Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/9338
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ramos, Letícia Maria Alves | |
dc.date.accessioned | 2023-12-21T18:38:03Z | - |
dc.date.available | 2023-12-21T18:38:03Z | - |
dc.date.issued | 2018-02-23 | |
dc.identifier.citation | RAMOS, Letícia Maria Alves. Estudos anatômicos, ultraestruturais e topoquímicos do lenho de seringueiras provenientes de floresta natural. 2018. 49 f.. Tese( Doutorado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro,Seropédica-RJ, 2018. . | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9338 | - |
dc.description.abstract | O lenho de reação nas angiospermas caracteriza-se principalmente pela presença de fibras gelatinosas, que são fibras diferenciadas com uma camada interior espessa e altamente celulósica, conhecida como camada gelatinosa. A presença e severidade do lenho de reação pode ser influenciada pelo estímulo gravitacional quando a árvore tem seus ramos e tronco desviados de seu eixo natural, como em terrenos acidentados, ação de fortes ventos, indução artificial, injúrias, entre outros. No caso da seringueira, é possível que a atividade exploratória do látex possa influenciar na atividade do câmbio e, consequentemente, na formação desse tipo de fibras. Portanto, o objetivo deste trabalho foi estudar indivíduos de Hevea brasiliensis (Willd. ex A. Juss.) Mull. Arg. a fim de caracterizar a estrutura do lenho de árvores nativas que passaram por exploração de látex, bem como caracterizar a química e distribuição de lignina, e ultraestrutura da parede celular de fibras gelatinosas. Para tanto, foram coletadas amostras do xilema de indivíduos de seringueira na Fazenda Experimental de Catuaba, localizada em Senador Guiomard – AC (67.62711 O; 10.08433 S). Na caracterização anatômica, foram avaliados o comprimento das fibras (não-gelatinosas e gelatinosas); diâmetro total e diâmetro do lume de fibras não-gelatinosas; diâmetro e frequência dos elementos de vaso; largura, altura e frequência de raios e a proporção de tecidos. Foram observadas diferenças entre a estrutura anatômica de árvores exploradas e não-exploradas às características quantitativas. Apenas as variáveis comprimento de fibra gelatinosa; diâmetro do lume das fibras; frequência de raios, e proporção de elementos de vaso e raios não apresentaram diferenças estatísticas significativas. As observações mais importantes foram o aumento da largura e altura de raios nas árvores extraídas, bem como as maiores proporções de fibras gelatinosas nas árvores não-extraídas. Para a análise da ultraestrutura da parede celular das fibras, foram utilizados microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET), os quais revelaram que as fibras não-gelatinosas apresentam a típica configuração P + S1 +S2 + S3, enquanto as fibras gelatinosas apresentaram a configuração P + S1 +S2 + G, com a camada G apresentando estrutura lamelada. A análise química procedeu-se com testes histoquímicos de Wiesner e Mäule, e microespectroscopia por transformada de Fourier (FT-IR). O teste de Wiesner, pela coloração apresentada, mostrou indícios de um menor teor de lignina no material. A camada gelatinosa G não corou, indicando nenhuma ou muito pouca lignificação nesta porção da parede. O teste de Mäule revelou a presença de unidades guaiacil (G) na lignina, resultado que se alinhou com a análise FT-IR. Os espectros mostraram maiores intensidades para as bandas referentes às unidades G nas fibras gelatinosas que nas fibras não-gelatinosas. A relação S/G indicou que as unidades G e unidades S da lignina apresentam proporções parecidas, diferentemente do encontrado na literatura para essa espécie. | por |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Hevea brasiliensis | por |
