Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9155
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSantos, Joaquim Neto de Sousa
dc.date.accessioned2023-12-21T18:35:49Z-
dc.date.available2023-12-21T18:35:49Z-
dc.date.issued2010-05-21
dc.identifier.citationSANTOS, Joaquim Neto de Sousa. Relação entre morfologia e dieta e uso da macroinfauna por pampos Trachinotus carolinus e Trachinotus goodei (Actinopterygii, Carangidae) em duas praias arenosas do sudeste do Brasil. 2010. 112 f. Tese (Doutorado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2010.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9155-
dc.description.abstractO morfodinamismo, estratificação e a sazonalidade são os fatores mais importantes na determinação da composição e abundância da macroinfauna em praias arenosas. A macroinfauna de duas praias foi amostrada no inverno/2005 e verão/2006 durante a maré baixa, sendo uma praia protegida (Flamengo) localizada na baía de Guanabara, e outra praia exposta localizada na zona oceânica (Grumari). Foi testada a hipótese que as características físicas das praias determinam diferenças na composição e abundância da macroinfauna. A praia do Flamengo foi caracterizada como dissipativa e apresentou maior riqueza de táxons, e menor biomassa, quando comparada com a praia de Grumari classificada como refletiva. Na praia do Flamengo as maiores abundâncias foram registradas para Enoploides sp, e Emerita brasiliensis, enquanto em Grumari foram Sacocirrus sp e E. brasiliensis. As praias apresentaram elevada dissimilaridade na composição e abundância relativa dos táxons (91.75%), Sacocirrus sp, Enoploides sp, Dispio uncinata, Scolelepis goodbobyi e E. brasiliensis explicaram 63.70% das diferenças entre as praias. Em ambas as praias foram observadas estratificações na ocorrência e abundância da macroinfauna nas duas estações analisadas. Na praia de Grumari, E. brasiliensis ocorreu principalmente no estrato 1 e Sacocirrus sp no estrato 2, enquanto na praia do Flamengo E. brasiliensis e Enoploides sp apresentaram as maiores abundâncias no estrato 1 e S. goodbodyi e D. uncinata no estrato 3. A hipótese da variação na composição da macroinfauna entre os extratos foi aceita, e as diferenças observadas na composição e abundância da macroinfauna foram atribuídas ao morfodinamismo; no entanto, outros fatores ambientais podem estar relacionados com tais diferenças.por
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectInvertebrados bentônicospor
dc.subjectzona de arrebentaçãopor
dc.subjectexposição às ondaspor
dc.subjectcomunidade bênticapor
dc.subjectBenthic invertebrateseng
dc.subjectsurf zoneseng
dc.subjectwaves expositioneng
dc.subjectbenthic communitieseng
dc.titleRelação entre morfologia e dieta e uso da macroinfauna por pampos Trachinotus carolinus e Trachinotus goodei (Actinopterygii, Carangidae) em duas praias arenosas do sudeste do Brasilpor
dc.title.alternativeRelationship between morphology and diet and the use of the macroinfauna by pompanos Trachinotus carolinus and Trachinotus goodei (Actinopterygii, Carangidae) in two sandy beaches in Southeastern Brazileng
dc.typeTesepor
dc.description.abstractOtherMorphodynamism, extratification and seasonality are among the main factor to influence the composition and abundance of the macroinfauna in sandy beaches. The macroinfauna of two sandy beaches were sampled between winter-2005 and summer-2006 during low tide; one beach was protected (Flamengo beach) located in Guanabara bay, and the other was exposed to waves in the oceanic zone (Grumari beach). The hypothesis that the physical characteristics of the beaches determine the difference in composition and relative abundance of the macroinfauna was tested. Flamengo beach was characterized as dissipative and had comparatively higher táxon richenes and lower biomass, when