Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9275
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMathias, Simone Pereira
dc.date.accessioned2023-12-21T18:37:05Z-
dc.date.available2023-12-21T18:37:05Z-
dc.date.issued2011-01-10
dc.identifier.citationMATHIAS, Simone Pereira. Efeito da alta pressão hidrostática sobre o crescimento de bactérias ácido lácticas e inativação de Salmonella enteritidis em presunto de peru. 2011. 127 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2011.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9275-
dc.description.abstractNo presente estudo, foi aplicada a alta pressão hidrostática (APH) de 400 MPa por 15 minutos em temperatura ambiente, em presunto de peru, com posterior estocagem a 4, 8 e 12°C, sendo utilizados os modelos matemáticos de Gompertz Modificado e Baranyi com intuito de ajustar as curvas do crescimento microbiano de bactérias ácido lácticas (BAL) durante o armazenamento. A mesma condição operacional do processo e armazenamento sob condição normal de refrigeração (7°C) e temperatura de abuso (13°C) foi empregada para isolamento, identificação e avaliação quanto à produção de bacteriocinas pelas BAL, frente à Salmonella Enteritidis ATCC 13706, utilizando os meios ágar MRS (Man Rogossa e Sharp) e ágar M-17. Outro ponto avaliado foi a inativação do patógeno com uso de pressões de 300 e 400 MPa, ciclo contínuo de 15 minutos e ciclos múltiplos de 2 ciclos de 7,5 minutos, de 3 ciclos de 5 minutos e de 5 ciclos de 3 minutos em temperatura ambiente. Após a avaliação de tal inativação pela APH as amostras foram armazenadas a 7°C e foi realizada posterior recuperação. Foi observado que o modelo de Gompertz Modificado se adequou melhor às temperaturas de 4 e 12°C e o modelo de Baranyi apresentou melhor ajuste para 8°C para o crescimento das BAL, e todas as amostras pressurizadas tiveram aumento de validade comercial quando comparadas às amostras controle. O tratamento a alta pressão, mesmo em temperaturas de abuso de armazenamento, proporcionou validade comercial de 42 dias, enquanto a amostra não pressurizada e armazenada a 7°C, apresentou validade comercial de 35 dias. No isolamento das BAL foram identificados os gêneros Enterococcus sp e Streptococcus sp como microbiota contaminante e as cepas foram capazes de produzir halo de inibição frente ao patógeno, na proporção de 91,6% de Enterococcus sp e 25,0% de Streptococcus sp para as amostras controle, e 70,8% dos isolados de Enterococcus sp e 8,3% de Streptococcus sp para amostras pressurizadas. Ao se avaliar a inativação, pode-se observar que a concentração inicial de 6,8 log10 UFC/mL da cepa de Salmonella Enteritidis inoculada, após 24 horas sob refrigeração apresentou redução decimal de 1,5 log10 UFC/g para as amostras controle. E a partir da aplicação de pressão de 300 MPa em ciclo contínuo de 15 minutos houve posterior redução de 2,8 log10 UFC/g, enquanto que tratamentos a mesma pressão com 2 ciclos de 7,5 minutos, 3 ciclos de 5 minutos e 5 ciclos de 3 minutos resultaram em reduções de 2,9 log10, 2,9 log10 e 3,2 log10 UFC/g, respectivamente. Já tratamentos de 400 MPa em ciclo contínuo ou múltiplos ocasionou a completa inativação microbiana. Finalmente avaliando-se a recuperação de células injuriadas pela APH pode-se observar que houve maior recuperação através da metodologia TAL (Fina camada de ágar) ao ser comparada com os meios seletivos e usuais, o ágar XLD (ágar xilose lisina desoxicolato) e ágar TSA (ágar triptona de soja), após armazenamento a 10°C por 10 dias. De modo global, concluiu-se que a tecnologia de APH mostrou-se eficiente na inativação do patógeno e deteriorantes presentes no presunto de peru, proporcionando aumento significativo da validade comercial do produto.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectAlta pressão hidrostáticapor
dc.subjectmicrobiologia preditivapor
dc.subjectbactérias ácido lácticaspor
dc.subjectSalmonella Enteritidispor
dc.subjectinativaçãopor
dc.subjectHigh hydrostatic pressureeng
dc.subjectpredictive microbiologyeng
dc.subjectlactic acid bacteriaeng
dc.subjectSalmonella Enteritidiseng
dc.subjectinactivationeng
dc.titleEfeito da alta pressão hidrostática sobre o crescimento de bactérias ácido lácticas e inativação de Salmonella enteritidis em presunto de perupor
dc.title.alternativeEffect of high hydrostatic pressure on the growth of lactic acid bacteria and inactivation of Salmonella enteritidis in turkey ham.eng
dc.typeTesepor
dc.description.abstractOtherIn this study high hydrostatic pressure (HHP) at 400 MPa for 15 minutes at room temperature was applied to turkey ham followed by storage at 4, 8, 12°C. Lactic acid bacteria (LAB) growth data were adjusted to Modified Gompertz and Baranyi models at different storage temperatures. The same HHP operational conditions were applied followed by normal refrigerated (7°C) and abusive (13°C) storage conditions aiming at isolating, identifying and evaluating bacteriocin productions by LAB against Salmonella Enteritidis ATCC 13706, using MRS (Man, Rogossa and Sharp) agar and M-17 agar. Also the inactivation of such pathogen was evaluating by using either 300 or 400MPa in a continuous processing of 15 minutes or multiple cycles (2 cycles of 7.5 minutes; 3 cycles of 5 minutes; 5 cycles of 3 minutes) at room temperature. Following the HHP treatments the samples were stored at 4°C and carried out further evaluation of the pathogen recuperation. It was verified that the Gompertz Modified model better fitted LAB growth data at 4 and 12°C, while Baranyi model presented better adjustment at 8°C. It was also observed that pressurized samples showed higher commercial validity when compared to control samples. High pressure treatment even at abusive storage temperature allowed commercial validity of 42 days, while non pressurized control samples presented validity of 35 days. The Enterococcus sp and Streptococcus sp genera were identified as contaminant microbiote. The strains were able to produce inhibition halos against the pathogenic target, in the proportion of 91.6% of Enterococcus sp and 25% Streptococcus sp for control samples isolates, and 70.8% of Enterococcus sp and 8.3% of Streptococcus sp for pressurized samples isolated. By evaluation the HHP inactivation of 6.8 log10 CFU/mL, a decimal reduction of 1.5 log10 CFU/g was verified within 24 hours of refrigerated storage previously to the processing. The HHP continuous treatment at 300 MPa for 15 minutes lead to a reduction of 2.8 log CFU/g, while the treatments with 2 cycles of 7.5 minutes; 3 cycles of 5 minutes, and 5 cycles of 3 minutes, resulted in population decrease of 2.9 log, 2.9 log10 and 3.2 log CFU/g, respectively. On the other hand, treatments at 400 MPa both continuously or in cycles resulted in complete inactivation of the pathogen. Finally, by evaluating the recuperation of injured cells by HHP it was possible to observed that a higher recuperation was obtained through TAL (thin agar layer) methodology in comparison to XLD (xylose lysine deosxycholate agar) and TSA agar (trypticase soy agar), in samples stored at 10°C for 10 days. In overall, it was concluded that HHP was shown to be an efficient method for inactivating the target pathogen and spoilage microorganism, allowing a greater significant increase in the commercial validity.eng
dc.contributor.advisor1Rosenthal, Amauri
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1329532290735502por
dc.contributor.advisor-co1Gaspar, Arlene
dc.contributor.referee1Mano, Sérgio Borges
dc.contributor.referee2Torrezan, Renata
dc.contributor.referee3Silva, Janine Passos Lima da
dc.contributor.referee4Saldanha, Tatiana
dc.creator.ID072.803.187-62por
dc.creator.Latteshttp://lattes.cnpq.br/3876932417920038por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesBaranyi J, Robinson TP, Kaloti A & Mackey BM. (1995). Predicting growth of Brochothrix thermosphacta at changing temperature. International Journal of Food Microbiology, 27, 61–75. Baranyi J & RobertsTA. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23, 277-294. Baty F & Delignette-Muller, ML. (2004). Estimating the bacterial lag time: which model, which precision? International Journal of Food Microbiology, 91(3), 261-277. Borch E, Kant-Muermans ML & Blixt Y. (1996). Bacterial spoilage of meat and cured meat products. International Journal of Food Microbiology, 33, 103-120. Calderón-Miranda ML, González MFSM & Barbosa-Cánovas GV, Swanson BG. (1998). Métodos no térmicos para procesamiento de alimentos: variables e inactivación microbiana. Brazialian Journal of Food Thecnology, 1, 3-11. Carpi G, Squarcina N, Gola S, Rovere P, Pedrielli R & Bergamaschi M. (1999). Application of high pressure treatment to prolong the refrigerated shelf-life of sliced cooked ham. Industria Conserve, 74, 327-339. Dogman C & Erkmen O. (2004). High pressure inactivation Kinetics of Listeria monocyogenes inactivation in broth, milk, and peach and orange juice. Journal of Food Engineering, 62, 47-52. Gospavic R, Kreyenschmidt K, Bruckner S, Popov V & Haque N. (2008). Mathematical modelling for predicting the growth of Pseudomonas ssp. in poultry under variable temperature conditions. Int ernational Journal of Food Microbiology, 127, 290–297. Hall PA, Ledenbach L & Flowers RS. Acid Producing Microorganisms. In: Downes FP & Ito K. Compendium of Methods for the Microbiological Examination of Foods. 