Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9208
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFranco, Taynara Pontes
dc.date.accessioned2023-12-21T18:36:08Z-
dc.date.available2023-12-21T18:36:08Z-
dc.date.issued2017-08-08
dc.identifier.citationFRANCO, Taynara Pontes. Padrões de movimentos e uso de diferentes sistemas costeiros pela corvina Micropogonias furnieri no Estado do Rio de Janeiro. 2017. 113 f. Tese (Doutorado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2017.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9208-
dc.description.abstractO conhecimento dos padrões de movimentos de peixes marinhos entre as áreas de berçário de ambientes estuarinos e as áreas da plataforma continental, onde se concentram os estoques pesqueiros, é um aspecto fundamental para a conservação e uso sustentável desses recursos. Os principais objetivos deste estudo foram: (1) determinar padrões de movimentos e uso dos diferentes sistemas estuarinos e costeiros adjacentes pela corvina Micropogonias furnieri através de concentrações elementares em otólitos Sagittae; (2) identificar assinaturas de M. furnieri em ambientes estuarinos semifechados como ferramenta de identificação da origem de peixes da costa; (3) identificar uma possível nova unidade populacional de Micropogonias furnieri ao Norte de Cabo Frio. Indivíduos de M. furnieri foram capturados através da pesca artesanal nos principais sistemas estuarinos e zona costeira adjacente do Estado do Rio de Janeiro. Os otólitos sagitais foram avaliados por meio de análises químicas de estrôncio (86Sr), bário (143Ba), manganês (55Mn) e magnésio (24Mg) no perfil núcleo-borda dos otólitos através de um espectrômetro de massas por plasma acoplado indutivamente com ablação a laser (LA-ICPMS). Foram identificados dois principais padrões de movimentos de entrada e saída dos indivíduos dos sistemas costeiros, um caracterizado como Marinho Migrante (indivíduos que fazem uma única migração definitiva de sistemas costeiros estuarinos para a plataforma adjacente) e o outro caracterizado como Misto (indivíduos que após a migração dos sistemas estuarinos para a plataforma costeira adjacente realizam visitas aos sistemas estuarinos). As assinaturas elementares específicas de cada sistema estuarino estudado foram identificadas, com as maiores razões de Ba:Ca e Sr:Ca sendo características para peixes da Laguna de Araruama, e de Mg:Ca e Mn:Ca sendo características de peixes da Baía de Sepetiba. Através destas assinaturas, foram identificadas a contribuição relativa dos sistemas estuarinos para os estoques pesqueiros da costa, com as baías sendo as principais fontes de recrutamento ao estoque adulto disponível na plataforma costeira. Além disso, análises isotópicas e elementares foram realizadas através de espectrometria de emissão atômica por plasma acoplado indutivamente (ICP-OES) e análises com marcadores nucleares de microssatélites em amostras de indivíduos dos extremos Sul e Norte da costa, onde foi identificada uma nova unidade populacional ao Norte de Cabo Frio. O uso da química de otólitos mostrou-se eficiente para a determinação da participação relativa dos sistemas estuarinos, principalmente das baías na contribuição dos estoques de M. furnieri da zona costeira. Os marcadores nucleares indicaram diferentes unidades populacionais na costa do Estado. Através das ferramentas utilizadas pudemos identificar informações relevantes sobre a determinação de movimentos da espécie que devem ser levadas em consideração nos programas de conservação deste importante recurso pesqueiro.por
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectQuímica de otólitospor
dc.subjectassinaturas elementarespor
dc.subjectconectividadepor
dc.subjectpadrões de migraçãopor
dc.subjectOtolith microchemistryeng
dc.subjectElementary fingerprintseng
dc.subjectConnectivityeng
dc.subjectMigration patterns.eng
dc.titlePadrões de movimentos e uso de diferentes sistemas costeiros pela corvina Micropogonias furnieri no Estado do Rio de Janeiropor