compared with Grumari beach that was classsified as reflective. In Flamengo beaches, higher abundance was recordded for Enoploides sp, and Emerita brasiliensis, whereas in Grumari beach Sacocirrus sp and E. brasiliensis were the most abundant taxons. The beaches showed highe dissimilarity in composition and relative abundance of the taxons (91.75%). Sacocirrus sp, Enoploides sp, Dispio uncinata, Scolelepis goodbobyi and E. brasiliensis explained 63.70% of the dissimilarity between the two beaches. In both beaches, we observed extratification in occurence and abundance of the macroinfauna in two seasons. Emerita brasiliensis occurred mainly in Grumary beach in the extrate 1 and Sacocirrus sp in extrate 2, while in Flamengo beach E. brasiliensis and Enoploides sp had the highest abundance in extrate 1 and S. goodbody and D. uncinata in extrate 3. The hypothesis that the macrofauna differs among extrate and beaches was accepted and the differences in composition and relative abundance of the macroinfauna were attributed to morphodynamism, althought other environmental factores can be influencing such differences.por
dc.contributor.advisor1Araújo, Francisco Gerson
dc.contributor.advisor1ID040.983.233-20por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7898069293489622por
dc.contributor.referee1Joyeux, Jean Christophe
dc.contributor.referee2Paiva, Paulo Cesar de
dc.contributor.referee3Coutinho, Ricardo
dc.contributor.referee4Esbérard, Carlos Eduardo Lustosa
dc.creator.ID040.812.596-90por
dc.creator.Latteshttp://lattes.cnpq.br/2777826585719675por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesABRAMOFF, M. D.; MAGELHAES, P.J. & RAM, S.J. 2004. "Image processing with ImageJ". Biophotonics Inter. 11: 36-42. ADITE, A.; WINEMILLER, K.O & FIOGBE, E. D.. 2005. Ontogenetic, seasonal, and spatial variation in the diet of Heterotis niloticus (Osteoglossiformes: Osteoglossidae) in the Sô River and Lake Hlan, Benin, West Africa. Environmental Biology of Fishes, 73: 367-378. ARMITAGE, T.M & ALEVIZON, W.S. 1980. The diet of the Florida pompano (Trachinotus carolinus) along the east coast of central Florida. Florida Scientist 43(1): 19-26. BATISTIC, M.; TUTMAN, P. P.; BOJANIC, D.; SKARAMUCA, B, KOZUL, V, GLAVIC & BARTULOVIC, V. 2005. Diet and diel feeding activity of juvenile pompano (Trachinotus ovatus) (Teleostei: Carangidae) from the southern Adriatic, Croatia. Journal of the Marine Biological Association of the United Kingdom, 85: 1533-1534. BELINDA M.S.; WARD-CAMPBELL, F. & WILLIAM H. B. 2005. Ontogenetic changes in morphology and diet in the snakehead, Channa limbata, a predatory fish in western Thailand. Environmental Biology of Fishes, 72: 251–257. BELLINGER, J.W & AVAULT J.W. 1971. Food habits of juvenile pompano (Trachinotus carolinus) in Louisiana. Transactions of the American Fisheries Society 99: 486-494. BLAKE, R. W. 2004. Fish functional design and swimming performance. Journal of Fish Biology. 65: 111-119. CHERVINSKI, J. & ZORN, M. 1977. Note on occurrence and the food of juvenile kachlan (Trachinotus ovatus; Pisces, Carangidae) from the Mediterranean. Aquaculture, 10: 175-185. ERZINI, K.; GONÇALVES, J.M.S.; BENTES, L. & LINO, P.G. 1997. Fish mouth dimensions and size selectivity in a portuguese longline fishery. Journal of Applied Ichthyology 3 (1): 41-44. FISHER, R & HOGAN, J. D. 2007. Morphological predictors of swimming speed: a case study of pre-settlement juvenile coral reef fishes. Journal of Experimental Biology, 210: 2436-2443. FISHER, R.; LEIS, J.M.; CLARK, D.L. & WILSON, S.K. 2005. Critical swimming speeds of late-stage coral reef fish larvae: variation within species, among species and between locations. Marine Biology, 147: 1201–1212. 81 FISHER, R. & BELLWOOD, D. R. 2003. Undisturbed swimming behaviour and nocturnal activity of coral reef fish larvae. Marine Ecology Progress Series. 