dc.subject | fibras gelatinosas | por |
dc.subject | parede celular | por |
dc.subject | lignina | por |
dc.subject | Hevea | eng |
dc.subject | gelatinous fibers | eng |
dc.subject | cell wall | eng |
dc.subject | lignin | eng |
dc.title | Estudos anatômicos, ultraestruturais e topoquímicos do lenho de seringueiras provenientes de floresta natural | por |
dc.title.alternative | Anatomical, ultrastructural and topochemical studies of rubber trees from natural forest | eng |
dc.type | Tese | por |
dc.description.abstractOther | The reaction wood in the angiosperms is characterized primarily by the presence of gelatinous fibers, which are differentiated fibers with a thick and highly cellulosic inner layer, known as tgelatinous layer. The presence and severity of the reaction wood can be influenced by the gravitational stimulus when the tree has its branches and trunk deviated from its natural axis, as in slopes, action of strong winds, artificial induction, injuries, and others. In the case of rubbertree, it is possible that the latex tapping may influence the cambium activity, leading to the formation of this type of fibers. Therefore, the aim of this work was to study Hevea brasiliensis (Willd. ex A. Juss.) Mull. Arg. trees in order to characterize the wood structure of native trees that have passed through latex exploitation, as well as characterize the chemistry and distribution of lignin, and ultrastructure of the gelatinous fibers cell wall. For this purpose, samples of xylem were collected from rubbertrees at the Fazenda Experimental Catuaba, located in Senador Guiomard - AC (67.62711 W; 10.08433 S). In the anatomical characterization, fiber length (non-gelatinous and gelatinous); total diameter and lume diameter of non-gelatinous fibers; diameter and frequency of vessel elements; width, height and frequency of rays and tissue proportion were evaluated. Differences were observed between the anatomical structure of tapped and untapped trees to the quantitative characteristics. Only gelatinous fiber length; fiber lumen diameter; frequency of rays, and proportion of vessel elements and rays did not show significant statistical differences. The most important observations were the increase of ray width and height in the tapped trees, as well as the greater proportions of gelatinous fibers in the untraped ones. For the observation of the fiber cell wall ultrastructure, scanning electron microscopy (SEM), transmission electron microscopy (TEM) were used, which revealed that the non-gelatinous fibers present the typical configuration P + S1 + S2 + S3, while the gelatinous fibers presented the configuration P + S1 + S2 + G, in wich G layer presented a lamellar structure. The chemical analysis was performed by histochemical tests of Wiesner and Mäule, and Fourier transform infrared microspectroscopy (FT-IR). The staining presented in Wiesner test showed evidence of a lower lignin contente. The gelatinous layer G did not stain, indicating none or insignificant lignification in this portion of the wall. The Mäule test revealed the presence of guaiacil (G) units in the lignin, a result that was aligned with the FT-IR analysis. The spectra showed higher intensities for the bands assigned to G units in the gelatinous fibers than observed in non-gelatinous fibers. The S / G ratio indicated that the lignina G and S units had similar proportions, unlike that found in the literature for this species | eng |
dc.contributor.advisor1 | Latorraca, João Vicente de Figueiredo | |
dc.contributor.advisor1ID | 284.741.551-34 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/9612404360795583 | por |
dc.contributor.advisor-co1 | Lima, Helena Regina Pinto | |
dc.contributor.advisor-co1ID | 82316058787 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/4257528232125062 | por |