4th ed. Washington: American Public Health Association, 2001, 19, p.201-207. Knorr D. (1993). Effects of high hydrostatic pressure processes on food safety and quality. Food Technology, 47 (6), 156-161. Kreyenschmidt J, Hübner A, Beierle E, Chonsch A, Scherer A & Petersen B. (2009). Determination of the shelf life of sliced cooked ham based on the growth of lactic acid bacteria in different steps of the chain. Journal of Applied Microbiology, 108, 510-520. López-Caballero ME, Carballo J & Jimenez-Colmenero.(1999). Microbiological changes in pressurized, prepackaged sliced cooked ham. Journal of Food Protection, 62(12), 1411-1415. 47 Mataragas M, Drosinos EH, Vaidanis A & Metaxopoulos, I. (2006). Development of a predictive model for spoilage of cooked cured meat products and its validation under constant and dynamic temperature storage conditions. Journal of Food Science, 71, 157–167. Mataragas M, Skandamis P, Nychas G-JE & Drosinos EH. (2007). Modeling and predicting spoilage of cooked, cured meat products by multivariate analysis. Meat Science, 77, 348–356. McMeekin TA, Ross T & Olley J. (1992). Application of predictive microbiology to assure the quality and safety of fish and fish products. International Journal of Food Microbiology, 15, 13– 32. Park SW, Sohn KH, Shin JH & Lee HJ. (2001). High hydrostatic pressure inactivation of Lactobacillus viridescens and its effect on ultrastructure of cells. International Journal of Food Science and Technology, 36, 775-781. Raab V, Bruckner S, Beierle E, Kampmann Y, Petersen B & Kreyenschmidt J. (2008). Generic model for theprediction of remaining shelf life in support of cold chain management in pork and poultry supply chains. Journal on Chain and Network Science 8, 59–73. Rastogi NK, Raghavarao KSMS, Balasubramaniam VM, Niranjan K & Knorr D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, 47(1), 69–112. Rosenthal A & Silva JL. (1997). Alimentos sob pressão. Engenharia de alimentos, 14, 37-39. Ruiz-Capillas C, Carballo J & Colmenero FJ. (2007). Biogenic amines in pressurized vacuumpacked cooked sliced ham under different chilled storage conditions. Meat Science, 75, 397-405. Samelis J, Kakouri A, Georgiadou KG & Metaxopoulos J. (1998). Evaluation of the extent and type of bacterial contamination at different stages of processing of cooked ham. Journal of Applied Microbiology, 84, 649-660. Sangronis E, Pothakamury U, Ramos AM, Ibraz A, Barbosa-Cánovas GV & Swanson, BG. (1997). La alta presión hidrostática: una alternativa en el procesamiento no térmico de los alimentos. Alimentaria, 283, 33-43. Santos EM, Jaime I, Rovira J, Lyhs U, Korkeala H & Bj€Orkroth J. (2005). Characterization and identification of lactic acid bacteria in “Morcilla de Burgos” International Journal of Food Microbiology, 97, 285-296. Slongo AP, Rosenthal A, Camargo LMQ, Deliza R, Mathias SP & Aragão GMF.(2009). Modeling the growth of lactic acid bacteria in sliced ham processed by high hydrostatic pressure. LWTFood Science Technology, 42, 303-6. Sutherland JP & Bayliss AJ. (1994). Predictive modelling of growth of Yersinia enterocolítica : the effects of temperature, pH and sodium chloride. International Journal of Food Microbiology, 21, 197-215. Vermeiren L, Devlieghere F & Debevere J. Evaluation of meat born lactic acid bacteria as protective cultures for the biopreservation of cooked meat products. International Journal of Food Microbiology, 96, 149-164. Vermeiren L, Devlieghere F, De Graef V & Debevere J. (2005). In vitro and in situ growth characteristics and behaviour of spoilage organisms associated with anaerobically stored cooked meat products. Journal of Applied Microbiology, 98, 33-42. Zwietering MH, de Koos JT, Hasenack BE, de Wit JC & van’t Riet K. (1991). Modeling of bacterial growth as a function of temperature. Applied and Environmental Microbiology, 57, 109BALASUBRAMANIAM, V.M.; FARKAS, D. High pressure of food processing. Food Science and Technology, v.14, n.5, p.413-418, 2008. BORCH, E.; NERBTINK, E.; SVENSSON, P. Identification of major contamination sources during processing of emusion sausage. International Journal of Food Microbiology, v.7, p.317-330, 1988. CARPI, G.; SQUARCINA, N.; GOLA, S.; ROVERE, P.; PEDRIELLI, R..; BERGAMASCHI, M. Application of high pressure treatment to extend the refrigerated shelf-life of sliced cooked ham. Industria Conserve, v.74, p. 327-339, 1999. DUNNE C.P. Killing pathogens: high-pressure processing keeps food safe. Disponível em: http://www.military.com/soldiertech/0,14632,Soldiertech_Squeeze,00.html Acesso: 25 de julho de 2010. FRANCO, B.D.G.; LANDGRAF, M. Microbiologia dos Alimentos. (Ed) São Paulo: Atheneu. 2003, Cap.2, 13-23p. GARRIGA, M.; AYMERICH, M.T.; COSTA, S.; MONFORT, J.M.; HUGAS, M. Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage. Food Microbiology, v.19, p.509-518, 2002. GARRIGA, M., GREBOL, M.T., AYMERICH, J.M., MONFORT, J.M., HUGAS, M. Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innovative Food Science and Emerging Technologies, v.5, p.451-457, 2004. HALL, P.A.; LEDENBACH, L.; FLOWERS, R.S. Acid Producing Microorganisms. In: DOWNES, F.P.; ITO, K. Compendium of Methods for the Microbiological Examination of Foods. 4ed. Washington: American Public Health Association, 2001, v.19, p.201-207. 58 KENNEDY, J.; JACKSON, V.; BLAIR, I.S.; MCDOWELL, D.A.; COWAN, C.; BOLTON, D.J. Food safety knowledge of consumers and the microbiological and temperature status of their refrigerators. Journal of Food Protection, v.68, p.1421–1430, 2005. KORKEALA, H.; ALANKO, T.; MAKEL, A.P.; LINDROTH, S. Shelf-life of vaccum-packed cooked ring sausages at different chill temperatures. International Journal of Food Microbiology, v.9, p.237–247, 1989. LÓPEZ-CABALLERO, M.E.; CARBALLO, J.; JIMÉNEZ-COLMENERO, F. Microbial inactivation in meat products by pressure/ temperature processing. Journal of Food Protection, v.62, p.1411-1415, 1999. __________. Responses of Pseudomonas fluorences to combined high pressure/ temperature treatments. European Food Reseach Technology, v.214, n.6, p.511-515, 2002 MATHIAS, S. P. Avaliação físico-química, microbiológica e sensorial do presunto de peru submetido à tecnologia de alta pressão hidrostática. 2008, 87f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos), Universidade Federal Rural do Rio de Janeiro, 2008. NYCHAS, G-J, E.; SKANDAMIS, P.N.; TASSOU, C.C.; KOUTSOUMANIS, K.P. Meat spoilage during distribution. Meat Science, v.78, p.77-89, 2008. SAMELIS, J.; KAKOURI, A.; GEORGIADOU, K.G.; METAXOPOULOS, J. Evaluation of the extent and type of bacterial contamination at different stages of processing of cooked ham. Journal of Appllied Microbiology, v.84, p. 649-660, 1998. SAMELIS, J.; KAKOURI, A.; REMENTZIS, J. Selective effect of the product type and the packaging conditions on the species of lactic acid bacteria dominating the spoilage microbial association of cooked meats at 4°C. Food Microbiology, v.17, p.329–340, 2000. SLONGO, A.P. Determinação da Vida de Prateleira e Análise Sensorial de Presunto Suíno Submetido ao Tratamento de Alta Pressão Hidrostática. 2008, 163f. Tese (Doutorado em Engenharia de Alimentos), Universidade Federal de Santa Catarina, UFSC, 2008. SLONGO, A.P.; ROSENTHAL, A.; CAMARGO, L.M.Q.; DELIZA, R.; MATHIAS, S.P.; FALCÃO DE ARAGÃO, G.M. Modelling the growth of lactic acid bacteria in sliced ham processed by high hydrostatic pressure. LWT-Food Science Technology, v.42, p.303-306, 2009. TORRES, J.A.; VELAZQUEZ, G. Commercial opportunities and research challenges in the high pressure processing of food. Journal of Food Engineering, v.67, p.95-112, 2005. WELLS, J.H.; SINGH, R.P. A quality-based inventory issue policy for perishable foods. Journal of Food Processing and Preservation, v.12, p.271–292, 1989. AYMERICH, M.T.; JOFRÉ, A.; GARRIGA, M.; HUGAS, M. Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. Journal of Food Protection, v.68, p.173–177, 2005. AXELSSON, L.T. Lactic acid bacteria: classification and physiology. In: SALMINEN, S., WRIGHT, A., (Ed.). Lactic acid bacteria. New York: Marcel Dekker, 1993, cap.1, 63p. BROMBERG, R.; MORENO, I.; DEBLON, R.; CINTRA, H. Características da bacteriocina produzida por Lactococcus lactis ssp. hordniae CTC 484 e seu efeito sobre Listeria monocytogenes em carne bovina. Ciência e Tecnologia de Alimentos, v.26, p.135-144, 2006. 71 CAPLICE, E.; FITZGERALD, G.F. Food fermentations: role of microorganisms in food production and preservation. International Journal of Food Microbiology, v.50, p.131-149, 1999. CLEVELAND, J.; MONTVILLE, T.J.; NES, I.F.; CHIKINDAS, M.L. Bacteriocins: safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, v.71, p.1- 20, 2001. DOMIG, K.J.; MAYER, H.K.; KNEIFEL, W. Methods used for the isolation, enumeration, characterisation and identification of Enterococcus spp. 1 – Media for isolation and enumeration. International Journal of Food Microbiology, v.88, p.147-164, 2003. HALL, P.A.; LEDENBACH, L.; FLOWERS, R. Acid-Producing Microorganisms. In: DONNES, F.P. ITO, K. Compendium of Methods for the Microbiological Examination of Foods. 4ed. Washington: APHA, 2001, cap.16, 201-206p. HARRIGAN, W. F. Laboratory Methods in Food Microbiology. 