263: 177-188. FIELDS, H.M. 1962. Pompanos (Trachinotus spp.) of south Atlantic coast of the United States. U.S. Fish and Wildlife Service Fishery Bulletin 207(62): 189-222. FIGUEIREDO, N & MENEZES, J. 1980: Manual de peixes marinhos do sudeste do Brasil: V. Teleostei (4). Mus. Zool. Universidade de São Paulo, Brasil, 105 pp. FINUCANE, J. H. 1969. Ecology of the pompano (Trachinotus carolinus) and the permit (Trachinotus falcatus) in Florida. Transactions of the American Fisheries Society 98: 478-486. FUGI, R.; AGOSTINHO, A. A. & HAHN, N. S. 2001. Trophic morphology of five benthic-feeding fish species of a tropical floodplain. Revista Brasileira de Biologia, São Carlos, 61(1): 27-33. FULTON, C.J.; BELLWOOD, D.R. & WAINWRIGHT, P.C., 2001. The relationship between swimming ability and habitat use in wrasses (Labridae). Marine Biology. 139: 25–33. FULTON, C.J. & BELLWOOD, D.R. 2004. Wave exposure, swimming performance, and the structure of tropical and temperate reef fish assemblages. Marine Biology. 144: 429–437. GARCÍA-BERTHOU, E. 2002. Ontogenetic diet shifts and interrupted piscivory in introduced largemouth bass (Micropterus salmoides). International Review of Hydrobiology, 87: 353-363. GALAROWICZ, T.L.; ADAMS, J.A. & WAHL, D.H. 2006. The influence of prey availability on ontogenetic diet shifts of a juvenile piscivore. Canadian Journal Fishery Aquatic Scince. 63: 1722–1733. GATZ JR., A.J. 1979a. Community organization in fishes as indicated by morphological features. Ecology 60(4): 711-718. GILBERT, C. & PARSONS, J. 1986. Species profile: life histories and environmental requirements of coastal fishes and invertebrates (South Florida): Florida pompano. U.S. Fish and Wildlife Report 82(11 - 42). GRIFFITHS, D. 1975. Prey availability and food of predators. Ecology 56: 1209-1214. HOUDE, E.D. 1997. Patterns and consequences of selective processes in teleost early life histories. In: CHAMBERS, C.; TRIPPEL, E.A. (Ed.). Early life history and recruitment in fish populations. London: Chapman & Hall, P. 173- 196. 82 HJELM J.; SVANBÄCK R.; BYSTRÖM P.; PERSSON, L. & WAHLSTRÖM E. (2001) Diet dependent body morphology and ontogenetic reaction norms in a juvenile omnivore. Oikos 95:311–323. HYNES, H.B.N. 1950. The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes. Journal Animal Ecology. 19: 36-57. HYSLOP, E.J. 1980. Stomach contents analysis - a review of methods and their application. Journal of Fish Biology. 17: 411-429. HYNDES, G.A. & POTTER, I.C. 1997. Age, growth and reproduction of Sillago schomburgkii in nearshore waters and comparisons of life history strategies of a suite of Sillago species. Environmental Biology of Fishes. 49(4):435-447. HURLBERT, S. H. 1978. The measurement of niche overlap and some relatives. Ecology, 59(1): 168-174. HUGUENY, B. & POUILLY, M. 1999. Morphological correlates of diet in an assemblage of West African freshwater fishes. Journal of Fish Biology, 54: 1310-1325. JOHANSSON, F, RÅDMAN, P & ANDERSSON, J. 2006. The relationship between ontogeny, morphology, and diet in the Chinese hook snout carp (Opsariichthys bidens). Ichthyol Research (2006) 53: 63–69. KAHILAINEN, K.; ALAJÄRVI, E. & LEHTONEN, H. 2005. Planktivory and diet-overlap of densely rakered whitefish (Coregonus lavaretus) in a subarctic lake. Ecology of Freshwater Fish, 14: 50-58. KAHILAINEN, K. & LEHTONEN, H. 2003. Piscivory and prey selection of four predator species in a whitefish dominated subarctic lake. Journal of Fish Biology. 