: p. 291-295, 1996. SHAN, X. Q.; CHEN, B. Evaluation of sequential extraction for speciation of trace metals in model soil containing natural minerals and humic acid. Analytical Chemistry, v. 65, p. 802– 807, 1993. SIDLE, R.C.; KARDOS, L.T. Nitrate leaching in sludge-treated forest soil. Soil Science Society of America Journal, v.43, p.278-282, 1979. SILVA, C.A.; RANGEL, J.P.; BETTIOL, W.; MANZATTO, C.V.; BOEIRA, R.C.; DYNIA, J.F. Dinâmica de metais pesados em latossolo adubado com lodo de esgoto e em plantas de milho. In: BETTIOL, W.; CAMARGO, O.A.(Editores Técnicos). Lodo de esgoto: impacto ambiental do uso agrícola. Jaguariúna: Embrapa Meio Ambiente, 2006, p. 45-78. SILVA, S.M.C.P.; FERNANDES, F.; SOCCOL, V.T.; MORITA, D.M. Principais contaminantes do lodo. ANDREOLI, S. e FERNANDES, F. (Eds). In: Lodo de esgotos: tratamento e disposição final. Belo Horizonte, MG, Departamento de Engenharia Sanitária e Ambiental – UFMG; Companhia de Saneamento do Paraná, 2001. p. 69-121. SILVERSTEIN, R.M.; BASSLER, G.C.; MORRILL, T.C.. Identificação Espectrométrica de Compostos Orgânicos. 3ª. ed. Rio de Janeiro: Editora Guanabara Dois, 1979. 299 p. SILVERSTEIN, R.M.; WEBSTER, F.X. Identificação espectrométrica de compostos orgânicos. 6ª. ed. Rio de Janeiro, Livros Técnicos e Científicos, 2000. 460p. SILVIERA, D.J.; SOMMERS, L.E. Extractability of Cu, Zn, Cd and Pb in soils incubated with sewage sludge. Journal Environmental Quality, v. 6, p. 47–52, 1977. SIMONETE, M.A.; KIEHL, J.C.; ANDRADE, C.A.; TEIXEIRA, C.F.A. Efeito do lodo de esgoto em um argissolo e no crescimento e nutrição de milho. Pesquisa Agropecuária Brasileira, Brasília, v. 38, n. 10, p. 1187-1195, 2003. SINGH, A.K., PANDEYA, S.B. Sorption and release of cadmium- fulvic acid complexes in sludge treated soils. Bioresource Technology, v. 66, p. 119–127, 1998. SINGH, B.R.; NARWAL, R.P. Plant availability of heavy metals in a sludge treated soil: II. Metal extractability compared with plant metal uptake. Journal Environmental Quality, v.13, p.344-349, 1984. SMITH, S.R. Agricultural recycling of sewage sludge and the environment. CAB international, Wallingford, UK, p. 119-151, 1996 SOON, Y. K. Changes in forms of soil zinc after 23 years of cropping following learning of a boreal forest. Canadian Journal Soil Science, v. 74, p. 179–183, 1994. SORENSEN, L.H. Rate of decomposition of organic matter in soil as influenced by repetead as drying reweting and repetead additions of organic material. Soil Biology and Biochemistry, v. 6, p. 287-292, 1974. SPARK K.M.; WELLS J.D.; JOHNSON B.B.; Sorption of heavy metals by mineral-humic acid substrates. Australian Journal of Soil Reasearch, v. 35, p 113–122, 1997. SPOSITO, G., LEVESQUE, C.S.; LECLAIRE, J.P.; CHANG, A.C. Trace elements chemistry in arid zone field soils amended with sewage sludge. III. Effect of the time on the extraction of trace metals. Soil Science Society American Journal, v. 47, p. 898–902, 1983. 100 STEVENSON, F.J. Humics chemistry: genesis, composition, reactions. New York: John Wiley, 1994, 443 p. STEVENSON, I.L. Some observations on the microbial activity in remoistened air-dried soils. Plant Soil, v. 8, p. 170-182, 1956. STOVER, R.C.; SOMMERS, L.E.; SILVIEIRA, D.J. Evaluation of metals in wasterwater sludge. Journal Water Pollution Control Federation, v. 48, p. 2166-2175, 1976. TERRY, R.E.; NELSON D.W.; SOMMERS L.E. Carbon cycling during sewage sludge decomposition in soils. Soil Science Society of American Journal, v. 43, p. 494–499. 1979. TERRY, R. E.; NELSON, D. W.; SOMMERS, L. E. Nitrogen transformations in sewage sludge amended soil as affected by soil environmental factors. Soil Science Society of American Journal, v. 45, p. 506-513, 1981. TESSIER, A.; CAMPBELL, P.G.C.; BISSON, M.. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, v. 51., p. 844–851, 1979. TSUTIYA, M.T. Alternativas de disposição final de biossólidos. In: TSUTIYA, M.T.; COMPARINI, J.B.; ALEM SOBRINHO, P.; HESPANHOL, I.; CARVALHO, P.C.T.; MELFI, A.J.; MELO, W.J.; MARQUES, M.O. (Eds.). Biossólidos na agricultura. 1a. ed. São Paulo: Sabesp, 2001, p.133-180. TUREK, M.; KOROLEWICZ, T.; CIBA, J. Removal of heavy metals from sewage sludge used as soil fertilizer. Soil & Sediment Contamination, v. 14, p. 143-154, 2005. URE, A.M.; QUEUVALLIER, PH. MUNTAU, H.; GRIEPINK, B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities, Intern. Journal of Environmental Chemistry, v. 51, p. 135 – 151, 1993. USEPA – UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. 