3ed. San Diego: Academic Press, 1998. HOLT, J.G.; KRIEG, N.R.; SNEATH, P.H.A. Gram positive cocci. In: Bergey’s Manual of Determinative Bacteriology. HOLT, J.C.; KRIEG, N.R.; SNEATH, P.H et al. 9ed, Williams & Wilkins: Baltimore, 1994, 527p. HUGAS, M. Bacteriogenic lactic acid bacteria for the biopreservation of meat and meat products. Meat Science, v.49, p.S139-S150, 1998. KALCHAYANAND, N.; SIKES, T.; DUNNE, C.P.; RAY, B. Hydrostatic pressure and electroporation have increased bactericidal efficiency in combination with bacteriocins. Applied and Environmental Microbiology, v.60, p.4174–4177, 1994. LEISTNER, L.; GORRIS, L.G.M. Food preservation by hurdle technology. Trends in Food Science and Technology, v.6, p.2–46, 1995. LEROY, F.; DE VUYST, L. Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacteriocin sakacin k. Applied and Environmental Microbiology, v.65, n.3, p.974-981, 1999a. LEROY, F.; DE VUYST, L. The presence of salt and a curing agent reduces bacteriocin production by Lactobacillus sakei CTC494, a potential starter culture for sausage fermentation. Applied and Environmental Microbiology, v. 65, n.12, p.5350-5356, 1999b. LÓPEZ-DIAZ, T.M.; ALONSO, C.; GARCÍA-LÓPEZ, M.L.; MORENO, B. Lactic acid bacteria isolated from a hand-made blue cheese. Food Microbiology, v.17, p.23-32, 2000. MATARAGAS, M.; METAXOPOULOS, J.; GALIOTOU, M.; DROSINOS, E.H. Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Science, v. 64, p. 265-271, 2003. 72 POTES, M.E.; MARINHO, A.A. Utilização de diferentes meios de cultura na identificação e recuperação de bactérias lácticas. Revista Portuguesa de Ciências Veterinárias, v.102, p.145- 151, 2007. POULLET, B.; HUERTAS, M.; SÁNCHEZ, A.; CÁCERES, P.; LARRIBA, G. Main lactic acid bacteria isolated during ripening of Cásar de Cáceres cheese. Journal of Dairy Reseach, v.60, p.123-127, 1993. RASTOGI, N.K.; RAGHAVARAO, K.S.M.S.; BALASUBRAMANIAM, V.M.; NIRANJAN, K.; KNORR, D. Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, v.47, p.69–112, 2007. RODRÍGUEZ, E.; ARQUES, J.L.; NUNEZ, M.; GAYA, P.; MEDINA, M. Combined effect of high-pressure treatments and bacteriocin-producing lactic acid bacteria on inactivation of Escherichia coli O157:H7 in raw-milk cheese. Applied and Environmental Microbiology, v.71, p.3399–3404, 2005. SANTOS, W.L.M. Aislamento y caracterizacion de una bacteriocina producida por Pediococcus sp. 347, de origem carnica. 1993, 244p. Tese Doutor em Veterinária Universidad Complutense de Madrid, Facultad de Veterinária, Madrid.1993. SHAHIDI, F. Developing alternative meat-curing systems. Trends Food Science and Technology, v.2, p.219-222, 1991. SHILLINGER, U.; LÜCKE, F.K. Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology, v.55, p.1.901-1.906, 1989. STILES, M.E.; HASTINGS, J.W. Bacteriocin production by lactic acid bacteria: Potential for use in meat preservation. Trends Food Science and Technology, v.2, p.247-251, 1991. TER STEEG, P.F.; HELLEMONS, J.C.; KOK, A.E. Synergistic actions of nisin, sublethal ultrahigh pressure, and reduced temperature on bacteria and yeast. Applied and Environmental Microbiology, v.65, p.4148–4154, 1999. TORNADIJO, M.E.; FRESNO, J.M.; BERNARDO, A.; MARTÍN SARMIENTO, R.; CARBALLO, J. Microbiological changes throughout the manufacturing and ripening of a Spanish goat’s raw milk cheese (Armada variety). Lait, v.75, p.551-570, 1995. VANDERZANT, C.; SPLITTSTOESSER, D.F. Compendium of Methods for the Microbiological Examination in Foods. 3rd. Washington DC: APHA – American Public Health Association, 1992. YOUSEF, A.E.; LUCHANSKY, J.B.; DEGNAN, A.J.; DOYLE, M.P. Behavior of Listeria monocytogenes in wiener exudates in the presence of Pediococcus acidilactici H or Pediocin AcH during storage at 4or 25°C. Applied and Environmental Microbiology, v. 57, n.5, p.1461-1467, 1991. ANDREATTI FILHO, R.L. Paratifo aviário. In: ANDREATTI FILHO, R.L. (Ed). Saúde aviária e doenças. São Paulo, Roca, 2007, 96-111p. ANDREWS, W.H.; FLOWERS, R.S.; SILLIKER, J.; BAILY, J.S. Salmonella. In: DOWNES, F.P.; ITO, K. Compendium of Methods for the Microbiological Examination of Foods. 4ed. Washington: American Public Health Association, APHA 2001, Cap.37, p.357-380. ANTUNES, P.; RÉU, C.; SOUSA, J.C.; PEIXE, L.; PESTANA, N. Incidence of Salmonella from poultry products and their susceptibility to antimicrobial agents. International Journal of Food Microbiology, v.82, p.97–103, 2003. BARI, M.L.; UKUKU, D.O.; MORI, M.; KAVAMOTO, S.; YAMAMOTO, K. Effect of hydrostatic pressure pulsing on the inactivation of Salmonella Enteritidis in liquid whole egg. Foodborne Pathogens and Disease, v.5, p.175–182, 2008. BOHAYCHUCK, V.M.; GENSLER, G.E.; KING, R.K.; MANNINEN, K.I.; SORENSEN, O.; WU, J.T.; STILES, M.E.; McMULLEN, L.M. Occurrence of pathogens in raw and ready to eat meat and poultry products collected from the retail marketplace in Edmonton, Alberta, Canada. Journal of Food Protection, v.69, p.2176–2182, 2006. CAPELLAS, M.; MOR-MUR, M.; GERVILLA, R.; YUSTE, J.; GUAMIS, B. Effect of high pressure combined with mild heat or nisin on inoculated bacteria and mesophiles of goat’s milk fresh cheese. Food Microbiology, v.17, n.6, p.633-641, 2000. 83 CAPITA, R.; ALVAREZ-ASTORGA, M.; ALONSO-CALLEJA, C.; MORENO, B.; GARCÍAFERNÁNDEZ, M.C. Occurrence of salmonellae in retail chicken carcasses and their products in Spain. International Journal of Food Microbiology, v.81, p.169–173, 2003. CHEFTEL, J.C. Review: high-pressure, microbial inactivation and food preservation. Food Science and Technology International, v.1, p.75-90, 1995. DE LAMO-CASTELLVÍ, S.; ROIG-SAGUÉS, A.X.; LÓPEZ-PEDEMONTE, T.; HERNÁNDEZ-HERRERO, M.M.; GUAMIS, B.; CAPELLAS, M. Response of two Salmonella enterica strains inoculated in model cheese treated with high hydrostatic pressure. Journal of Dairy Science, v.90, p.99–109, 2007. FIORETTO, F.; CRUZ, C.; LARGETEAU, A.; SARLI, T.S.; DEMAZEAU, G.; EL MOUEFFAK, A. Inactivation of Staphylococcus aureus and Salmonella Enteritidis in tryptic soy broth and caviar samples by high pressure processing. Brazilian Journal Medical and Biological Research, v.38, p.1259-1265, 2005. FONBERG-BROCZEK, M.; WINDYGA, B.; SZCZAWIN SKI, J.; SZCZAWINSKA, M.; PIETRZAK, D.; PRESTAMO, G. High pressure processing for food safety. Acta Biochemica Polonica, v.52, p.721–724, 2005. GARRRIGA, M.; GREBOL, N.; AYMERICH, M.T.; MONFORT, J.M; HUGAS, M. Microbial inactivation after high-pressure processing at 600MPa in commercial meat products over its shelf life. Innovative Food Science and Emerging Technology, v.5, p.451–457, 2004. GUAN, D.; CHEN, H.; HOOVER, D.G. Inactivation of Salmonella Typhimurium DT 104 in UHT whole milk by high hydrostatic pressure. International Journal of Food Microbiology, v.104, p.145–153, 2005. HALL P.A.; LEDENBACH L.; FLOWERS R.S. Acid Producing Microorganisms. In: DOWNES F.P.; ITO, K. Compendium of Methods for the Microbiological Examination of Foods. 4ed. Washington: American Public Health Association, APHA 2001, Cap.19, p.201-207. HAYAKAWA, I.; KANNO, T.; YOSHIYAMA, K.; FUJIO, Y. Oscillatory compared with continuous high pressure sterilization on Bacillus stearothermophilus spores. Journal of Food Science, v.59, p.164–167, 1994. HUANG, E.; MITTAL, G.S.; GRIFFITHS, M.W. Inactivation of Salmonella Enteritidis in liquid whole egg using combination treatments of pulsed electric field, high pressure and ultrasound. Biosystems Engineering, v.94, p.403–413, 2006. JAY, J.M. Modern food microbiology. 6ed. Maryland: Aspen, 2000, 679p. JOFRÉ, A.; AYMERICH, T.; GARRIGA, M. Assessment of the effectiveness of antimicrobial packaging combined with high pressure to control Salmonella sp. in cooked ham. Food Control, v.19, p.634–638, 2008. 84 MARCOS, B.; AYMERICH, T.; GARRIGA, M. Evaluation of high pressure processing as an additional hurdle to control Listeria monocytogenes and Salmonella enterica in low-acid fermented sausages. Journal of Food Science, v.70, p.M339–M344, 2005. MORALES, P.; CALZADA, J.; ÁVILA, M.; NUÑEZ, M. Inactivation of Escherichia coli O157:H7 in Ground Beef by Single-Cycle and Multiple-Cycle High Pressure Treatments. Journal of Food Protection, v.71, n.4, p.811-815, 2008. MORALES, P.; CALZADA, J.; RODRÍGUEZ, B.; DE PAZ, M.; NUÑEZ, M. Inactivation of Salmonella Enteritidis in Chicken Breast Fillets by Single-Cycle and Multiple-Cycle High Pressure Treatments. Foodborne Pathogens and Disease, v.6, p.577-581, 2009. MORTON, R.D. Aerobic Plate Count. In: DOWN, F.P.; ITO, K. Compendium of Methods for the Microbiological Examination of Foods. 4ed. Washington, D.C.: APHA, 2001, Cap.7, p.63-67. MATHIAS, S. P. Avaliação físico-química, microbiológica e sensorial do presunto de peru submetido à tecnologia de alta pressão hidrostática. 2008, 87f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos), Universidade Federal Rural do Rio de Janeiro, 2008. PONCE, E.; PLA, R.; SENDRA, E.; GUAMIS, B.; MOR-MUR, M. Destruction of Salmonella Enteritidis inoculated in liquid whole egg by high hydrostatic pressure: comparative study in selective and non-selective media. Food Microbiology, v.16, p.357–365, 1999. RASTOGI, N.K.; RAGHAVARAO, K.S.M.S.; BALASUBRAMANIAM, V.M.; NIRANJAN, K.; KNORR, D. Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, v.47, n.1, p.69–112, 2007. REIJ, M.W.; DEN AANTREKKER, E.D. Recontamination as a source of pathogens in processed foods. International Journal of Food Microbiology, v.91, p.1–11, 2004. RITZ, M.; PILET, M.F.; JUGIAU, F.; RAMA, F.; FEDERIGHI, M. Inactivation of Salmonella Typhimurium and Listeria monocytogenes using high-pressure treatments: destruction or sublethal stress. Letters in Applied Microbiology, v.42, p.357-362, 2006. SOULTOS, N.; KOIDIS, P.; MADDEN, R.H. Presence of Listeria and Salmonella spp. in retail chicken in Northern Ireland. Letters in Applied Microbiology, v.37, p.421–423, 2003. YUSTE, J.; MOR-MUR, M.; CAPELLAS, M.; GUAMIS, B.; PLA, R. Microbiological quality of mechanically recovered poultry meat treated with high hydrostatic pressure and nisin. Food Microbiology, v.15, n.4, p.407-414, 1998. YUSTE, J.; PLA, R.; MOR-MUR, M. Salmonella Enteritidis and aerobic mesophiles in inoculated poultry sausages manufactured with high-pressure processing. Letters in Applied Microbiology, v.31, p.374-377, 2000. ANDREWS, G.P.; MARTIN, S.E. Catalase activity during recovery of heatstressed Staphylococcus aureus MF-31. Applied and Environmental Microbiology, v.38, n.3, p.390- 394, 1979. ANANTH, V.; DICKSON, J.S.; OLSON, D.G.; MURANO, E.A. Shelf-life extension, safety, and quality of fresh pork loin treated with high hydrostatic pressure. Journal of Food Protection v.61, p.1649-1656, 1998. CHANG, V. P.; MILLS, E. W.; CUTTER, C. N. Comparison of recovery methods for freezeinjured Listeria monocytogenes, Salmonella Typhimurium, and Campylobacter coli in cell 95 suspensions and associated with pork surfaces. Journal of Food Protection, v.66, n.5, p.798- 803, 2003. CHEFTEL, J.; CURIOLI, J. Effects of high pressure on meat: a review. Meat Science, p.46, n.3, p.211-236, 1997. FIORETTO, F.; CRUZ, C.; LARGETEAU, A.; SARLI, T.A..; DEMAZEAU, G.; EL MOUEFFAK. Inactivation of Staphylococcus aureus and Salmonella Enteritidis tryptic soy broth and caviar samples by high pressure processing. Brazalian Journal of Medical and Biological Research, v.38, p.1259-1265, 2005. HAJMEER, M.N.; FUNG, D.Y.C.; MARSDEN, J.L.; MILLIKEN, G.A. Effects of preparation method, age, and plating technique of thin agar layer media on recovery of Escherichia coli O157:H7 injured by sodium chloride. Journal of Microbiological Methods, v.47, n.2, p.249- 253, 2001. HOOVER, D.G.; METRICK, C.; PAPINEAU, A.M.; FARKAS, D.F.; KNORR, D. Biological effects of high hydrostatic pressure on food microorganism. Food Technology, v.43, p.99-107, 1989. HURST. A. Revival of vegetative bacteria after sublethal heating. In: H. E. ANDREW, H.E.; RUSSELL, D. (Ed). The revival of injured microbes. Academic Press. London, 1984, 77-103p. KANG, D.H.; WONGLUMSOM, W.; FUNG, D.Y.C. Overlay method for recovery of heator acid-injured Listeria monocytogenes and Salmonella typhimurium. The Food Safety Consortium Annual Meeting, p.263-272, 1998. KANG, D.H.; FUNG, D.Y.C. Thin agar layer method for recovery of heat-injured Listeria monocytogenes. Journal of Food Protection, v.62, n.11, p.1346-1349, 1999. ____________. Application of thin agar layer method for recovery of injured Salmonella Typhimurium. International Journal of Food Microbiology, v.54, n.1, p.127-132, 2000. MATHIAS, S. P. Avaliação físico-química, microbiológica e sensorial do presunto de peru submetido à tecnologia de alta pressão hidrostática. 2008, 87f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos), Universidade Federal Rural do Rio de Janeiro, 2008. METRICK, C.; HOOVER, D.G.; FARKAS, D.F. Effects of high hydrostatic pressure on heatresistant and heatsensitive strains of Salmonella. Journal of Food Science, v.54, p.1547-1564, 1989. MORALES, P.; CALZADA, J.; ÁVILA, M.; NUÑEZ, M. Inactivation of Escherichia coli O157:H7 in Ground Beef by Single-Cycle and Multiple-Cycle High Pressure Treatments. Journal of Food Protection, v.71, n.4, p.811-815, 2008. 96 PATTERSON, M.F.; QUINN, M.; SIMPSON, R.; GILMOUR, A. Sensitivity of vegetative pathogens to high hydrostatic pressure treatments in phosphate-buffered saline and foods. Journal of Food Protection, v.58, p.524-529,1995. ROBERTS, T.A.; BAIRD-PARKER, A.C.; TOMPKIN, R. B. Microorganisms in foods. In: B.A. Professional (Ed), 1996, 126-140p. RITZ, M.; PILET, M.F.; JUGIAU, F.; RAMA, F.; FEDERIGHI, M. Inactivation of Salmonella Typhimurium and Listeria monocytogenes using high-pressure treatments: destruction or sublethal stress. Letters in Applied Microbiology, v.42, p.357-362, 2006. WESCHE, A. M.; GURTLER, J. B.; MARKS, S. P. RYSER, E. T. Stress, sublethal injury, resuscitation and virulence of bacterial foodborne. Journal of Food Protection, v.72, n.5, p.1121-1138, 2009. WU, V.C.H.; FUNG, D.Y.C. Evaluation of thin agar layer method for recovery of heat-injured foodborne pathogens. Journal of Food Science, v.66, p.580–583, 2001. WU, V.C.H.; FUNG, D.Y.C.; KANG, D.H.; THOMPSON, L.K. Evaluation of thin agar layer method for recovery of acidinjured foodborne pathogens. Journal of Food Protection, v.64, p.1067–1071, 2001. WU, V. C. H.; FUNG, D. Y. C.; KANG, D. H. Evaluation of thin agar layer method for recovery of cold-injured foodborne pathogens. Journal of Rapid Methods & Automation in Microbiology, v.9, n.1, p.11-25, 2001a. WU, V. C. H.; FUNG, D. Y. C.; KANG, D. H.; THOMPSON, L. K. Evaluation of thin agar layer method for recovery of acid-injured foodborne pathogens. Journal of Food Protection, v. 64, n.1, p.1067-1071, 2001b. WU, V.C.H. A review of microbial injury and recovery methods in food. Food Microbiology, v. 25, p.735-744, 2008. YUSTE, J.; FUNG, D.Y.C. Inactivation of Listeria monocytogenes Scott A 49594 in apple juice supplemented with cinnamon. Journal of Food Protection, v.65, p.1663–1666, 2002. YUSTE, J.; FUNG, D.Y.C.; THOMPSON, L.K.; CROZIER-DODSON, B.A. Combination of carbon dioxide and cinnamon to inactivate Escherichia coli O157:H7 in apple juice. Journal of Food Science, v.67, p.3087–3090, 2002. YUSTE, J.; FUNG, D.Y.C. Evaluation of Salmonella typhimurium, Yersinia enterocolitica and Staphylococcus aureus counts in apple juice with cinnamon, by conventional media and thin agar layer method. Food Microbiology, v.20, p.365–370, 2003. YUSTE, J.; CAPELLAS, M.; FUNG, D.Y.C.; MOR-MUR, M. Inactivation and sublethal injury of foodborne pathogens by high pressure processing: Evaluation with convencional media and thin agar layer method. Food Reseach International, v.37, p.861-866, 2004. ALEMÁN, G.D.; TING, E.Y.; MORDRE, S.C.; HAWES, A.C.O.; WALKER, M.; FARKAS, D.F.; TORRES, J.A. Pulsed ultra high pressure treatments for pasteurization of pineapple juice. Journal of Food Science, v.61, n.2, p.388-390, 1996. ALMEIDA, R.C.C.; SCHNEIDER, I.S. Aspectos microbiológicos e químicos de produtos alimentícios elaborados com carnes moídas vendidas no varejo no município de Campinas. Higiene Alimentar, v.2, n.12, p.37-41, 1993. ALPAS, D.; KALCHAYANAND, N.; BOZOGLU RAY, B. Intection of high hidrostatic pressure, pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensitive strains of foodborne pathogens. International Journal of Food Microbiology, v.60, p.33-42, 2000. ANDERSON, R.C.; ZIPRIN, R.L. Bacteriology of Salmonella. In: HUI, Y.H.; PIERSON, M.D.; GORHAM, J.R. (Ed.) Food Born Disease Handbook - Bacterial Pathogens, 2ed. USA: Marcel Dekker, Inc. 2001, vol.1, 247-263p. ANSTINE, T.T. High pressure processing for safe: Quality Foods. Cereal Food World, v.48, n.1, p.5-8, 2003. ARCHER, D.L. Preservation microbiology and safety: evidence that stress enhances virulence and triggers adaptive mutations. Trends in Food Science & Technology, v.7, n.3, p.91-95, 1996. ASHRAE. Refrigeration Handbook. Atlanta: American Society of Heating, Refrigerating and Air Condictioning Engineers, 1998, 667p. AUDIA, J.P.; WEBB, C.C.; FOSTER, J.W. Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. International Journal of Medical Microbiology, v.291, p.97-106, 2001. AVURE. The Global Leader in HPP Food Processing. Disponível: http://www.avure.com/food/ . Acesso em 05 janeiro. 2009. AXELSSON, L.T. Lactic acid bacteria: classification and physiology. In: SALMINEN, S., WRIGHT, A. (Ed). Lactic acid bacteria. New York: Marcel Dekker, 1993, cap.1, 63p. BACK, A.; BELTRÃO, N. Monitoria e Controle de Salmonela: aspectos práticos. In:VII Simpósio Brasil Sul de Avicultura, 2006, Chapecó(SC). Anais...Chapecó: Núcleo Oeste de Médicos Veterinários, 2006. 95-103p. BACK, A. Manejo sanitário de perus. Revista Brasileira de Reprodução Animal, v.31, n.3, p.322-327, 2007. BARANYI, J.; ROBERTS, T.A.; MCCLURE, P. A non-autonomous di_erential equation to model bacterial growth. Food Microbiology, v.10, p.43-59, 1993. 99 BARANYI, J.; ROBERTS, T.A. A dynamic ap- proach to predicting microbial growth in food. International Journal of Food Microbiology, v.23, p.277-294, 1994. ___________. Mathematics of predictive food microbiology. International Journal of Food Microbiology, v.26, 199-218, 1995. BARBOSA-CÁNOVAS, G.V.; RODRÍGUEZ, J.J. Update on non-thermal food processing technologies, irradiation and ultrasound. Food Australia¸ v.54, p.11, 2002. BARBOSA-CÁNOVAS, G.V.; POTHAKAMURY, U.R.; PALOU, E. Conservación no térmica de alimentos. Zaragoza: Acribia, 1999. BARROW, P.A. Salmonella infections in poultry – problems and new througts on the possibilities of control. Revista Brasileira de Ciências Agrárias, v.1, p.9-16, 1999. BRASIL. Ministério da Saúde, Secretaria de Vigilância Sanitária. Resolução RDC nº 12, de 02 de janeiro de 2001. Aprova o Regulamento Técnico sobre Padrões Microbiológicos para Alimentos. BEIJERINK, M.W. Sur les ferments de lactique de l’industrie (Lactic acid bacteria of the industry.) Arc Néerland des Sciences Extractes et Naturelles. v.6, p.212-43, 1901. BENNICK, M.H.; VANLOO, B.; BRASSEUR, R.; GORRIS, L.G.; SMID, E.J. A novel bacteriocin with a YGNGV motif from vegetable-associated Enterococcus mundtii: full characterization and interaction with target organisms. Biochimica at Biophysica Acta, v.1373, p.45-58, 1998. BLASER, M. J.; NEWMAN, L. S. A review of human samonellosis: I. Infective dose. Journal of Infections Diseases, v.4, p.1096-1106, 1982. BORCH, E.; KANT-MUERMANS, M.L.; BLIXT, Y. Bacterial spoilage of meat and cured meat products. International Journal of Food Microbiology, v.33, p.103-120, 1996. BORSOI, A. Ocorrência, contagem e resistência antimicrobiana de Salmonella isoladas de carcaças de frango resfriadas e pesquisa de Salmonella em galpões de frango de corte. 