63:59-672. KEENLEYSIDE, M.H.A. 1979. Diversity and adaptation in fish behaviour. Springer, Berlin. KRUITWAGEN, N. G.; LUGENDO, I. B. R.; PRATAP, H. B. & WENDELAAR B. S. E. 2007. Influence of morphology and amphibious life-style on the feeding ecology of the mudskipper Periophthalmus argentilineatus. Journal of Fish Biology 71: 39–52. LABROPOULOU, M.; MACHIAS, A.; TSIMENIDES, N. & ELEFTHERIOU, A.. 1997. Feeding habits and ontogenetic diet shift of the striped red mullet, Mullus surmuletus Linnaeus, 1758. Fisheries Research 31: 257-267. LEGENDRE, P & LEGENDRE, L. 1998. Numerical ecology. Second English edition. Elsevier Science BV, Amsterdam, The Netherlands. LIVINGSTON, R. J. 1988. Inadequacy of species-level designations for ecological studies of coastal migratory fishes. Environmental Biology of Fishes 22: 225–234. 83 LUCZKOVICH, J. J.; NORTON, S. F. & GILMORE, G. 1995. The influence of oral anatomy on prey selection during the ontogeny of two percoid fishes, Lagodon rhomboides and Centropomus undecimalis. Environmental Biology of Fishes, 44:79- 95. MAKRAKIS, M.C.; NAKATANI, K.; BIALETZKI, A.; SANCHES, P.V.; G. BAUMGARTNER & GOMES, L.C. 2005. Ontogenetic shifts in digestive tract morphology and diet fish larvae of the Itaipu Reservoir, Brazil. Environmental Biology of Fishes 72: 99-107. MCGARIGAL, K.; CUSHMAN, S. & STAFFORD, S. 2000. Multivariate Statistics for Wildlife and Ecology Research. Springer-Verlag New York Inc., New York. 283 pp. MCCORMICK M. 1998. Condition and growth of reef fish at settlement: is it important? Aust. J. Ecol. 23:258–264. MÉRIGOUX, S. & PONTON, D. 1998. Body shape, diet and ontogenetic diet shifts in young fish of the Suriname River, French Guiana, South America. Journal of Fish Biology 52: 556-569. MODDE, T. &. ROSS, S.T. 1983. Trophic relationships of fishes occuring within a surf zone habitat in the northern Gulf of Mexico. Northeast Gulf Scince. 6: 109-120. MOL, J. H. 1995. Ontogenetic diet shifts and diet overlap among three closely related neotropical armoured catfishes. Journal of Fish Biology, 47: 788-807. MORENO, T. & CASTRO, J.J. 1995. Community structure of the juvenile of coastal pelagic fish species in the Canary Islands waters. Scientia Marina, 59, 405-413. MOTTA, P.J.; CLIFTON, K.B.; HERNANDEZ, P.; EGGOLD, B.T.; GIORDANO, S.D. & WILCOX, R. 1995. Feeding relationships among nine species of seagrass fishes of Tampa Bay, Florida. Bull. Mar. Sci. 56: 185–200. MULLER, R.G; TISDEL, K & MURPHY, M.D. 2002. The update of the stock assessment of florida pompano (Trachinotus carolinus). Florida Fish and Wildlife Conservation Commission. Pp 143. NANAMI, A.; NISHIHIRA, M.; SUZUKI, T. & YOKOCHI, H. 2005. Species specific spatial variation of coral reef fishes in relation to habitat characteristics in an Okinawan coral reef. Environmental Biology of Fishes. 72, 55–65. NIANG, T. M. S.; PESSANHA, A. L. M & ARAÚJO, F.G. 2010. Dieta de juvenis de Trachinotus carolinus (Actinopterygii, Carangidae) em praias arenosas na costa do Rio de Janeiro. Iheringia (in press). OLSON, M.H. 1996. Ontogenetic niche shifts in largemouth bass: variability and consequences for first-year growth. Ecology 77: 179-190. 84 POST, D. M. &. KITCHELL J. F. 1997. Trophic ontogeny and life history effects ON interactions between age-0 fishes and zooplankton. Archiv fur Hydrobiologie, Advances in Limnology 49:1–12. PINKAS, L. 1971, Food habits study. pp. 5-10. In: L. PINKAS, M. S. Oliphant, I. L. K. Iverson (eds.), Food habits of albacore bluefin tuna and bonito in California waters. Fishery Bulletin., 152: 1-105. PIET, G. J. 1998. Ecomorphology of a size-structured tropical freshwater fish community. Environmental Biology of Fishes 51: 67–86. POUILLY, M.; LINO, F. ; BRETENOUX, J.G. & ROSALES, C. 2003. Dietarymorphological relationships in a fish assemblage of the bolivian amazonian floodplain. Journal of Fish Biology. 62:1137-1158. SAMBLIAY, V.C. 1990. Interrelationships between swimming speed, caudal fin aspect ratio and body length of fishes. Fishbyte 8, 16–20. STONER, A. W. & LIVINGSTONE, R. J. 1984. Ontogenetic patterns in diet and feeding morphology in simpatric sparid fishes from seagrass meadows. Copeia 1: 174–187. SVANBÄCK R. & EKLÖV, P. 2003. Morphology dependent foraging efficiency in perch: a trade off for ecological specialization? Oikos 102:273–284. TER BRAAK, C. F. J. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167 –1179. TER BRAAK, C. J. F. 1991. Update notes: CANOCO version 3.1 Wageningen, The Netherlands. TRACY L. GALAROWICZ, JULIE A. ADAMS & DAVID H. WAHL. 2006. The influence of prey availability on ontogenetic diet shifts of a juvenile piscivore. Canadian Journal Fishery Aquatic Scince. 63(8): 1722–1733. WERNER, E.E. & HALL, J.D. 1974. Optimal foraging and size selection of prey by the bluegill sunfish (Lepomis macrochirus), Ecology 55 (5): 1042-1052. VIDELER, J. J. (1993). Fish Swimming. London: Chapman & Hall. XUE, Y.; JIN, X. ; ZHANG, B. & LIANG, Z. 2005. Seasonal, diel and ontogenetic variation in feeding patterns of small yellow croaker in the central Yellow Sea. Journal of Fish Biology 67: 33-50. WAINWRIGHT, P.C. & B.A. RICHARD. 1995. Predicting patterns of prey use from morphology of fishes. Environmental Biology of Fishes, 44: 97-113. WAINWRIGHT P.C. 1991. Ecomorphology: experimental functional anatomy for ecological problems. Am. Zool., 31: 680–693. 85 WEBB, P. W. & WEIHS, D. 1986. Functional locomotor morphology of early life-history stages of fishes. Trans. Am. Fish. Soc. 115: 115-127. WERNER, E.E. & GILLIAM, J.F. 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics 15:393-425. WIKRAMANAYAKE, E.D. 1990. Ecomorphology and biogeography of a tropical stream fish assemblage: evolution of assemblage structure. Ecology 71(5):1756-1764. WINEMILLER, K.O. 1989. Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuela ilanos. Environmental Biology of Fishes 26: 177- 199. WINEMILLER, K.O. & KELSO-WINEMILLER, L.C. 2003. Food habits of tilapinae cichlids of the Upper Zambezi River and floodplains during the descending phase of the hydrological cycle. Journal of Fish Biology 63: 120-128. WOOTTON, R.J. Ecology of teleost fish. The Netherlands: Kluwer Academic Publishers, 1999. 386 p. ZAHORCSAK, P.; SILVANO, R. A. M. & SAZIMA, I. 2000. Feeding biology of a guild of benthivorous fishes in a sandy shore on south-eastern brazilian coast. Revista Brasileira de Biologia. 60 (3): 511-518.por
dc.subject.cnpqZoologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/8174/2010%20-%20%20Joaquim%20Neto%20de%20Sousa%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/12021/2010%20-%20Joaquim%20Neto%20de%20Sousa%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/15122/2010%20-%20Joaquim%20Neto%20de%20Sousa%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/21420/2010%20-%20Joaquim%20Neto%20de%20Sousa%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/27938/2010%20-%20Joaquim%20Neto%20de%20Sousa%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/34296/2010%20-%20Joaquim%20Neto%20de%20Sousa%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/40672/2010%20-%20Joaquim%20Neto%20de%20Sousa%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/47022/2010%20-%20Joaquim%20Neto%20de%20Sousa%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/53436/2010%20-%20Joaquim%20Neto%20de%20Sousa%20Santos.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/2357
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2018-08-21T13:55:57Z No. of bitstreams: 1 2010 - Joaquim Neto de Sousa Santos.pdf: 1864983 bytes, checksum: e70ed9f5ee68c8f365819e496dbb0176 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2018-08-21T13:55:57Z (GMT). No. of bitstreams: 1 2010 - Joaquim Neto de Sousa Santos.pdf: 1864983 bytes, checksum: e70ed9f5ee68c8f365819e496dbb0176 (MD5) Previous issue date: 2010-05-21eng
Appears in Collections:Doutorado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2010 - Joaquim Neto de Sousa Santos.pdfDocumento principal1.82 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.