Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/9320
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vicente, Juarez | |
dc.date.accessioned | 2023-12-21T18:37:28Z | - |
dc.date.available | 2023-12-21T18:37:28Z | - |
dc.date.issued | 2016-01-28 | |
dc.identifier.citation | Vicente, Juarez. Microencapsulação de ômega-3 empregando emulsões simples estabilizadas por biopolímeros. 2016. [163 f.]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E TECNOLOGIA DE ALIMENTOS) - Universidade Federal Rural do Rio de Janeiro, [Seropédica-RJ] . | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9320 | - |
dc.description.abstract | O ômega-3 (ω-3) é uma classe de ácidos graxos essenciais, de reconhecida importância para o metabolismo de diversas funcionalidades do organismo, destacam-se a prevenção de doenças cardiovasculares, imunológicas e anti-inflamatórias, câncer de cólon, favorece o desenvolvimento cerebral e da retina. Os ácidos graxos das séries ω-3 e ω-6 são precursores dos ácidos graxos poli-insaturados de cadeia longa, como araquidônico (AA), eicosapentaenoico (EPA) e docosahexaenóico (DHA), este último considerado o mais importante para o desenvolvimento neonatal e junto com o AA são os principais componentes dos ácidos graxos cerebrais. A microencapsulação empregando a formação de emulsões simples é uma estratégia que objetiva manter a estabilidade do ômega-3 e a permanência de suas atividades funcionais frente à exposição do mesmo a condições adversas como processos oxidativos. Os biopolímeros como proteínas e carboidratos (naturais) são componentes que auxiliam na manutenção da estabilidade física e morfológica destas emulsões empregadas para microencapsulação. Da mesma forma, conferem ao produto melhorias nas propriedades reológicas, nutricionais e funcionais. Com isso, objetiva-se nesta tese estudar a formação de micro-emulsões física e morfologicamente estáveis e seus comportamentos reológicos, propriedades calorimétricas e estabilidade oxidativa do ômega-3 nos sistemas poliméricos formados com Ovalbumina (surfactante natural) e suas interações com polissacarídeos naturais (Pectina e Goma Xantana), comparado a um sistema padrão com surfactante sintético (Tween 80) na microencapsulação do ômega-3 do óleo de Sacha Inchi (Plukenetia volubilis L.). Com esse trabalho objetiva-se também o estudo do comportamento oxidativo do óleo de Sacha Inchi e sua inserção como componente em outros alimentos na forma microencapsulada. | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | microemulsion | eng |
dc.subject | xanthan gum | eng |
dc.subject | pectin | eng |
dc.subject | Sacha Inchi oil | eng |
dc.subject | 1H NMR | eng |
dc.subject | GC-MS | eng |
dc.subject | microemulsão | por |
dc.subject | goma xantana | por |
dc.subject | pectina | por |
dc.subject | óleo de Sacha Inchi | por |
dc.subject | RMN 1H | por |
dc.subject | CG-EM | por |
dc.title | Microencapsulação de ômega-3 empregando emulsões simples estabilizadas por biopolímeros | por |