40 CFR Parts 257, 403 and 503. Final rules: Standards for the use of sewage sludge. Fed. Reg. v. 58, n. 32, 9248 – 9415, 1993. VAN SCHREVEN, D.A. The effect of intermittent drying and wetting of a calcareous soil on C and N mineralization. Plant Soil, v. 26, p. 14-32, 1967. VANCE, E.D.; BROOKES, P.C.; JENKINSON, D.S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, Oxford, v. 19, p. 703–707, 1987. VERCOUTERE, K.; FORTUNATI, U.; MUNTAU, H.; GRIEPINK, B.; MAIER, E.A. The certified reference materials CRM 142R Light Sand Soil, CRM 143R Sewage Sludge Amended Soil and CRM 145R Sewage Sludge for quality control in monitoring environmental and soil pollution. Fresenius Journal Analytical Chemistry, v. 352, p. 197-202, 1995. VIEIRA, R.F.; CARDOSO, A.A. Variações nos teores de nitrogênio mineral em solo suplementado com lodo de esgoto. Pesquisa Agropecuária Brasileira, v. 38, p. 867-874, 2003. VON SPERLING, M.; ANDREOLI, C.V. Princípios do tratamento biológico de águas residuárias. Lodo de esgotos: tratamento e disposição final. In: VON SPERLING, M.; ANDREOLI, C.V. FERNANDES, F.(Eds). Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental – DESA-UFMG; Companhia de Saneamento do Paraná – SANEPAR. 2001. v. 6. 484 p. 101 VULKAN, R., MINGELGRIN, U.; BEN-ASHER, J.; FRENKEL, H. Copper and zinc speciation in the solution of a soil-sludge mixture. Journal Environmental Quality, v. 31, p. 193–203, 2000. WALLACE, A.; WALLACE, G.A. A possible flaw in EPA’S 1993 new sludge rule due to heavy metal interaction. Communications in Sol Science and Plant Analysis, v. 25, n. 1-2, p. 129-135, 1994. WALWORTH, J.L. Soil drying and rewetting, or freezing and thawing, affects soil solution composition. Soil Science Society of American Journal, v. 56, p. 433-437, 1992. WANG, Z.; SHAN, X.; ZHANG, S. Comparison of speciation and bioavailability of rare earth elements between wet rhizosphere soil and air-dried bulk soil. Analytica Chimica Acta, v. 441, p. 147-156, 2001. WANG, Z.; SHAN, X.; ZHANG, S. Comparison between fractionation and bioavailability of trace elements in rizosphere and bulk soils. Chemosphere, v. 46, p. 1163-1171, 2002. WILLIAMS, J.R.; KISSEL, D.E. Water percolation: an indicator of nitrogen-leaching potencial. In: FOLLET, R.F.; KEENEY, D.R. & CRUSE, R.M., eds. Managing nitrogen for groundwater quality and farm profitability. Madinson, Soil Science Society of America, 1991. 357p. WOLT, J.; GRAVEEL, J.G. A rapid routine method for obtaining soil solutions using vacuum displacement. Soil Science Society of American Journal, v. 50, p. 602-605, 1986. WU, L.; MA, L.Q. Effects of sample storage on biosolids compost stability and maturity evaluation. Journa l Environmental Quality, v. 30, p. 222–228, 2001. ZEBARTH, B.J.; McDOUGALL, R.; NEILSEN, G. & NEILSEN, D. Availability of nitrogen from municipal biosolids for dryland forage grass. Can. J. Plant Sci., v. 80, p. 575-582, 2000. ZHANG, S.Z.; SHAN, X.Q. Speciation of rare earth elements in soils and accumulation by wheat with rare earth fertilizer applications. Environmental Pollution, v. 112, p. 395 – 405, 2001.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/8164/2010%20-%20Otavio%20Raymundo%20L%c3%a3.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/15038/2010%20-%20Otavio%20Raymundo%20L%c3%a3.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/21344/2010%20-%20Otavio%20Raymundo%20L%c3%a3.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/27708/2010%20-%20Otavio%20Raymundo%20L%c3%a3.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/34070/2010%20-%20Otavio%20Raymundo%20L%c3%a3.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/40452/2010%20-%20Otavio%20Raymundo%20L%c3%a3.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/46820/2010%20-%20Otavio%20Raymundo%20L%c3%a3.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/53232/2010%20-%20Otavio%20Raymundo%20L%c3%a3.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/2359
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2018-08-21T14:49:02Z No. of bitstreams: 1 2010 - Otavio Raymundo Lã.pdf: 585290 bytes, checksum: ee9c2ebbd0832facdf245e177fef5fa4 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2018-08-21T14:49:02Z (GMT). No. of bitstreams: 1 2010 - Otavio Raymundo Lã.pdf: 585290 bytes, checksum: ee9c2ebbd0832facdf245e177fef5fa4 (MD5) Previous issue date: 2010-02-26eng
Appears in Collections:Doutorado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2010 - Otavio Raymundo Lã.pdfOtavio Raymundo Lã571.57 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.