2005, 73f. Dissertação (Mestrado em Ciências Veterinárias), Universidade Federal Rio Grande do Sul, 2005. BREDHOLT, S., NESBAKKEN, T., HOLCK, A. Industrial application of an antilisterial strain of Lactobacillus sakei as a protective culture and its effect on the sensory acceptability of cooked, sliced, vacuum-packaged meats. International Journal of Food Microbiology, v.66, p.191-196, 2001. BRENNER, D.J. Family I. Enterobacteriaceae. In: KREIG, N. R. & HOLT, J. G. (ed.). Bergey´s Manual of Systematic Bacteriology, Baltimore: Williams and Wilkens, 1984, vol.1, p.408- 420p. 100 BUCHANAN, R.L. Developing and distributing user friendly application software. Journal of Industrial Microbiology and Biotechnology, v.12, p.251-255, 1993(a). BURR, M.D.; JOSEPHSON, K.L.; PEPPER, I.L. An evaluation of ERIC PCR and AP PCR fingerprinting for discriminating Salmonella serotypes. Letters in Applied Microbiology, v.27, n.1, p.24-30, 1998. BUSTA, F.F. Practical implications of injured microorganisms in food. Journal of Milk and Food Technology, Ames, v.39, n.2, p.138-45, 1976. BUTZ, P.; TAUSCHER, B. Emerging Technologies: chemical aspects. Food Research International, v.35, p.279-284, 2002. BUZRUL, S.; ALPAS, H. LARGETEAU, A. Compression heating of selected pressure transmitting fluids and liquid foods during high hydrostatic pressure treatment. Journal of Food Engineering, v.85, p.466-472, 2007. CALDERÓN-MIRANDA, M.L.; GONZÁLEZ, M.F.S.M.; BARBOSA-CÁNOVAS, G.V. SWANSON, E.G. Métodos no térmicos para procesamiento de alimentos: variables e inactivación microbiana. Brazialian Journal of Food and Technology, v.1, p.3-11, 1998. CAMPOS, F.P; DOUSUALDO, G.L.; CRISTIANINI, M. Utilização da tecnologia de alta pressão no processamento de alimentos. Brazialian Journal of Food and Technology, v.6, n.2, p.351-357, 2003. CAPLICE, E.; FITZGERALD, G.F. Food fermentations: role of microorganisms in food production and preservation. International Journal of Food Microbiology, Amsterdam, v.50, n. 1-2, p.131-149, 1999. CAYRÉ, M.E. VIGNOLO,G., GARRO, O. Modeling lactic acid bacteria growth in vaccumpackaged cooked meat emulsions stored at three temperatures. Food Microbiology, v.20, p.561- 566, 2003. CHEFTEL, J.C.; CURIOLI, J. Effects of high pressure on meat: a review. Meat Science, v.46, p.211-236, 1997. CHEFTEL, J.C. Review: high-pressure, microbial inactivation and food preservation. Food Science and Technology International, v.1, p.75-90, 1995. CHIAVARO, E.; BONARDI, S. Tecnologia ad alta pressioni e trattamente combinate pressione/temperatura.Industre Alimentari, v. 38, n.384, p.921-925, 1999. CINTAS, L.M.; CASAUS, P.; HAVARSTEIN, L.S.; HERNANDEZ, P.E.; NES, I.F. Biochemical and genetic characterization of enterocin P, a novel séc-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Applied and Environmental Microbiology, v.63, n.11, 4321-4330, 1997. 101 COLE, M.B. Opinion: predictive modeling. Yes it is! Letters in Applied Microbiology, v.13, p.218-219, 1991. CORRADINI, M.G., PELEG, M. Estimating non-isothermal bacterial growth in foods from isothermal experimental. Journal of Applied Microbiology, v.99, n.1, p.187-200, 2005. CORRY, J.E.L.; CURTIS, G.D.W.; BAIRD, R.M. Handbook of culture media for food microbiology. 2ed. Hardbound: Elsevier, 2003, 662 p. COTTER, P.C.; HILL, C.; ROSS, R.P. Bacteriocins: developing innate immunity for food. Nature Reviews, v.3, p.777-788, 2005. COSTA, M.C.; DELIZA, R.; ROSENTHAL, A. Revisão: Tecnologias não convencionais e o impacto no comportamento do consumidor. Boletim do CEPPA, v.17, n.2, p.187-210, 1999. CREMER, M.L.; CHIPLEY, J.R. Microbiological problems in the food service industry. Food Technology, v.34, p.59-68, 1980. CUNHA, M.L.R.S.; NERVINO, C.V.; HIROOKA, E.Y. Parâmetros causadores de injúria celular em estafilococos, com ênfase a microrganismos competidores. Revista Brasileira de Ciências Farmacêuticas, v.19, n.2, p.167-182, 1998. DARWIN, K.H.; MILLER, V.L. Molecular Basis of the Interation of Salmonella with the Intestinal Mucosa. Clinical Microbiology Reviews, v.12, p.405-428, 1999. DAVEY, K. R.; DAUGHTRY, B. J. Validation of a model for predicting the combined effect of three environmental factors on both exponential and lag phases of bacterial growth: temperature, salt concentration and pH. Food Research International, v.28, p.233-237, 1994. DELLAGLIO, H.; ROISSART, H.; TORRIANI, S.; CURK, M.C.; JANSSENS, D. Caractéristiques générales des bactéries lactiques. In: ROISSART, H., LUQUET, F.M. Bactéries lactiques: aspects fondamentaux et technologiques. Paris: Lorica, 1994. v.1, 25-139p. DELIZA, R.; ROSENTHAL, A.; ABADIO, F.B.D., SILVA, C.H.O., CASTILLO, C. Application of high pressure technology in the fruit juice processing: benefits perceived by consumers. Journal of Food Engineering, v.67, p.241-246, 2005. DE MARTINS, E.C.P.; ALVES, V.F.; FRANCO, B.D.G.M. Bioconservação de alimentos: Aplicação de bactérias ácido lácticas e suas bacteriocinas para garantia da segurança microbiológica de alimentos. Biotecnologia Ciência e Desenvolvimento, v.29, p.114-119, 2003a. DE VUYST, L.; VANDAMME, E.J. Bacteriocins of lactic acid bacteria. Microbiology, Genetics and Application. London: Chapman & Hall, p.1-12, 1994. DOGMAN, C.; ERKMEN, O. Ultra high hydrostatic pressure inactivation off Escherichia colli in milk, an orange and peach juice. Food Science and Technology International, v.9, n.6, p.403- 405, 2003. 102 ____________. High pressure inactivation kinetics of Listeria monocytogenes inactivation in broth, milk, peach and orange juice. Journal of Food Engineering, v.62, p.47-52, 2004. DONSÍ, G.; FERRARI, G.; DI MATTEO, M. High Pressure Stabilization of Orange Juice: Evaluation of the Effects of Process Conditions. Italian Food & Beverage Technology, v.8, p.10-14, 1996. DONSÍ, G.; FERRARI, G.; MARESCA, P. Pulsed high pressure treatment for the inactivation of Sacchamyces cerevisiae: the effect of process parameters. Journal of Food Engineering, v.78, p.984-990, 2007. DOYLE, E.M.; MAZZOTTA, A.S. Review of studies on the thermal resistance of Salmonellae. Journal of Food Protection, v.63, p.779-795, 2000. EBURNE, R.C.; PRENTICE, G. Modified-atmosfhere-packed ready-to-cook and ready-to eat meat products. In: MAN, C.M.D.; JONES, A.A. ed. Shelf life evaluation of food. Suffolk: Chapman & Hall, 1996, 156-178p. EGAN, A.F. Lactic acid bacteria of meat and meat products. Antonie Van Leewenhoek, v.49, p.327-336, 1983. EWING, W.H. Edward´s and Ewing´s Identification of Enterobacteriaceae. 4ed. New York: Elsevier Science Publishing Co., 1986. ERKMEN, O.; ALBEN, E. Mathematical and modeling of citric acid production and biomass formation by Aspergillus niger in undersized semolina. Journal of Food Engineering, v.52, p.161-166, 2002. ESPUÑA, 2009. Produccíon/ Alta Presión. Disponível: http://www.espuna.es/esp/home.htm Acesso em 10 junho. 2009. FDA. FOOD AND DRUG ADMINISTRATION. Kinetics of Microbial Inactivation for Alternative Food Processing Technologies. High Pressure Processing. U. S. Food and Drug Administration Center for Food Safety and Applied Nutrition, 2000. FAO, 2001. Technical Elements of New and Emerging. Non-Thermal Food Technologies. Disponível em: http:// www.fao.org/ag/ags/agsi/Nonthermal/nonthermal_1.htm#_. Acesso em 02 junho 2010. FARBER, J.M. Predictive modeling of food deterioration and safety. In: PIERSON, M.D.; STERN, N.J. Foodborne microorganisms and their toxins, p.57-90, 1986. FARKAS, D.F.; HOOVER, D.G. High pressure processing. Journal of Food Science, Chicago, suplement, p.47-64, 2000. FEHLHABER, K.; JANETSCHKE, P. Higiene Veterinária de los alimentos. Zaragoza: Acribia S.A, 1995. 103 FERREIRA, C.L.L.F. Grupo de bactérias láticas - caracterização tecnológica e aplicação de bactérias probióticas. In: FERREIRA, C.L.L.F. ed. Prebióticos e Probióticos: atualização e prospecção. Viçosa, 2003, cap.1, 7-33p. FLORES, M.L. Avaliação da técnica da reação em cadeia da polimerase na detecção de Salmonella sp em ovos de galinha artificialmente contaminados, em ovos comerciais do tipo colonial e em alimentos a base de ovos, envolvidos em surtos de infecções alimentares. 2001Tese (Doutorado em Ciências Veterinárias). Universidade Federal do Rio Grande do Sul, 2001. FOEGEDING, P.M. Driving predictive modeling on a risk assessment path for enhanced food safety. International Journal of Food Microbiology, v.36, p.87-95, 1997. FOLQUE-MORENO, M.R.; SARANTINOPOULOS, P.; TSACALIDOU, E., DE VUYST, L. The role and application of enterococci in food and health. International Journal of Food Microbiology, v.106, p.24, 2006. FORSYTHE, S.J. Microbiologia da Segurança Alimentar , Porto Alegre: Artmed, 2002. __________. Microbiologia da Segurança Alimentar. São Paulo: Artmed, 2000. FRANCO, B.D.G.; LANDGRAF, M. Microbiologia dos Alimentos. (Ed) São Paulo: Atheneu. 