dc.title.alternative | Microencapsulation of sacha Inchi oil employing simple emulsions stabilized with biopolymers | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | The omega-3 (ω-3) is a class of essential fatty acids, of major importance for the metabolism of various functions of the body, highlight for the prevention of cardiovascular diseases, immunological and anti - inflammatory, colon cancer, promotes developing brain and retina. The fatty acids of the series ω-3 and ω-6 are precursors of polyunsaturated long chain fatty acids as arachidonic (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the latter considered the most important for developing neonatal and together with the AA are the main components of brain fatty acids (Silva et al., 2007). Microencapsulation employing the formation of simple emulsions is a strategy that aims to maintain the stability of omega-3 and permanence of their functional activities upon exposure to the same harsh conditions as oxidative processes. Biopolymers such as proteins and carbohydrates (natural) are components that assist in maintaining the physical and morphological stability of these emulsions employed for microencapsulation. Likewise, to give the product improvements in the rheological, nutritional and functional properties. Thus, this thesis aims to study the formation of micro-emulsions physically and morphologically stable and their behavior rheological properties of heat and oxidative stability of omega-3 in polymeric systems formed with ovalbumin (natural surfactant) and their interactions with natural polysaccharides (pectin and xanthan gum), compared to a standard system with synthetic surfactant (Tween 80) in the microencapsulation of omega-3 of Sacha Inchi (Plukenetia volubilis L.) oil. With this work we aim to also study the behavior of oxidative Sacha Inchi oil and its inclusion as a component in other foods in microencapsulated form. | eng |
dc.contributor.advisor1 | Rojas, Edwin Elard Garcia | |
dc.contributor.advisor1ID | 1454899654 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1205756654416987 | por |
dc.contributor.advisor-co1 | Carvalho, Mario Geraldo de | |
dc.contributor.advisor-co1ID | 25715232791 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/9794451665032168 | por |
dc.contributor.referee1 | Calado, Verônica Maria Araújo | |
dc.contributor.referee2 | Sabino, Sílvio José | |
dc.contributor.referee3 | Godoy, Ronoel Luiz de Oliveira | |
dc.contributor.referee4 | Barbosa, Maria Ivone Martins Jacintho | |
dc.creator.ID | 4635646939 | por |
dc.creator.Lattes | http://lattes.cnpq.br/8391566916334257 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Tecnologia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | por |
dc.relation.references | 1.5 REFERENCIAS AL-HAKKAK, J.; AL-HAKKAK, J. F. (2010). Functional egg whiteepectin conjugates prepared by controlled Maillard reaction. Journal of Food Engineering, 100, 152-159. ALVIN, I.D. Microencapsulação como uma ferramentas para melhorar características nutricionais de produtos processados. ITAL – 3ª Semana Tecnológica – Inovação, Saúde e Sustentabilidade. Cereal Chocotec. Campinas, SP, 2012. Disponível em: <http://www.ital.sp.gov.br/cerealchocotec/arquivos/pos_evento/seminario_internacional/04.pdf>. ALVIN, I.D.; GROSSO, C.R.F. Microparticles obtained by complex coacervation: influence of the type ofreticulation and the drying process on the release of the core material. Ciência e Tecnologia de Alimentos., Campinas, 30(4): 1069-1076, out.