dc.title.alternativePatterns of movements and use of different coastal systems by the Whitemouth croaker Micropogonias furnieri in the State of Rio de Janeiroeng
dc.typeTesepor
dc.description.abstractOtherAbstract: Knowledge on the patterns of marine fish movements between nursery areas in estuarine environments and the areas of the adjacent platform where fish stocks are concentrated is a fundamental aspect for the conservation and sustainable use of these resources. The main aims of this study were: (1) to determine patterns of movement and use of the different estuarine and the adjacent coastal systems by the Whitemouth croaker Micropogonias furnieri, identifying profiles delineated by elemental concentration rates in the Sagitta otoliths; (2) to assessment of signatures of semi-enclosed estuarine systems as a tool to identify the origin of the coastal fish; (3) identify a likely new stock of M. furnieri in the North of Cabo Frio that should differ from the population in the Center-South of the State. Individuals of M. furnieri were collected through artisanal fisheries in the main estuarine systems and in the coastal adjacent zone of Rio de Janeiro State. The sagittal otoliths were analyzed by chemical analyzes of strontium (86Sr), barium (143Ba), manganese (55Mn) and magnesium (24Mg) along the core-edge profile of the otoliths through an inductively coupled plasma mass spectrometer with laser ablation (LA-ICPMS). Two specific patterns were identified, for the movements between the estuarine and the adjacent coastal system, one named Marine Migrant (individuals who make a single definite migration from the estuarine to the adjacent platform) and, the other named Mixed (individuals that after migrating to the platform make visits to the estuarine systems). The specific elemental signatures of each studied estuarine system were identified, with the highest ratios of Ba:Ca and Sr:Ca being characteristics of individuals from the Araruama Lagoon, whereas those with the highest Mg: Ca and Mn: Ca were typical of the Sepetiba Bay. Based on these signatures, the relative contribution of the estuarine systems to the fish stocks of the coast was identified, with the bays being the main sources of export of this individuals to the coast of the State. In addition, isotopic and elemental analyzes were performed through an inductively coupled plasma atomic emission spectrometry (ICP-OES) and analyzes with nuclear microsatellite markers in samples from the North and the South of the coast, where a possible new stock was identified in the North of Cabo Frio. The use of otolith chemistry proved to be efficient for determining the relative contribution of estuarine systems, mainly from the bays in the contribution of M. furnieri stocks from the coastal zone. Nuclear markers suggest different stocks on the coast of the State. Through the tools used, we could identify relevant information on the determination of species movements that should be taken into account in the conservation programs of this important fishing resource.eng
dc.contributor.advisor1Araújo, Francisco Gerson
dc.contributor.advisor-co1Albuquerque, Cristiano Queiroz de
dc.contributor.referee1Araújo, Francisco Gerson
dc.contributor.referee2Vianna, Marcelo
dc.contributor.referee3Costa, Marcus Rodrigues da
dc.contributor.referee4Neves, Leonardo Mitrano
dc.contributor.referee5Daros, Fellppe Alexandre Lisboa de Miranda
dc.creator.Latteshttp://lattes.cnpq.br/2040188437158135por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesBAKUN, A.; MCLAIN, D.R.; MAYO. F.V. 1974. The mean annual cycle of coastal upwelling off western North America as observed from surface measurements. Fish. Bull., V. 72, P. 843-844. BATH, G. E., THORROLD, S. R., JONES, C. M., CAMPANA, S. E., MCLAREN, J. W. & LAM, J. W. H. 2000. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 64, 1705-1714. BELKHIR K., BORSA P., CHIKHI L., RAUFASTE N., BONHOMME F. 2002. GENETIX 4.04, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France). BRADBURY, I.R., CAMPANA, S.E., BENTZEN, P., 2008. Estimating contemporary early life-history dispersal in an estuarine fish: integrating molecular and otoliths elemental approaches. Mar. Ecol. 17, 1438–1450. CAMPANA, S. E. 1999. Chemistry and composition of fish otoliths: pathways, mecanisms and apllications. Marine Ecology Progress Series, vol 188:263-297. CARVALHO, M. G., MOREIRA, C., CARDOSO, J. F. M. F., BRUMMER, G.-J. A., VAN GAEVER, P., VAN DER VEER, H. W., QUEIROGA, H., SANTOS, P. T., CORREIA, A. T. 2017. Movement, connectivity and population structure of the intertidal fish Lipophrys pholis as revealed by otolith oxygen and carbon stable isotopes. Marine Biology Research, 1000 (June), 1–10. CARVALHO-FILHO, A., SANTOS, S., SAMPAIO, I., 2010. Macrodon atricauda (Günther, 1880) (Perciformes: Sciaenidae), a valid species from the southwestern Atlantic, with comments on its conservation. Zootaxa 2519, 45-58. COOMBS J. A., LETCHER B. H., NISLOW K. H. 2008. CREATE: a software to create input files from diploid genotypic data for 52 genetic software programs. Molecular Ecology Resources 8, 578-580. CORREIA, A. T., BARROS, F., & SIAL, A. N. 2011. Stock discrimination of European conger eel (Conger conger L.) using otolith stable isotope ratios. Fisheries Research, 108 (1), 88-94. CORREIA, A.T., RAMOS, A.A., BARROS, F., SILVA, G., HAMER, P., MORAIS, P., CUNHA, R.L., CASTILHO, R., 2012. Population structure and connectivity of the European conger eel (Conger conger) across the Northeastern-Atlantic and Western- Mediterranean: integrating molecular and otolith elemental approaches. Mar. Biol. 159, 1509-1525. CRAIG, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of bon dioxide. Geochim Cosmochin Acta 12, 133-149. DUMONT, L.F.C., HWANG, G., MACLEAN, N., 2009. The mtDNA control region of the barba-ruça shrimp Artemesia longinaris (Decapoda: Penaeidae) and its potential use as a marker for population analysis. Atlântica 31 (2), 199-207. EARL, D. A., VON HOLDT, B. M. 2011. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources. ELSDON, T. S., Β. K. WELLS, S. E. CAMPANA, Β. M. GILLANDERS, C. M. JONES, Κ. E. LIMBURG, D. H. SECOR, S. R. THORROLD, AND B. D. WALTHER. 2008. Otolith chemistry to describe movements and life-history parameters of fishes—hypotheses, assumptions, limitations and inferences. Oceanography and Marine Biology: An Annual Review 46, 297-330. EPSTEIN, S., BUCHSBAUM, R., LOWENSTAM, H. A., UREY, H. C. 1953. Revised carbonate-water isotopic temperature scale. Bull. Geol. Soc. Am, 64, 1315-13. EVANNO G., REGNAUT S., GOUDET J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611-2620. EXCOFFIER L., LAVAL G., SCHNEIDER S. 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47-50. FOWLER, A. J., CAMPANA, S. E., JONES, C. M. & THORROLD, S. R. 1995. Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS. Canadian Journal of Fisheries and Aquatic Sciences 52, 1431–1441. GAO Y, JONER SH, SVEC RA, WEINBERG KL. 2004. Stable isotopic comparison in otoliths of juvenile sablefish (Anoplopoma fimbria) from waters off the Washington and Oregon coast. Fisheries Research 68:351–60. GONZALEZ-RODRIGUEZ, E. 1982. La résurgence de Cabo Frio (RJ, Brésil): fertileté, facteurs, nutritionnels limitant la biomasse algalie: essai d’amélioration. Thése Doct. Spéc. Océanol. Univ. Aix. Marseille II. GONZALEZ-RODRIGUEZ, E., VALENTIN, J. V., LACERDA, D. A., AND JACOB, S. A. 1992. Upwelling and downwelling at Cabo Frio (Brazil): comparison of biomass and primary production responses. J of Plankton Res, 12, 289-306. GOUDET J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Disponível em: http://www2.unil.ch/popgen/softwares/fstat.htm. GUINAND B. 1996. Use of a multivariate model using allele frequency distributions to analyse patterns of genetic differentiation among populations. Biological Journal of Linnean Society. 