2003, cap.4, 55-60p. FRANZ, C.M.A.P.; SCHLEIFER, K.H.; HOLZAPFEL, W.H. Production and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE900 from black olives. International Journal of Food Microbiology, v.29, p.255-270, 1996. FRANZ, C.M.A.P.; STILES, M.E.; SCHLEIFER, K.H.; HOLZAPFEL, W.H. Enterococci in foods - a conundrum for food safety. International Journal of Food Microbiology, v.88, p.105- 122, 2003. FRAZIER, W.C.; WESTHOFF, D.C. Microbiologia de los alimentos. 4ed. Zaragoza: Acribia. 1993, 681p. GALIA, W.; PERRIN, C.; GENAY, M.; DARY, A. Variability and molecular typing of Streptococcus thermophilus strains displaying different proteolytic and acidifying properties. International Dairy Journal, v.19, p. 89-95, 2009. GARCIA-GRAELLS, C.; MASSEHALEK, B.; MICHIELS, C.W. Inactivation of Escherichia coli in milk by high-pressure treatment in combination with antimicrobial peptides. Journal of Food Protection, v.62, p.1248-1254, 1999. GARRIGA, M.; GREBOL, M.T.; AYMERICH, J.M. et al. Microbial inactivation after highpressure processing at 600MPa in commercial meat products over its shelf-life. Innovative Food Science and Emerging Technologies, v.5, p.451-457, 2004. 104 GRANT, S.; PATTERSON, M.; LEDWARD, D. Food processing gets freshly squeezed. Chemistry & Industry, n.2, p.55-58, 2000. GAST, R. K. Salmonella Infections. In: SAIF, Y. M. et al. Diseases of Poultry, 11ed. Iowa State University Press, 2003, cap.16, p.567-599. GEORGE, S.; RICHARDSON, L.C.C.; PECK, M.W. Predictive models of the e¡ect of temperature, pH and acetic and lactic acids on the growth of Listeria monocytogenes. International Journal of Food Microbiology, v.32, p.73-90, 1996. GELSOMINO, R.; VANCANNEYT, M.; CONDON, S.; SWINGS, J.; COGAN, T.M. Enterococcal diversity in the environment of an Irish Cheddar-type cheesemaking factory. International Journal of Food Microbiology, v.71, p.177-188, 2001. GIANNUZZI, L.; PINOTTI, A.; ZARITZKY, N. Mathematical modelling of microbial growth in packaged refrigerated beef stored at different temperatures. International Journal of Food Microbiology, v.39, p.101-110, 1998. GIRAFFA, G.; CARMINATI, D.; NEVIANI, E. Enterococci isolated from dairy products: a review of riscks and potencial technological use. Journal of Food Protection, v.60, p.732-738, 1997. GIRAFFA, G.; Enterococci in food. FEMAS Microbiology Reviews, v.26, p.163-171, 2002. __________. Functionality of enterococci in dary products. International Journal of Food Microbiology, v.88, p.215-222, 2003. GODFREE, A.F.; KAY, D.; WYER, M.D. Faecal streptococci as indicators of faecal contamination in water. Journal of Appied Microbiology Symposium Supplement, v.83, p.110S- 119S, 1997. GOLDBLITH, S.A.; JOSLYN, M.A.; NICKERSON, J.T.R. An introduction to thermal processing of foods. Vol. 1, Westport: AVI, 1961. 1128p. Apud: DOYLE, M.P.; BEUCHAT, L.R.; MONTVILLE, T.J. Food Microbiology - fundamentals and frontiers. Washington: ASM, p.728-739, 1997. GORMAN, R.; BLOONFIELD, S.; ADLEY, C.C. A study of cross-contamination of food-borne pathogens in the domestic Kitchen in the Republic of Ireland. International Journal of Food Microbiology, v.76, p.143-150, 2002. GOULD, G.W. Emerging technologies in food preservation and processing in the last 40 years. In: Barbosa-Cànovas, G.; Gould, G.W. Food Preservation Technology Series Innovations in Food Processing. USA: Lancaster, 2000. Cap.1, p.1-11. HARDIE, J.M; WHILEY, R.A. The genus Streptococcus. In: The Genera of Lactic Acid Bacteria. Ed. WOOD, B.J.D.; HOLZ,-APFEL, W.H. vol.2, 1995, 55-124p. 105 ___________. Classification and overview of the genera Streptococcus and Enterococcus. Journal of Applied Microbiology - Symposium Supplement, v.83, p.1S-11S, 1997. HARTMAN, P.A.; DEIBEL, R.H.; SIEVERDING, L.M. Enterococci. In: VANDERZANT, C.; SPLITTSTOESSER, D.F. (Ed). Compendium of Methods for the Microbiological Examination in Foods. 3rd. Washington DC: APHA – American Public Health Association, 1992, Cap.32, 523-531. HARTSELL, S. E. The longevity and behavior of pathogenic bacteria in frozen food: the influence of plating media. American Journal of Public Health, v.41, n.9, p.1072–1077, 1951. HASSAN, A. N.; FRANK, J. F. Starter cultures and their use. In: MARTH, E. H.; STEELE, J. L. Applied Dairy Microbiology, 2ed. New York: Marcel Decker, 2001. HAYERT, M.; PERRIER-CORNET, J-M.; GERVAIS, P. A simple method for measuring the pH of acid solutions under high pressure. Journal of Physical Chemistry, v.103, p.640-645, 1999. HAYASHI, R. Application of high pressure to food processing and preservation: philosophy and development. In: Engineering and Food. (W.E.L. Spiess and H. Schubert(ed). London: Elsevier Applied Science, 1989, v.2, 815p. HAUBEN, K.J.A.; BENAERTS, K.; MICHIELS, C.W. Protective effect of calcium on inactivation of Escherichia coli by high hydrostatic pressure. Journal of Applied Microbiology, v.85, p.678-684, 1998. HEYNDRICKX, M.; PASMANS, F.; DUCATELLE, R.; DECOSTERE, A.; HAESEBROUCK, F. Recent changes in Salmonella nomenclature: the need for clarification. Veterinary Journal, v.170, p.275-277, 2005. HENDRICKX, M.; LUDIKHUYZE, L.; VAN DEN BROECK, I.; WEEMAES, C. Effects of high pressure on enzymes related to food quality. Trends in Food Science & Technology, v.9, p.97-203, 1998. HEREMANS, K. 1995. High pressure effects on biomolecules. In: High Pressure Processing of Foods. LEDWARD, D.A.; JOHNSTON, D.E.; EARNSHAW, R.G.; HASTING, A.P.M. (ed). Nottingham University Press: Nottingham, England, 1995, 81-97p. HOLT, J.G.; KRIEG, N.R.; SNEATH, P.H.A. Gram positive cocci. In: Bergey’s Manual of Determinative Bacteriology. HOLT, J.C.; KRIEG, N.R.; SNEATH, P.H et al. 9ed, Williams & Wilkins: Baltimore, 1994, 527p. HOLZAPFEL, H.W.; HABERER, P.; GEISEN, R.; BJÖRKROTH, J.; SCHILLINGER, U. Taxonomy and important features of probiotic microorganisms in food and nutrition. The American Journal of Clinical Nutrition, v.73, p.365S-373S, 2001. HORROX, N.E. Salmonella - a practical overview. International Hatchery Practice, v.12, n.2, p.15-17, 1997. 106 HUGAS, M.; GARRIGA, M.; MONFORT, J.M. New mild technologies in meat processing: high pressure as a model technology. Meat Science, v.62, p.359-371, 2002. HUGAS, M. Bacteriocinogenic lactic acid bacteria for the biopreservation of meat and meat products. Meat Science, v.49, p.S139-S150, 1998. HUMPHREY, T. J.; SLATER, E.; McALPINE, K.; ROWBURY, R.J.; GILBERT, R.J. Salmonella Enteritidis Phage Type 4 isolates more tolerant of heat, acid or hydrogen peroxide also survive longer on surfaces. Applied Environmental Microbiology, v.61, n.8, p.3161-3164, 1995. HUMPHREY, T. J. Salmonella, stress responses and food safety. Science and Society, v.2, n.6, p.504-509, 2004. IGARASHI, M.; LIYAMA, Y.; KATO, R.; TOMITA, M.; ASAMI, M.; EZAWA, I. Effect of Bifidobacterium longum and lactulose on the strenght of bone in ovariectomized osteoporosis model rats. Bifidus, v.7, p.139-147, 1994. JAY, J.M. Modern Food Microbiology. 6ed. Maryland: Aspen, 2000. _________. Microbiologia de Alimentos. 6ed. Porto Alegre: Artmed, 2005, 712p. JAY, J.M.; LOESSNER, M.J.; GOLDEN, D.A. Modern Food Microbiology. 7ed. New York : Springer, 2005. 790 p. JAWETZ, E.; MELNICK, J.L.; ADELBERG, E.A. Microbiologia Médica. 18ed Guanabara Koogan: Rio de Janeiro, 1991, 519p. JONES, D. Compostion and differantiation of the genus Streptococcus. In: SKINNER, F.A.; QUESNEL, L.B. Streptococci. Academic Press, p.49, 1978. JORDAN, S.L.; PASCUAL, C.; BRACEY, E.; MACKEY, B.M. Inactivation and injury of pressure-resistants strains of Escherichia coli O157 and Listeria monocytogenes in fruit juices. Journal of Applied Microbiology, v.91, p.463-469, 2001. JOSEPH, B.; OTTA, K.K.; KARUNASAGAR, I. Biofilm formation by Salmonella sp. On food contact and their sensitivity to sanitizers. International Journal of Food Microbiology, v.64, p.367-372, 2001. KALCHAYANAND, N.; SIKES, A.; DUNNE, C.P. ; RAY, B. Factors influencing death and injury off foodborne pathogens by hydrostatic pressure-pasteurization. Food Microbiology, v.15, p. 207-214, 1998. KLAEHAMMER, T. Bacteriocins of acid lactic bacteria. Biochime, v.70, p.337-349, 1988. 107 KLEIN, G. Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastric intestinal tract. International Journal of Food Microbiology, v.88, p.1-9, 2003. KICH, J.D.; CARDOSO, M. Salmonella em suínos: segurança alimentar e situação no sul do Brasil. Embrapa – suínos e aves. 2004. Disponível em: http://www.cnpsa.embrapa.br/?/artigos/2004/artigo-2004-n022.html. Acesso em 26 junho. 