-dez. 2010 ANTON, N.; BENOIT, J.; SAULNIER, P. (2008). Design and production of nanoparticles formulated from nano-emulsion templates: A review. Journal of Controlled Release, v.128, p. 185–199. ARAUJO, J. Química de alimentos, 2ª ed. Viçosa: UFV, 2006. ATARÉS, L.; MARSHALL, L.J; AKHTAR, M.; MURRAY, B.S. Structure and oxidative stability of oil in water emulsions as affected by rutin and homogenization procedure. Food Chem. 134 (2012) 1418–1424. AZEREDO, H.M.C. Encapsulação: aplicação à tecnologia de alimentos. Alim. Nutr., 54 Araraquara, v.16, n 1, p. 89-97, jan./mar. 2005. AZEVEDO-MELEIRO, C.H. Emulsões alimentícias – Notas de aulas teóricas da disciplina: Tecnologia de óleos e gorduras vegetais, 2009. DTA – IT/UFRRJ. BANNON, C.D.; BREEN, G.J.; CRASKE, J.D.; HAI, N.T.; HARPER, N.L.; O′ROURKE, K.L. (1982). Analysis of fatty acid methyl esters with high accuracy and reliability. III. Literature review of and investigations into the development of rapid procedures for the methoxide-catalysed methanol of fats and oils. Journal of Chromatography, 247, 71-89. BARBOSA, M.I.M.J.; MERCADANTE, A.Z. Avaliação da estabilidade das microcápsulas de bixina em diferentes matrizes alimentícias. Tecnol. & Ciên. Agropec., João Pessoa, v.2, n.1, p.23-26, mar. 2008 BARISON, A., SILVA, C. W., CAMPOS, F. R., SIMONELLI, F., LENZ, C. A. & FERREIRA, A. G. A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy. Magnetic Resonance in Chemistry, 48 (8), 642-650, 2010. BERTON, C.; ROPERS, M.H.; BERTRAND, D.; VIAU, M.; GENOT, C. Oxidative stability of oil-in-water emulsions stabilised with protein or surfactant emulsifiers in various oxidation conditions. Food Chem. 131 (2012) 1360–1369. BHATTACHARYA, S.S.; MISHRA, A.; PAL, D.K.; GHOSH, A.K.; GHOSH, A.; BANER-JEE, S., et al. (2012). Synthesis and characterization of poly (acrylicacid)/poly(vinyl alcohol)-xanthan gum interpenetrating network (IPN) superab-sorbent polymeric composites. Polymer: Plastics Technology and Engineering, 51, 876–882. BHATTACHARYA, S.S.; GHOSH, A.; BANERJEE, S.; CHATTOPADHYAY, P.; GHOSH, A. (2012a). Al+3 ion cross-linked interpenetrating polymeric network microbeads from tail-ored natural polysaccharides. International Journal of Biological Macromolecule, 51, 1173–1184. BHATTACHARYA, S.S.; MAZAHIR, F.; BANERJEE, S.; VERMA, A.; GHOSH, A. Preparation and in vitro evaluation of xanthan gum facilitatedsuperabsorbent polymeric microspheres. Carbohydrate Polymers, 98 (2013) 64– 72. BOBBIO, F.O.; BOBBIO, P.A. Introdução à química de alimentos. 3ª Ed. São Paulo: Varela, 2003. 238p. CARNEIRO, H.C.F. Microencapsulação de óleo de linhaça por spray drying: influência da utilização de diferentes combinações de materiais de parede. Dissertação. Campinas: FEA/UNICAMP, 2011, 113p. CASTRO-GONZÁLEZ, M.I. ÁCIDOS GRASOS OMEGA 3: BENEFICIOS Y FUENTES. Interciência v.27 n.3 Caracas mar. 2002. CHAMPAGNE, C.P.; FUSTIER, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18(2), 184–190. 55 CHANAMAI, R.; McCLEMENTS, D.J. (2000). Dependence of creaming and rheology of monodisperse oil-in-water emulsions on droplet size and concentration. Colloids Surf. 172, 79–86. CHARVE, J.; REINECCIUS, G.A. (2009) Encapsulation Performance of Proteins and Traditional Materials for Spray Dried Flavors. Jour. Agric. Food Chem. 57, (6), 2486–2492. CLARK, J.P. Food encapsulation: capturing one substance by another. Food Technology, v.56, n.11, p.63-65, 2002. COLZATO, M.; FORATO, L. A.; COLNAGO, L. A. & ASSIS, O. B. G. Análise comparative dos espectros de 1H RMN de óleos comestíveis oxidados. Comunicado técnico, 92, Embrapa Instrumentação Agropecuária, São Carlos-SP, 2008. CONNOR, W.E (1996) Omega-3 essential fatty acids in infant neurological development. Backgrounder 1: 1-6. CONNOR, W.E.; LOWENSOHN, R.; HATCHER, L (1996) Increased docosahexaenoic acid levels in human newborn infants by administration of sardines and fish oil during pregnancy. Lipids 31: S183-S187. CONSTANT, P.B.L.; STRINGHETA, P.C. Microencapsulação de ingredientes alimentícios. Boletim da Sociedade Brasileira de Ciência e Tecnologia de Alimentos, v.36, n.1, p.12-18, 2002. COUPLAND, J. Determination of solid fat content by nuclear magnetic resonance. In Current Protocols in Food Analytical Chemistry (Wrolstad, R., ed), John Wiley & Sons, New York, pp, D2.4.1 – D2.1.18, 2002. DE VOS, P., FAAS, M.M.; SPASOJEVIC, M.; SIKKEMA, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20(4), 292–302. DEPYPERE, F.; DEWETTINCK, K.; RONSSE, F.; PIETERS, J.G. Food poder microencapsulation: principles, problems and opportunities. Applied Biotechnology, Food Science and Policy, v.1, n.2, p.75-94, 2003. DICKINSON, E. An introduction to food hydrocolloids. Oxford, UK: University Press, 1992. DICKINSON, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, v. 17, p. 25-39, 2003. DODGE Company. Disponivel em: <http://www.rtdodge.com/RTD-coacervation.html>. Acessado em: 15/08/2013. 56 FANALI, C.; DUGO, L.; CACCIOLA, F.; BECCARIA, M.; GRASSO, S.; DACHÀ, M.; DUGO, P.; MONDELLO, L. Chemical Characterization of Sacha Inchi (Plukenetia volubilis L.) Oil. doi:<dx.doi.org/10.1021/jf203184y>. J. Agric. Food Chem. 2011, 59, 13043–13049. FANG, G., GOH, J. Y., TAY, M., LAU, H. F., & LI, S. F. Y. Characterization of oils and fats by 1H NMR and GC/MS fingerprinting: Classification, prediction and detection of adulteration. Food Chemistry, 138, 1461–1469, 2013. FENEMMA, O.R.; DAMODARAN, S.; PARKIN, K.L. Quimica de Alimentos de Fennema. 4ª ed (Traduzida). Porto Alegre: Artmed, 2010, 900p. FORATO, L. A., FARIA, M. A. S., MANZANO, R. M., TULLIO, R. R., CRUZ, G. M. & COLNAGO, L. A. Análise do Perfil de Ácidos Graxos no Contra-Filé Bovino pela RMN 13C em Alta Resolução. Boletim de pesquisa e desenvolvimento, 26, ISSN: 1678-0434. São Carlos, 13p, 2009. FRANGE, R.C.C; GARCIA, M.T.J. Desenvolvimento de emulsões óleo de oliva/água: avaliação da estabilidade física. Rev Ciênc Farm Básica Apl., 2009; 30(3):263-271. FRIBERG, S.; LARRSON, K. Food Emulsion – Third Edition, Revised and Expanded. New York: Marcel Dekker, 1997. GARTI, N. Double emulsions - scope, limitations and new achivements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 123-124 (1997) p.233-246. GHARIBZAHEDI, S.M.T.; MOUSAVI, S.M.; HAMEDI, M.; GHASEMLOU, M. (2012). Response surface modeling for optimization of formulation variables and physical stability assessment of walnut oil-in-water beverage emulsions. Food Hydrocolloids, 26, 293–301. GHARIBZAHEDI, S.M.T.; RAZAVI, S.H.; MOUSAVI, S.M. Ultrasound-assisted formation of the canthaxanthin emulsions stabilized by arabic and xanthan gums. Carbohydrate Polymers 96 (2013a) 21– 30. GONNET, M.; LETHUAUT, L.; BOURY, F. (2010). New trends in encapsulation of liposoluble vitamins. Journal of Controlled Release, 146(3), 276–290. GONSALVES, J.K.M.C.; COSTA, A.M.B.; SOUZA, D.P.; CAVALCANTI, S.C.H.; NUNES, R.S. Microencapsulação do óleo essencial de Citrus sinensis (L)Osbeck pelo método da coacervação simples. Scientia plena, v. 5, n. 11, 2009. GRANATO, D.; CASTRO, I.A.; NEVES, L.S.; MASSON, M.L. (2010) Physical stability assessment and sensory optimization of a dairy-free emulsion using response surface methodology. Journal of Food Science, 73, 149–155. GREENSRNITH, M. Chap 4 - Freeze dryers. In: Practical Dehydration. 