58, 173-195. HAIMOVICI, M., IGNACIO, J.M. 2005. Micropogonias furnieri (Desmarest, 1823). In: Rossi CLW, Cergole MC, Ávila-da-Silva AO (eds) Análise das Principais Pescarias Comerciais da Região Sudesde-Sul do Brasil: Dinâmica Populacional das Espécies em Exploração.Série Documentos Revizee-Score Sul, São Paulo, pp 101-107. HAIMOVICI M., UMPIERRE R. G. 1996. Seasonal variations in the population structure of the white croaker Micropogonias furnieri (Desmarest, 1823) from southern Brazil. Atlantica 18, 179-203. HEWITT G. M. 2004. The structure of biodiversity-insights from molecular phylogeography. Frontiers in Zoology 1, 4. ISAAC, V. J. 1988. Synopsis of biological data on the whitemouth croaker Micropogonias furnieri (Desmarest, l823). FAO Fisheries Synopsis N. 150, 35p. JAKOBSSON M., ROSENBERG N. A. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801-1806. KRITZER, P. J. & SALE, P. F. 2006. Marine metapopulations. editors, Jacob P. Kritzer, Peter F. Sale. Elservier 577p. LAZARRO, M., LESSA, E.P., HAMILTON, H., 2004. Geographic genetic structure in the franciscana dolphin (Pontoporia blainvillei). Mar. Mammal Sci. 20 (2), 201-204. LEMOS, V. M. 2017. Stock identification of tainha (Mugil liza) by analyzing stable carbon and oxygen isotopes in otoliths. Fish. Bull. 115, 201-205. LEVY, J.A., MAGGIONI, R., CONCEIÇÃO, M.B., 1998. Close genetic similarity among populations of the white croaker (Micropogonias furnieri) in the south and south-eastern Brazilian Coast. I. Allozyme studies FishRes. 39, 87-94. LI, Y.C., KOROL, A.B., FAHIMA, T., NEVO, E., 2004. Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol. 21, 991-1007. LIMA D. 2005. Genética de populações da corvina Micropogonias furnieri e sistemática molecular da maria-da-toca Bathygobius soporator. Tese de doutorado, Universidade Federal do Rio de Janeiro, 118p. MAGGIONI, R., PEREIRA, A., JEREZ, B., MARINS, L., CONCEIÇÃO, M., LEVY, J.A., 1994. Estudio preliminar de la estructura genética de la corvina Micropogonias furnieri, entre Rio grande (Brasil) y el Rincon (Argentina). Frente Maritmo 15, 127-131. MAGGIONI, R., ROGERS, A.D., MACLEAN, N., 2003. Population structure of Litopenaeus schmitti (Decapoda: Penaeidae) from the Brazilian Coast identified using six polymorphic microsatellite loci. Mol. Ecol. 12, 3213-3217. MAI, A.C.G., MIÑO, C.I., MARINS, L.F.F., MONTEIRO-NETO, C., MIRANDA, L., SCHWINGEL, P.R., LEMOS, V.M., GONZÁLEZ-CASTRO, M., CASTELLO, J.P., VIEIRA, J.P., 2014. Microsatellite variation and genetic structuring in Mugil liza (Teleostei: Mugilidae) populations from Argentina and Brazil. Estuar. Coast. Shelf Sci. 149, 80-86. MATANO, R.P., PALMA, E.D., PIOLA, A.R., 2010. The influence of the Brazil and Malvinas Currents on the southwestern Atlantic Shelf circulation. Ocean Sci. 6, 983-995. MILLER S. A., Dykes D. D., Polesky H. F. (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research 16, 1215. PATTERSON, H.M., THORROLD, S.R., SHENKER, J.M., 1999. Analysis of otolith chemistry in Nassau grouper (Epinephelus striatus) from the Bahamas and Belize using solution-based ICPMS. Coral Reefs 18, 171–178. PRITCHARD J. K., STEPHENS M., DONNELLY P. 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959. PUCHNICK-LEGAT, A., LEVY, J.A., 2006. Genetic structure of brazilian populations of white mouth croaker Micropogronias furnieri (Perciformes: Sciaenidae). Braz. Arch. Biol. Technol. 49, 429-439. RAKOCINSKI, C. F., PETERSON, M. S., & SHILLER, A. M. 2015. Regional patterns in the otolith chemistry of Juvenile Spotted Seatrout (Cynoscion nebulosus) differ under contrasting hydrological regimes. The Open Fish Sci J, 8, 1-12. RAYMOND M. R., F. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. The Journal of Heredity. 86, 248-249. REIS-SANTOS, P., VASCONCELOS, R. P., RUANO, M., LATKOCZY, C., G¨UNTHER, D., COSTA, M. J. & CABRAL, H. 2008. Interspecific variations of otolith chemistry in estuarine fish nurseries. Journal of Fish Biology 72, 2595– 2614. ROOKER, J.R., ZDANOWICZ, V.S., SECOR, D.H., 2001. Chemistry of tuna otoliths: assessment of base composition and postmortem handling effects. Mar. Biol. 139, 35–43. ROSENBERG N. A. 2004. Distruct: a program for the graphical display of population structure. Molecular Ecology Notes 4, 137-138. SHANKS, A.L., LARGIER, J., BRINK, L., BRUBAKER J., AND HOOF, R. 2000. Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnol. Oceanogr. 45, 230–236. SMITH, S.J., CAMPANA, S.E., 2010. Integrated stock mixture analysis for continuous and categorical data, with application to genetic–otolith combinations. Can. J. Fish. Aquat. Sci. 67, 1533–1567. STURGEON, R. E., WILLIE, S. N., YANG, L., GREENBERG, R., SPATZ, R. O., CHEN, Z., SCRIVER, C., CLANCY, V., LAM, J. W., AND THORROLD, S. 2005. Certification of a fish otolith reference material in support of quality assurance for trace element analysis. J. Anal. At. Spectrom. 20 (10), 1067-1071. SOLOMON, C.T., WEBER, P.K., CECH, J.R.J.J., INGRAM, B.L., CONRAD, M.E., MACHAVARAM, M.V. 2006. Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences 63, 79-89. SUZUKI, H., A.E.A. M. VAZZOLER, V.N. PHAN. 1983. Estudo electroforético de proteínas de músculo esquelético de Micropogonias furnieri (Desmarest, 1823) da costa SE-S do Brasil. 1, Considerações técnicas. Bol.Inst.Oceanoqr., São Paulo, 32(2),153-65. TAKASUKA, A., OOZEKI, Y., AND KUBOTA, H. 2008. Multi-species regime shifts reflect in spawning temperature optima of small pelagic fish in the western North Pacific. Mar Ecol Prog Series, 360, 211-217. THORROLD SR, CAMPANA SE, JONES CM, SWART PK. 1997. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 61, 2909-2019. VALENTIN, J. e MOREIRA, A. P. 1978. A matéria orgânica de origem zooplanctônica nas águas de ressurgência de Cabo Frio (Brasil). An Acad Bras Ciênc, 50, 104-112. VAN OOSTERHOUT C., HUTCHINSON W. F., WILLS D. P. M., SHIPLEY P. 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535-538. VASCONCELOS, M., HAIMOVICI, M. 2006. Status of white croaker Micropogonias furnieri exploited in southern Brazil according to alternative hypotheses of stock discreetness. Fisheries Research 80, 196-202. VASCONELLOS, A. V. 2012. Diferenciação molecular de estoques de corvinas (Micropogonias furnieri) na costa Atlântica da América do Sul. Tese de doutorado, UFRJ Rio de Janeiro, 203 p. VASCONCELLOS, A. V. DE, LIMA, D., BONHOMME, F., VIANNA, M., SOLÉ- CAVA, A. M. 2015. Genetic population structure of the commercially most important demersal fish in the Southwest Atlantic: The whitemouth croaker (Micropogonias furnieri). Fisheries Research, 167, 333-337. VAZZOLER, A.E.A.M. 1971. Diversificação fisiológica e morfológica de Micropogonias furnieri (Desmarest, 1823) ao sul de Cabo Frio, Brasil. Boletim do Instituto Oceanográfico, 20, 1-70. VAZZOLER, A.E.A.M. & V.N. PHAN. 1989. Padrões electroforéticos de proteínas gerais de cristalino de Micropogonias furnieri (Demarest, 1823), da costa sudeste-sul do Brasil: estudo populacional. Bolm. Inst. Oceanogr. São Paulo, 37, 21-28. VOLPEDO AV, CIRELLI AF. 2006. Otolith chemical composition as a useful tool for sciaenid stock discrimination in the south-western Atlantic. Sci Mar 70 (2), 25- 334. WARE, D. M. AND TANASICHUK, R. W. 1989. Biological basis of maturation and spawning waves in pacific Herring (Clupea harengus pallasi). Can J Fish Aquat, 46, 1776-1784. WOODSON, L.E., WELLS, B. K., GRIMES, C. B., FRANKS, R. P., SANTORA, J. A., CARR, M. H. 2013. Water and otolith chemistry identify exposure of juvenile rockfish to upwelled waters in an open coastal system. Mar. Ecol. Prog. Ser. 473, 261-273.por
dc.subject.cnpqEcologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/68550/2017%20-%20Taynara%20Pontes%20Franco.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5467
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-03-21T19:09:09Z No. of bitstreams: 1 2017 - Taynara Pontes Franco.pdf: 1969040 bytes, checksum: 3492315481212ca81da9489407fbdfdc (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-03-21T19:09:09Z (GMT). No. of bitstreams: 1 2017 - Taynara Pontes Franco.pdf: 1969040 bytes, checksum: 3492315481212ca81da9489407fbdfdc (MD5) Previous issue date: 2017-08-08eng
Appears in Collections:Doutorado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2017 - Taynara Pontes Franco.pdf1.92 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.