2010. KIM, H.S.; GILLILAND, S. Lactobacillus acidophilus as a dietary adjunct for milk to aid lactose digestion in humans. Journal of Dairy Science, v.66, p.959-966, 1983. KNORR, D. Effects of high hydrostatic pressure processes on food safety and quality. Food Technology, v.47, n.6, p.156-161, 1993. KREBBS, B.; MATSER, A.M.; HOOGERWERF, S.W.; MOEZELAAR, R.; TOMASSEN, M.M.M.; BERG, R.W. Combined high-pressure and thermal treatments for processing of tomato puree: evaluation of microbial inactivation and quality parameters. Innovative Food Science & Emerging Technologies, v.4, p.377-385, 2003. KÜHN, I. Epidemiology and ecology of enterococci, with special reference to antibiotic resistance strain, in animals, humans and the environment. Exemple of an ongoing project within the European reseach programme. International Journal of Antimicrobial Agents, v.14, p.337- 342, 2000. LABUZA, T.P.; FU, B. Growth kinetics for shelf-life prediction: theory and practice. Journal of Industrial Microbiology, v.12, p.309-323, 1993. LACONHA, I.; BAGGESEN, D.L.; REMENTERIA, A.; GARAIZAR, J. Genotypic characterization by PFGE of Salmonella enterica serotype Enteritidis phage type 1, 4, 6 and 8 isolated from animal and human sources in three European countries. Veterinary Microbiology, v.75, p.155-165, 2000. LEITÃO, M.F.F. Microbiologia de Alimentos. In: ROIMAN, L.R.; TRAVASSOS, J.L, AZEVEDO. Tratado de Microbiologia. São Paulo: Manole, 1988, 30-75p. _________. A injúria microbiana e sua importância na avaliação da qualidade microbiológica dos alimentos. Boletim do ITAL, Campinas, v.22, n.4, p.397-416, 1985. LEYER, G.J.; JOHNSON, E.A. Acid adaptation induces cross protection again environment stresses in Salmonella Typhimurium. Applied Environmental Microbiology, v.59, p.1842- 1847, 1993. LINTON, M.; MCCLEMENTS, J.M.J.; PATTERSON, M.S. Survival of Escherichia coli O157:H7 during storage of pressure-treated orange juice. Journal of Food Protection, v.62, p.1038-1040, 1999. 108 LOPALCO, P.L.; GERMINARIO, C.; DI MARTINO, V.; FRISOLI, L.; PAGANO, A.; QUARTO, M.; BARBUTI, S. Epidemiologic study and coast analysis o fan Salmonella Enteritidis epidemic. Ann Ig, v.12, n.4, p.279-285, 2000. MACKEY, B.M. Injured bacteria. In: LUND, A.M.; BAIRD-PARKER, T.C.; GOULD, G.W. The microbiological safety and quality of food, v.1. New York: Springer, 2000. cap.15, p.315- 354. MANAS, P.; PAGAN, R. Review: microbial inactivation by new technologies of food preservation. Journal of Applied Microbiology, v.98, 1387-1399, 2005. MARTEAU, P.; FLOURIÉ, B.; POCHART, P, CHASTANG, C.; DESJEUX, J.F.; RAMBAUD, J.C. Role of the microbial lactase (EC 3.2.123) activity from yoghurt on the intestinal absorption of lactose: an in vivo study in lactase deficient humans. Journal of Nutrition. v.64, p.71, 1990a. MASSON, Y.; AINSWORTH, P.; FULLER, D.; BOZURT, H. Growth of Pseudomonas fluorescens and Candida sake in homogeneized mushrooms under modified atmosphere. Journal of Food Engeneering, v.54, p.125-131, 2002. MATHIAS, S. P. Avaliação físico-química, microbiológica e sensorial do presunto de peru submetido à tecnologia de alta pressão hidrostática. 2008, 87f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos), Universidade Federal Rural do Rio de Janeiro, 2008. MEYER, R.S.; COOPER, K.L.; KNORR, D. et al. High pressure sterilization of foods. Food Technology, v.54, n.11, p.67-72, 2000. MERTENS, B. Hydrostatic pressure treatment off food: equipment and processing. In: GOULD, GW. ed.. New methods off food preservation. Glasgow: Chapman & Hall, 1995, 135-158p. MERTENS, B.; DEPLACE, G. Engineering aspects of high-pressure technology in the food industry. Food Technology, v.47, n.6, p.164-169, 1993. McCLURE, P. J.; BLACKBURN, C.W.; COLE, M.B.; CURTIS, P.S.; JONE, J.E.; LEGAN, J.D.; OGDEN, I.D.; PECK, M.W.; ROBERTS, P.A.; SUTHERLAND, J.P.; WALKER, S.J. Modelling he growth, survival and death of microrganisms in foods: the UK Food Micromodel approach. International Journal of Food Microbiology, v.23, p.265-275, 1994. McCLURE, P. J.; BEAUMONT, A.L.; SUTHERLAND, J.P.; ROBERTS, T.A. Predictive modelling of growth of Listeria moncytogenes. The e¡ects on growth of NaCl, pH, storage temperature and NaNO2. International Journal of Food Microbiology, v.34, p.221-232, 1997. McMEEKIN, T.A.; ROSS, T. Shelf life prediction: status and future possibilities. International Journal of Food Microbiology, v.33, p.65-83, 1996. ___________. Predictive microbiology: providing a knowledge-based framework for change management. International Journal of Food Microbiology, v.78, p.133-153, 2002. 109 McMEEKIN, T.A.; OLLEY, J.N.; OLLEY, J.; ROSS, T.; RATKOWSKY, A. 5ed.Predictive microbiology: theory and application. Taunton: Research Studies, 1993, 1-86p. MORENO, I.; LERAYER, A. L. S.; BALDINI, V. L. S.; LEITÃO, M. F. F. Characterization of bacteriocinas produced by Lactococcus lactis strains. Brazilian Journal of Microbiology, São Paulo, v.31, n.3, p.183-191, 2000. O’SULLIVAN, L.; ROSS, R. P.; HILL, C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie, v.84, p.593-604, 2002. PAGAN, R.; MACKEY, B. Relationship between membrane damage and death in pressuretreated Escherichia coli cells: differences between exponential and stationary phase cells and variation among strains. Applied and Environmental Microbiology, v.66. n.7, p.2829-2834, 2000. PALOU, E.; LÓPEZ-MALO, A.; BARBOSA-CÁNOVAS, G.V.; WELTI-CHANES, J.; SWANSON, B.G. Combined effect of hight hidrostatic pressure and water activity on Zygosaccharomyces bailii inhibition. Letters in Applied Microbiology, v.24, p.417-420, 1997. PALOU, E.; LÓPEZ-MALO, A., BARBOSA-CÁNOVAS, G.V.; WELTI-CHANES, J.; DAVIDSON, P.M.; SWANSON, B.G. Effect of oscillatory high hydrostatic pressure treatments on B. nivea ascospores suspended in fruit juices concentrates. Letters in Applied Microbiology, v.27, p.375-378, 1998c. PALOU, E.; LÓPEZ-MALO, A.; BARBOSA-CANOVAS, G.V.; SWANSON, B.G. Highpressure treatment in food preservation. In: RAHMAN, M. S. (Org.) Handbook of Food Preservation. New York: Marcel Dekker, 1999, 533-576p. PALUMBO, S. A. Injury in emerging foodborne pathogens and their detection. In: RAY, B. Injured index and pathogenic bacteria: occurrence and detection in food, water and feeds. Boca Raton: CRC Press, cap. 4, p.115–132, 1989. PARISH, M.E. High pressure inactivation of Saccharomyces cerevisae, endogenous microflora an pectinmethylesterase in orange juice. Journal of Food Safety, v.18, n.1, p.57-65, 1998. PATTERSON, M.F.; QUINN, M.; SIMPSON, R. et al. Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate buffered saline and foods. Journal of Protection, v.58, n.5, p.524-529, 1995. PATTERSON, M.F. A Review: Microbiology of pressure-treated foods. Journal of Applied Microbiology, v.98, p.1400-1409, 2005. PELEG, M.; CORRADINI, M.G.; NORMAND, M.D. The logistic (Verhulst) model for sigmoid microbial growth curves revisited. Food Research International, v.40, p.808–818, 2007. POOPE, C. Salmonelosis in poultry and people. Supplement of World Poultry – Misset, p.13- 14, 1996. 110 POPOFF, M.Y.; LE MINOR, L. Antigenic formulas of the Salmonella serovars. 7. rev. Paris: Institut Pasteur, 1997. POPOFF, M.Y.; BOCKEMÜHL, J.; BRENNER, F.W. Supplement 1998 (42) to the Kauffmann- White scheme. Reseach in Microbiology, v.151, n.1, p.63-65, 2000. POT, B.; LUDWING, W.; KERSTERS, K.; SCHLEIFER, K.-H. Taxonomy of lactic acid bacteria. In: DE VUYST, L.; VANDAMME, E.J. ed. Bacteriocins of Lactic Acid Bacteria, Microbiology, Genetics and Applications. Chapman & Hall: London, UK, 1994, 13-90p. QUADROS, D.A.F. Avaliação da bacteriocina P34 no crescimento de Listeria monocytogenes em lingüiça frescal de frango. 2007. f.66. (Mestrado em Ciências Veterinárias), Faculdade de Veterinária, Universidade Federal do Rio Grande do sul, 2007. RASO, J.; BARBOSA-CANOVAS, G.V. Non-thermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition, v.43, n., p.265–285, 2003. RAY, B. Methods to detect stressed microorganisms. Journal of Food Protection, Des Moines, v.42, p.346–355, 1979. _________. Introduction. In: RAY, B. Injured index and pathogenic bacteria: occurrence and detection in food, water and feeds. Boca Raton: CRC Press, cap.1, p.1–8, 1989. RAY, B.; ADAMS, D.M. Repair and detection of injured microorganisms. In: SPECK, L.M. Compendium of Methods for the Microbiological Examination of Foods. 2ed. Washington: American Public Health Association, 1984, 112–123p. RATKOWSKY, D.A. Principles of nonlinear regression modelling. Journal of Industrial Microbiology & Biotechnology, v.12, p.195-199, 1993 (b). REUTER, G. Composition of the microflora of human small intestine and the behaviour of some microorganisms after oral intake. Proc. 1st Intersectional Congr. of Intern. Assoc. of Microb. Soc., Tokyo, ed. By Hasegawa, T.: Science Council of Japan 2: 327-339p, 1975. RIEDEL, G. Controle sanitário dos alimentos. 2ed. São Paulo: Atheneu, 1992. RILEY, M.; WERTZ, J. Bacteriocins: evolution, ecology and application. Annual Review of Microbiology, v.56, p.117-137, 2002. ROBAZZA, W.S.; TELEKEN, J.T.; GOMES, G.A. Modelagem matemática do crescimento de microrganismos em alimentos. Tendências em Matemática Aplicada e Computacional (TEMA), v.11, n.1, p.101-110, 2010. ROSENTHAL, A.; SILVA, J.L. Alimentos sob pressão. Engenharia de alimentos, v.14, p.37- 39, 1997. 111 ROOS, R. USDA says Salmonella in meat and poultry is declining; further control steps planned. Disponível em: www.cidrap.umn.edu/cidrap/content/fs/fod-disease/news Acesso em: 12 de julho de 2010. ROSS, T.; McMEEKIN, T.A. Predictive microbiology. International Journal of Food Microbiology, v.23, p.241-264, 1994. ROUSE, S.; HARNETT, D.; VAUGHAN, A. et al. Lactic acid bacteria with potential to eliminate fungal spoilage in foods. Journal of Applied Microbiology, v.104, p.915-923, 2007. RUSSELL, A. D. Potential sites of damage in microorganisms exposed to chemical or physical agents. In: ANDREW, M. H. E; RUSSELL, A. D. The revival of injured microbes. London: Academic Press, 1984. p.1-18. SÁ, I.V.A.; DE SOLARI, C.A. Salmonella in Brazilian and imported pet reptiles. Brazilian Journal of Microbiology, v.32, p.293-297, 2001. SALMINEN, S.; VON WRIGHT, A. (Ed.) Lactic acid bacteria. New York: Marcel Decker, 1993. 