2nd ed. Woodhead Publishing Ltd, Suffolk, England, 1998. 274p. GUILLÉN, M. D., RUIZ, A., CABO, N., CHIRINOS, R., & PASCUAL, G. Characterization of Sacha Inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR. Comparison 57 with linseed oil. Journal of the American Oil Chemists Society, 80(8), 755–762, 2003. GUILLEN, M. D. & RUIZ, A. Study by Proton Nuclear Magnetic Resonance of the Thermal Oxidation of Oils Rich in Oleic Acyl Groups. Journal of the American Oil Chemists Society, 82(5), 349–355, 2005. GUTOWSKY, H. S., KISTIAKOWSKY, G. B., PAKE, G. E., & PURCELL, E. M. Structural investigations by means of nuclear magnetism. 1. Rigid crystal lattices. Journal of Chemical Physics, 17(10), 972–981, 1949. GUY, R (Editor). Extrusion cooking – Technologies and applications. CRC Press: Boca Raton, FL, USA, 2000. 206p. HARNSILAWAT, T.; PONGSAWATMANIT, R.; McCLEMENTS, D.J. (2006). Stabilization of model beverage cloud emulsions using protein-polysaccharide electrostatic complexes formed at the oil-water interface. Journal of Agricultural and Food Chemistry, 54, 5540–5547. HU, F., FURIHATA, K., KATO, Y., & TANOKURA, M. Nondestructive quantification of organic compounds in whole milk without pretreatment by two-dimensional NMR spectroscopy. Journal of Agricultural and Food Chemistry, 55, 4307-4311, 2007. HUANG, X.; KAKUDA, Y.; CUI, W. (2001). Hydrocolloids in emulsions: particle size distribution and interfacial activity. Food Hydrocolloids, 15, 533–542. IGARASHI, T., AURSAND, M., HIRATA, Y., GRIBBESTAD, I. S., WADA, S., & NONAKA, M. Nondestructive Quantitative Determination of Docosahexaenoic Acid and n-3 Fatty Acids in Fish Oils by High-Resolution 1H Nuclear Magnetic Resonance Spectroscopy. Journal of the American Oil Chemists Society, 77(7), 737–748, 2000. IPT – Instituto de Pesquisas Tecnológicas do Estado de São Paulo. Disponível em: <http://www.ipt.br/solucoes/183-micro_nano_encapsulacao_de_principios_ativos_e_caracterizacao_de_produtos.htm.> Acessado em 20/06/2013. JAFARI, S.M.; ASSADPOOR, E.; HE, Y.; BHANDARI. B. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, v.26, n.7, p.816-835, 2008. JOUENNE, E.; CROUZET, J. Effect of pH on retention of aroma compounds by β- Lactoglobulin. J. Agric. Food Chem., v.48, n.4, p.1273-1277. 2000. KAKALIS, L T.; REGENSTEIN, J.M. (1986). Effect of pH and salts on the solubility of egg white protein. Journal of Food Science, 51(6), 1445–1447. KEOWMANEECHAI, E.; McCLEMENTS, D.J. Influence of EDTA and citrate on physicochemical properties of whey protein-stabilized oil-in-water emulsions containing CaCl2. Journal of Agricultural and Food Chemistry, v.50, p.7145-7153, 2002. 58 KIM, Y.D.; MORR, C.V.; SCHENZ, T.W. Microencapsulation properties of gum arabic and several food proteins: Liquid orange oil emulsion particles. J. Agric. Food Chem., v.44, n.5, p.1308-1313. 1996 KING, A.H. Encapsulation of food ingredientes. In: RISCH, S.J.; REINECCIUS, G.A. Encapsulation and controlled release of food ingredients. ACS Symposim Series, 590. Washington. DC: ACS, 1995. P.26-39. KO, J.A.; PARK, H.J.; HWANG, S.J.; PARK, J.B.; LEE, J.S. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int J Pharm. Amsterdam, v.249, p.165-14, 2002. KRUIF, C.G.; TUINIER, R. Polysaccharide protein interactions. Food Hydrocolloid. Oxford, v15, n4-6, p.555-563, 2001. LEIMANN, F.V. Microencapsulação de óleo essencial de capim limão utilizando o processo de coacervação simples. (Dissertação de Mestrado - PPG Engenharia Química). UFSC: Florianópolis/SC, 2008. 115p. LOVEDAY, S.M.; SINGH, H. (2008). Recent advances in technologies for vitamin A protection in foods. Trends in Food Science & Technology, 19(12), 657–668. MADENE, A.; JACQUOT, M.; SCHER J.; DESOBRY, S. Flavor encapsulation and controlled release – A Review. Intern Journ Food Sci Techn., v.41, n1, p.1-21. 2006. MARCONE, M. F.; WANG, S. ALBABISH, W.; NIE, S.; SOMNARIAN, D. & HILL, A. Diverse food-based application of nuclear magnetic resonance (NMR) technology. Food Research International, 51, 729-747, 2013. MARTIN VILLENA, M.J.; MORALES HERNÁNDEZ, M.E.; GALLARDO LARA, V.Y.; RUIZ MARTINEZ, M.A. Técnicas de microencapsulación: uma proposta para microencapsular probióticos. Ars Pharm, 2009, Vol.50 nº1; 43-50. MAURER, N.E.; HATTA-SAKODA, B.; PASCUAL-CHAGMAN, G.; RODRIGUEZ-SAONA, L.E. Characterization and authentication of a novel vegetable source of omega-3 fatty acids, sacha inchi (Plukenetia volubilis L.) oil. Food Chemistry 134 (2012) 1173–1180. MAY, C.D. Chap 10. Pectins. In: Handbook of hydrocolloids. Edited by PHILIP, G.O.; WILLIAMS, P.A. CRC Press – Boca Raton, 2000. MAYLAND, H.F. Effect of Drying Methods on Losses of Carbon, Nitrogen and Dry Matter From Alfalfa. Reprinted from AGRONOMY JOURNAL. Vol. 60, Nov.-Dec. 1968, p. 658-659. Disponível em: < http://www.extension.uidaho.edu/nutrient/pdf/Forages/Effect%20of%20Drying%20Methods%20on%20Losses%20of%20Carbon,%20Nitrogen,%20and%20Dry%20Matter%20from%20Alfalfa.pdf>. Acessado em 16/08/2013. McCLEMENTS, D.J. Food emulsions: Principles, Practice and Techniques. 2ed. CRC Press – Boca Raton, 2005, 609p. 59 McCLEMENTS, D.J.; DECKER, E.A.; PARK, Y.; WEISS, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Reviews in Food Science and Nutrition. 49:6, (2009) 577-606. McCLEMENTS, D.J. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, (2012). 8, 1719. McCLEMENTS, D. J., & DECKER, E. Lipídeos. In Damodaran, S., Parkin, K. L., & Fennema, O. R. Química de Alimentos de Fennema. (4th ed.) (99 131 – 178). Porto Alegre: Artmed, 2010. MOREIRA, G.E.G. Obtenção e caracterização de extrato microencapsulado de resíduo agroindustrial de acerola. (Dissertação de Mestrado - PPG Engenharia Química). UFRN: Natal/RN, 2007. 86p. MOZHAEV, V.V.; HEREMANS, L.; FRANK. J.; MASSON, P.; BALNY, C. (1996) High pressure effects on protein structure and function. Proteins: Structure, Function and Bioinformatics, v. 24, n. 1, p. 81-91. MUKTA, J.R.; NELSON, D.B. Preparation of encapsulated flavors with high flavor level. Food Technol., v.42, n.4, p.154-157, 1988. NIKIFORIDIS, C. V.; KIOSSEOGLOU, V. (2010). Physicochemical stability of maize germ oil body emulsions as influenced by oil body surface-xanthan gum interactions. Journal of Agricultural and Food Chemistry, 58, 527–532. NISISAKO, T.; OKUSHIMA, S.; TORII, T. Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. The Royal Society of Chemistry, Soft Matter, 1, 23-27, 2005. <doi: 10.1039/b501972a>. NOGUEIRA, A.C.S. Emulsões múltiplas: descrição, preparação e aplicações. Disponível em: <http://www.iqm.unicamp.br/~wloh/offline/qp433/seminarios/emulsoesmult-ana.pdf>. IQM/UNICAMP. Acesso em: 03/10/2013. ORDÓÑEZ, J.A.; RODRIGUEZ, M.I.C.; ÁLVAREZ, L.F.; SANZ, M.L.G; MINGUILLÓN, G.D.G.F.; PERALEZ, L.H.; CORTECERCO, M.D.S. Tecnologia de Alimentos: Alimentos de origem animal. Porto Alegre: Artmed, 2005. v.2, p.269-279. PARKER, T., LIMER, E., WATSON, A. D., DEFERNEZ, M., WILLIAMSON, D., & KEMSLEY, E. K. 60 MHz 1H NMR spectroscopy for the analysis of edible oils. Trends in Analytical Chemistry, 57, 147–158, 2014. PSZCZOLA, D. Encapsulated ingredientes: Providing the right fit. Food Technology, v.52, n.12, p.70-77, 1998. RÉ, M.I. Microencapsulação – em busca de produtos “inteligentes”. Ciência hoje, v.27, n.162, p.24-29, 2000. RÉ, M.I. Microencapsulation by spray drying. Drying Technology, v.16, p.1195-1236, 1998. 60 REBELLO, F.F.P. Microencapsulação de ingredientes alimentícios. Revista agrogeoambiental, Dez 2009. p.134-144, 2009. REINECCIUS, G.A. Carboydrates for flavor encapsulation. Food Technology, v. 51, n. 3, p. 144-146, 1991. REINECCIUS, G.A. Flavor encapsulation. Food Review International, St. Paul, v. 5, n. 2, p. 146-176, 1989. REINECCIUS, G.A. Spray-drying of food flavors. In: RISCH, S.J.; REINECCIUS, G.A. Flavor encapsulation. ACS Symposium Series, 370. Washington DC: ACS, 1988. 55-56. RIEDIGER, N.D.; OTHMAN, R.; FITZ, E.; PIERCE, G.N.; SUH, M.; MOGHADASIAN, M.H. Low n-6: n-3 fatty acid ratio, with fish or flaxseed oil, in a high fat diet improves plasma lipids and beneficially alters tissue fatty acid composition in mice. European Journal of Nutrition, v.47, n.3, p.153-160. 2008. RODRIGUES, I. Liofilização. Engenharia de Alimentos – Processamento geral de alimentos. Escola Superior Agrária de Coimbra – ESAC: Coimbra, Portugal. Disponível em: <http://www.esac.pt/noronha/pga/0708/Aula%20Liofiliza%C3%A7%C3%A3o.pdf>. Acessado em: 14/08/2013. ROUSSEAU, D. (2000). Fat crystals and emulsion stability – a review. Food Research International, 33, 3–14. SAMAVATI, V.; EMAM-DJOMEH, Z.; MOHAMMADIFAR, M.A.; OMID, M.; MEHDINIA, A.L.I. Stability and rheology of dispersions containing polysaccharide, oleic acid and whey protein isolate. J. Texture Studies. 43 (2012) 63–76. SANTOS, A.B.; FÁVARO-TRINDADE, C.S.; GROSSO, C.R.F. Preparo e caracterização de microcápsulas de oleoresina de páprica obtidas por atomização. Ciênc. Tecnol. Aliment., Campinas, 25(2): 322-326, abr.-jun. 2005 SILVA, D.R.B.; MIRANDA Jr., P.F.; SOARES, E.A. A importância dos ácidos graxos poliinsaturados de cadeia longa na gestação e lactação – Review. Rev. Bras. Saúde Matern. Infant., Recife, 7 (2): 123-133, abr. / jun., 2007 SHAHIDI, F.; HAN, X. Encapsulation of food ingredients. Critical Reviews in Food Science and Nutrition, v. 33, n. 6, p. 501-547, 1993. SHAW, D.J. Introduction to Colloid Surface Chemistry, 4th ed., Butterworth-Heinemann, Oxford, England, 1992. SOOTTITANTAWAT, A.; YOSHII, H.; FURUTA,T.; OHKAWARA, M.; LINKO, P. Microencapsulation by Spray Drying: Influence of emulsion size on the retention of volatile compounds. J. Food Sci., v.68, n.7, p.2256-2262. 2003. 61 STEPHEN, A.M.; PHILLIPS, G.O.; WILLIAMS, P.A. (2006). Food polysaccharides and their applications (2nd ed.). FLA: Boca Raton. SUAVE, J.; DALL’AGNOL, E. C.; PEZZIN, A. P. T.; SILVA, D. A. K.; MEIER, M. M.; SOLDI, V. Microencapsulação: Inovação em diferentes áreas. Health and Environment Journal v. 7, n. 2, p. 12-20, 2006. SWORN, G. Chap 6. Xanthan gum. In: Handbook of hydrocolloids. Edited by PHILIP, G.O.; WILLIAMS, P.A. CRC Press – Boca Raton, 2000. ULLMANN´S – Encyclopedia of Industrial Chemistry. Copyright© 1999-2013 by John Wiley and Sons, Inc., v. A-9, 297-335. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL (UFRGS). Disponível em: <http://www.ufrgs.br/Alimentus/feira/optransf/extrusao.htm>. Acessado em: 14/08/2013. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL (UFRGS)b. Disponível em: < http://www8.ufrgs.br/alimentus/objetos/veg_desidratados/secagem_liofilização.html>. Acessado em: 14/08/2013. VACHIER, M.C.; PIOT, M.; AWADR, A.C. Isolation of hen egg white lysozyme, ovotransferrin and ovalbumin, using a quaternary ammonium bound to a highly crosslinked agarose matrix. J. Chromatography B. 664 (1995) 201-210. VASCONCELOS, M.A.S.; MELO FILHO, A.B. Técnico em alimentos – conservação de alimentos. e-Tec Brasil (Programa Escola Técnica Aberta do Brasil). Recife: EDUFRPE. Disponível em: <http://www.ifpr.edu.br/pronatec/wp-content/uploads/2013/06/Conservacao_de_Alimentos.pdf>. 2010, 130p. VILA JATO, J.L. Tecnologia farmacéutica: Aspectos fundamentales de los sistemas farmacêuticos y operaciones básicas. v.1. Ed. Sintesis Editorial, Madri, Espanha, 1999. VISENTAINER, J. V.; FRANCO, M. R. B. Ácidos graxos em óleos e gorduras: identificação e quantificação. São Paulo: Varela, 2006. WATTS, P.J.; DAVIES, M.C.; MELIA, C.D. Microencapsulation using emulsification/solvente evaporation: An overview of techniques and applications. Critical Reviews in Therapeutic Drug Carrier Systems, 7(3): 235-259, 1990. WILLIAMS, P.A.; PHILLIPS, G.O. Chap 1. Introduction to food hydrocolloids In: Handbook of hydrocolloids. Edited by PHILIP, G.O.; WILLIAMS, P.A. CRC Press – Boca Raton, 2000. ZAYAS, J.F. Funcionality of proteins in foods. New York: Springer, 1997. 337p. ZIMET, P.; LIVNEY, Y.D. (2009). Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids, 23, 1120-1126. | por |
dc.subject.cnpq | Engenharias | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/5532/2016%20-%20Juarez%20Vicente.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/20276/2016%20-%20Juarez%20Vicente.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/26545/2016%20-%20Juarez%20Vicente.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/32960/2016%20-%20Juarez%20Vicente.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/39386/2016%20-%20Juarez%20Vicente.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/45748/2016%20-%20Juarez%20Vicente.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/52168/2016%20-%20Juarez%20Vicente.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/58574/2016%20-%20Juarez%20Vicente.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/1791 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-06-20T12:18:52Z No. of bitstreams: 1 2016 - Juarez Vicente.pdf: 4177115 bytes, checksum: 7c081fec8011e87e4bca3d5c9ea310ed (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2017-06-20T12:18:52Z (GMT). No. of bitstreams: 1 2016 - Juarez Vicente.pdf: 4177115 bytes, checksum: 7c081fec8011e87e4bca3d5c9ea310ed (MD5) Previous issue date: 2016-01-28 | eng |
Appears in Collections: | Doutorado em Ciência e Tecnologia de Alimentos |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2016 - Juarez Vicente.pdf | 2016 - Juarez Vicente | 4.08 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.