442p. SAMELIS, J.; KAKOURI, A.; REMENTZIS, J. Selective effect of the product type and the packaging condictions on the species of lactic acid bacteria dominating the spoilage microbial association of cooked meats at 4°C. Food Microbiology, v. 17, p. 327-340, 2000. SAN MARTÍN, M.F.; BARBOSA-CÁNOVAS, G.V.; SWANSON, B.G. Food processing by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition, v.42 , n.6, p.627- 645, 2002. SANGRONIS, E.; POTHAKAMURY, U.; RAMOS, A.M.; IBRAZ, A.; BARBOSA, G.V. La alta presíon hidrostástica: una alternativa en el processamiento no térmico de alimentos. Alimentaria, v.33, p.33-43, 1997. SARANTINOPOULOS, P.; LEROY, F.; LEONTOPOULOU, E.; GEORGALAKI, M.D.; KALANTZOPOULOS, G.; TSAKALIDOU, E.; DE VUYST, L. Bacteriocin production by Enterococcus faecium FAIR-E 198 in view of its application as adjunct starter in Greek Feta cheese making. International Journal of Food Microbiology, v.72, p.125-136, 2002. SCHAFFNER, D.W.; LABUZA, T.P. Predictive microbiology: where are we and where are we going. Food Technology, v.51, p.95-99, 1997. SHELOBOLINA, E.S.; SULLIVAN, S.A.; O`NEILL, K.R.; NEVIN, K.P.; LOVLEY, D.R. Isolation, characterization, and U (VI) reducing potencial of a facultatively anaerobic, acidresistant bacterium from low-pH, nitrato - and U (VI) – contaminadet subsurface sediment and description of Salmonella subterranean sp. Applied and Environmental Microbiology, Washington, v.70, n.5, p.2959-2965, 2004. SHERMAN, J.M. The streptococci. Bacteriology Reviews, v.1, n.1, p.3-97, 1937. 112 SHINTANI, H. Importance of considering injured microorganisms in sterilization validation. Biocontrol Science and Technology, Oxford, v.11, n.3, p. 91–106, 2006. SCHILLINGER, U.; LÜCKE, F.K. Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology, v.55, p.1901-1906, 1989. SILVA, M.C.D.; RAMALHO, L.S.; FIGUEIREDO, E.T. Salmonella sp em ovos e carcaças de frango in natura comercializadas em Maceió, AL. Higiene Alimentar, v.18, n.1221, p.84-84, 2004. SILVA, N.; JUNQUEIRA, V. C. A. Manual Técnico. Campinas: Instituto de Tecnologia de Alimentos, n.14, 1995. SIMPSON, R.K.; GILMOUR, A. The effects of high hydrostatic pressure on Listeria monocytogenes in phosphate buffered saline and models food systems. Journal of Applied Microbiology, v.83, p.181-188, 1997. SKINNER, G.E., LARKIN, J.W., RHODEHAMEL, E.J. Mathematical modelling of microbial growth: a review. Journal of Food Safety, v.14, p.175-217, 1994. SLONGO, A.P. Uso de Alta Pressão Hidrostática em Presunto Fatiado: Avaliação Físico- Química e Sensorial e Modelagem do Crescimento Microbiano. 2008, 163f, Tese de Doutorado em Engenharia de Alimentos. Universidade Federal de Santa Catarina, UFSC, 2008. SMELT, J.P.P.M. Recent advances in the microbiology of high pressure processing. Trends in Food Science & Technology, v.9, p.152-158, 1998. SOBESTIANSKY, J.; BARCELOS, D.; MORES, N. Clínica e Patologia Suína. Goiânia: Art.3, 1999, 464p. SPILIMBERGO, S.; ELVASSORE, N.; BERTUCCO, A. Microbial inactivation by highpressure. Journal of Supercritical Fluids, v.22 (1), p.55–63, 2002. STILES, M.E.; HOLTZAPFEL, W.H. Review article. Lactic acid bacteria of food and their current taxonomy. International Journal of Food Microbiology, v.36, p.1-29, 1997. SUTHERLAND, J.P.; BAYLISS, A.J. Preditctive modeling of growth of Yersínia enterocolticai: the effects of temperature, pH and sodium cloride. International Journal of Food Microbiology, v.21, p.197-215, 1994. SUTHERLAND, J.P.; BAYLISS, A.J.; BRAXTON, D.S.; BEAUMONT, A.L. Predictive modelling of Escherichia coli O157:H7: Inclusion of carbon di-oxide as a fourth factor in a preexisting model. International Journal of Food Microbiology, v.37, p.113-120, 1997. TAGG, J.R.; DAJANI, A.S.; WANNAMAKER, L.W. Bacteriocins of gram-positive bacteria. Bacteriological Reviews, v.40, n.3, p.722-756, 1976. 113 TAKAHASHI, K.; ISHII, H.; ISHIKAWA, H. Sterilization of microorganisms by hydrostatic pressure at low temperature. In: HIGH PRESSURE SCIENCE AND BIOTECHNOLOGY, 1992, Paris. Proceedings... Paris: Jonh Libbey Eurotext , 1992. p.303. TERRA, N. N. Fermentação como fator de segurança e qualidade para o consumidor. Revista Nacional da Carne, n.239, p.26-32, 1997. TEUBER, M. The genus Lactococcus. In: WOOD, B. J. B.; HOLZAPFEL, W. H. The genera of lactic acid bacteria. London: Chapman & Hall, 1995, v.2. THIERCELIN, M. E. Sur un diplocoque saprophyte de l’intestin susceptible de devenir pathogene. C.R. Seances Societe Biologie, v.5, p.269–271, 1899. TORRES, J.A.; VELAZQUEZ, G. Commercial opportunities and research challenges in the high pressure processing of food. Journal of Food Engineering, v.67, p.95-112, 2005. TORTORA, G.J. ; FUNKE, B.R. ; CASE, C.L. Introducion a la Microbiologia. 3ed, Zaragoza : Acribia, 1993, 792p. TRUJILLO, A.J.; FERRAGUT, V.; GERVILLA, R.; CAPELLAS, M.; GUAMIS, B. High hydrostatic pressure affects milk and milk products, recent research developments. Agriculture and Food Chemistry, v.1, p.137-159, 1997. TOSUN, H.; GÖNÜL, S.A. Acid adaptation protects Salmonella Typhymurium from environmental stresses. Turkish Journal of Biology, v.27, p.31-36, 2003. VAM-IMPE, J.F. ; BART M, N. ; TOON, M. ; JOSSE DE, B. ; JOSS, V. Dynamic mathematical model to predict microbial growth and inactivation during food processing. Applied and Environmental Microbiology, v.58, p.2901-2909, 1992. VANBOGELEN, R. A.; NEIDHARDT, F. C. Ribossomos as sensors of heat and cold shock in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, v.87, p.5589-5593, 1990. VERMEIREN, L.; DEVLIEGHERE, F.; DEBEVERE, J. Evaluation of meat born lactic acid bacteria as protective cultures for the biopreservation of cooked meat products. International Journal of Food Microbiology, v.96, p.149-164, 2004. WEGENER, H.C.; BAGER, F. Pork as a source of human salmonelosis. In: INTERNATIONAL SYMPOSIUM ON EPIDEMIOLOGY AND CONTROL OF SALMONELLA IN PORK, 2.1997. Copenhagen. Proceedings…Copenhagen:[s.n], 1997, 3 8p. WESCHE, A.M.; GURTLER, J.B.; MARKS, S.P.; RYSER, E.T. Stress, sublethal injury, resuscitation and virulence of bacterial foodborne. Journal of Food Protection, Des Moines, v.72, n.5, p.1121-1138, 2009. 114 WHITING, R.C.; BUCHANAN, R.L. Predictive Modeling. In: DOYLE, M.P.; BEUCHAT, L.R.; MONTVILLE, T.J. Food Microbiology - fundamentals and frontiers. Washington: ASM, 1997, 728-739p. WHITING, R.C. Microbial modelling in foods. Critical Reviews in Food Science and Nutrition, v.35, p.467-494, 1995. WHITING, R.C.; BUCHANAN, R.L. A classification of models for predictive microbiology. Food Microbiology, v.10, p.175-177, 1993. WILCOCK B.P.; SCHWARTZ K.J. Salmonellosis. In: LEMAN, A.D.; STRAW B.E.; MENGELING W.L.; D'ALLAIRE S.; TAYLOR D.J. Diseases of Swine. 7ed. Iowa State University, Ames, USA, 1993, 570-538p. WILLIANS, A. New Technologies in Food Preservation and Processing: Part II. Nutrition & Food Science, v.1, p.20-23, 1994. WINSOR, C.P. The Gompertz curve as a growth curve. Proceedings of the National Academy of Sciences, v.18, n.1, p.01-08, 1931. WU, V.C.H. A review of microbial injury and recovery methods in food. Food Microbiology, London, v.25, p.735– 744, 2008. WU, V.C.H.; FUNG, D.Y.C.; KANG, D.H. Evaluation of thin agar layer method for recovery of cold-injured foodborne pathogens. Journal of Rapid Methods & Automation in Microbiology, Trumbull, v.9, n.1, p.11–25, 2001a. WU, V.C.H.; FUNG, D.Y.C.; KANG, D.H.; THOMPSON, L.K. Evaluation of thin agar layer method for recovery of acid-injured foodborne pathogens. Journal of Food Protection, Des Moines, v.64, n.1, 1067–1071, 2001b. YALDAGARD, M.; MORTAZAVI, S.A.; TABATABAIE, F. The principles of ultra high pressure technology and its application in food processing/preservation: A review of microbiological and quality aspects. African Journal of Biotechnology, v.7, p.16, p.2739-2767, 2008. ZHAO, T.; DOYLE, M. P. Evaluation of universal preenrichment broth for growth of heatinjured pathogens. Journal of Food Protection, v.64, p.1751-1755, 2001. ZIMMERMAN, F.; BERGMAN, C. Isostatic high-pressure equipment for food preservation. Food Technology, v.47, p.162-163, 1993. ZWIETERING, M.H.; WIT, J.C.; NOTERMANS, S. Applications of predictive microbiology to estimate the number of Bacillus cereus in pasteurized milk at the point of consumption. International Journal of Food Microbiology, v.30, p.55-70, 1996. 115 ZWIETERING, M.H.; KOOS, J.T.; HASENACK, WITT, J.C.; VAN´T RIET, K. Modeling of bacterial growth as a function of temperature. Applied and Environmental Microbiology, v.57, n.4, p.1094-1101, 1991. ZWIETERING, M.H.; JONGENBURGER, I.; ROMBOUTS, F.M.; VAN´T RIET, K. Modeling of bacterial growth curve. Applied and Environmental Microbiology, v.56, n.6, p.1875-1881, 1990.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/61329/2011%20-%20Simone%20Pereira%20Mathias.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3709
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-07-07T19:46:02Z No. of bitstreams: 1 2011 - Simone Pereira Mathias.pdf: 8157492 bytes, checksum: d9fad6c76ef5a370d24a009a83941393 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-07-07T19:46:02Z (GMT). No. of bitstreams: 1 2011 - Simone Pereira Mathias.pdf: 8157492 bytes, checksum: d9fad6c76ef5a370d24a009a83941393 (MD5) Previous issue date: 2011-01-10eng
Appears in Collections:Doutorado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2011 - Simone Pereira Mathias.pdf2011 - Simone Pereira Mathias7.97 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.