dc.contributor.referee1 | Latorraca, João Vicente de Figueiredo | |
dc.contributor.referee2 | Carvalho, Alexandre Monteiro de | |
dc.contributor.referee3 | Hüther, Cristina Moll | |
dc.contributor.referee4 | Baraúna, Edy Eime Pereira | |
dc.contributor.referee5 | Alves, Rejane Costa | |
dc.creator.ID | 117.927.817-84 | por |
dc.creator.Lattes | http://lattes.cnpq.br/8320926033901244 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Florestas | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Ambientais e Florestais | por |
dc.relation.references | AHMED, S. A.; CHUN, S. K. Permeability of Tectona grandis L. As affected by wood structure. Wood Science and Technology, v. 45, n. 3, p. 487–500, 2011. ALONSO, J. M.; STEPANOVA, A. N. The Ethylene Signaling Pathway. Science, v. 306, n. 5701, p. 1513–1515, 2004. ANDERSSON‐GUNNERÅS, S.; MELLEROWICZ, E. J.; LOVE, J.; SEGERMAN, B.; OHMIYA, Y.; COUTINHO, P. M.; NILSSON, P.; HENRISSAT, B.; MORITZ, T.; SUNDBERG, B. Biosynthesis of cellulose‐enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. The Plant Journal, v. 45, n. 2, p. 144-165, 2006. AZRI, W.; ENNAJAH, A.; NASR, Z.; WOO, S. Y.; KHALDI, A. Transcriptome profiling the basal region of poplar stems during the early gravitropic response. Biologia Plantarum, v. 58, n. 1, p. 55–63, 2014. BALSIGER, J.; BAHDON, J.; WHITEMAN, A. The utilization, processing and demand for rubberwood as a source of wood supply. 2000. Disponível em: <http://www.fao.org/3/a-y0153e.pdf>. BAMBER, R. K. A general theory for the origin of growth stresses in reaction wood: How trees stay upright. IAWA Journal, v. 22, n. 3, p. 205–212, 2001. BONNER, J.; GALSTON, A. W. The physiology and biochemistry of rubber formation in plants. The Botanical Review, v. 13, n. 10, p. 543–596, 1947. BRETT, C. T.; WALDRON, K. W. Physiology and biochemistry of plant cell walls. Springer Science & Business Media, 1996. CHAFFEY, N. Microfibril orientation in wood cells: new angles on an old topic. Trends in plant science, v. 5, n. 9, p. 360–362, 2000. CHERDCHIM, B.; SUDCHADA, R. Ethylene stimulation of rubberwood (Hevea brasiliensis) increases the water permeability of lumber. Journal of Agricultural Science and Technology A, n. 4, p. 129–134, 2014. CLAIR, B.; THIBAUT, B. Physical and mechanical properties of reaction wood. In: The biology of reaction wood. Springer, Berlin, Heidelberg, 2014. p. 171-200. COSGROVE, D. J. Enzymes and other agents that enhance cell wall extensibility. Annual review of plant biology, v. 50, n. 1, p. 391–417, 1999. COSGROVE, D. J. Loosening of plant cell walls by expansins. Nature, v. 407, n. 6802, p. 321–326, 2000. COSGROVE, D. J. Growth of the plant cell wall. Nature Reviews: Molecular Cell Biology, v. 6, n. 11, p. 850–861, 2005. COSTA, R. B.; GONÇALVES, P. S.; ODALIA-RÍMOLIA, A.; ARRUDA, E. J. Melhoramento e conservação genética aplicados ao Desenvolvimento Local – o caso da seringueira (Hevea sp). Revista Internacional de Desenvolvimento Local, v. 1, n. 2, p. 51-58, 2001. CÔTÉ JR, W. A. Structural factors affecting permeability of wood. Journal of Polymer Science Part C, v. 2, n. 1, p. 231–242, 1963. 14 COUTAND, C. JERONIMIDIS, G.; CHANSON, B.; LOUP, C. Comparison of mechanical properties of tension and opposite wood in Populus. Wood Science and Technology, v. 38, n. 1, p. 11–24, 1 abr. 2004. CUTTER, E. G. Anatomia vegetal. Parte I – Células e tecidos. 2ª ed. São Paulo: Roca, 1986. DÉJARDIN, A.; LAURANS, F.; ARNAUD, D.; BRETON, C.; PILATE, G.; LEPLÉ, J. C. Wood formation in Angiosperms. Comptes Rendus Biologies, n. 333, p. 325-334, 2010. DICKINSON, W. C. Integrative plant anatomy. New York: Harcourt Academic Press. 2000. DONALDSON, L. A. Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry, v. 57, n. 6, p. 859-873, 2001. DU, S.; YAMAMOTO, F. An overview of the biology of reaction wood formation. Journal of Integrative Plant Biology, v. 49, n.2, p. 131-143, 2007. DU, S.; YAMAMOTO, F. Ethylene evolution changes in the stems of Metasequoia glyptostroboides and Aesculus turbinata seedlings in relation to gravity-induced reaction wood formation. Trees, v. 17, n. 6, p. 522–528, 2003. EVERT, R. F. Esau’s plant anatomy, Meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Hoboken, NJ: John Wiley & Sons, Inc. 2006. FANG, C.; CLAIR, B.; GRIL, J.; ALMÉRAS, T. Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain. Wood Science and Technology, v. 41, n. 8, p. 659-671, 2007. FERREIRA, S.; LIMA, J. T.; TRUGILHO, P. F.; MONTEIRO, T. C. Excentricidade da medula em caules de clones de Eucalyptus cultivados em diferentes topografias. Cerne, v. 14, n. 4, 2008. FISHER, J. B.; STEVENSON, J. W. Occurrence of reaction wood in branches of dicotyledons and its role in tree architeture. Botanical Gazette, v. 142, n. 1, p. 82–95, 1981. FUNADA, R. et al. Gibberellin-induced formation of tension wood in angiosperm trees. Planta, v. 227, n. 6, p. 1409-1414, 2008. GARDINER, B.; FLATMAN, T.; THIBAUT, B. Commercial implications of reaction wood and the influence of forest management. In: The biology of reaction wood. Springer, Berlin, Heidelberg, 2014. p. 249-274. GERTTULA, S.; ZINKGRAF, M.; MUDAY, G.; LEWIS, D.; IBATULLIN, F. M.; BRUMER, H.; HART, F.; MANSFIELD, S. D.; FILKOV, V.; GROOVER, A. Transcriptional and Hormonal Regulation of Gravitropism of Woody Stems in Populus. Plant Cell, v. 27, n. 10, p. 2800–2813, 2015. GONÇALVES, P. S.; CARDOSO, M.; ORTOLANI, A. A. Origem, variabilidade e domesticação da Hevea: uma revisão. Pesquisa agropecuária brasileira, v. 25, n. 2, p. 135-156, 1990. GONÇALVES, R. C.; DE SÁ, C. P.; DUARTE, A. A. F.; BAYMA, M. M. A. Manual de Heveicultura para a Região Sudeste do Estado do Acre. Embrapa Acre-Documentos (INFOTECA-E), 2013. GROOVER, A. Gravitropisms and reaction woods of forest trees: evolution, functions and mechanisms. New Phytologist, v. 211, n. 3, p. 790–802, 2016. 15 GUNNING, B. E. S.; WICK, S. M. Preprophase bands, phragmoplasts, and spatial control of cytokinesis. Journal of Cell Science, v. 1985, n. Supplement 2, p. 157-179, 1985. HELLGREN, J. M. et al. Patterns of Auxin Distribution during Gravitational Induction of Reaction Wood in Poplar and Pine 1. Plant physiology, v. 135, n. May, p. 212–220, 2004. IAC. A importância da borracha natural. S.d. Disponível em: < http://www.iac.sp.gov.br/areasdepesquisa/seringueira/importancia.php>. Acesso em: 31/05/2014. JIANG, S. et al. Role of GA3, GA4 and uniconazole-P in controlling gravitropism and tension wood formation in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings. Journal of integrative plant biology, v. 50, n. 1, p. 19–28, jan. 2008. JIN, X.; PASCAL KAMDEM, D. Chemical composition, crystallinity and crystallite cellulose size in populus hybrids and aspen. Cellulose Chemistry & Technology, v. 43, n. 7, p. 229, 2009. JOSELEAU, J.P.; IMAI, T.; KURODA, K.; RUEL, K. Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta, v. 219, n. 2, p. 338–45, jun. 2004. JOUREZ, B. Le bois de tension 1. Définition et distribution dans l’arbre. Biotechnology, Agronomy, Society and Environment, v. 1, n. 2, p. 100–112, 1997. JOUREZ, B.; AVELLA-SHAW, T. Article original Effet de la durée d ’ application d ’ un stimulus gravitationnel sur la formation de bois de tension et de bois opposé dans de jeunes pousses de peuplier ( Populus euramericana cv “ Ghoy ”). Annals of Forest Science, v. 60, p. 31–41, 2003. JOUREZ, B.; RIBOUX, A.; LECLERQ, A. Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana CV “Ghoy”). IAWA Journal, v. 22, n. 2, p. 133–157, 2001. JUNIOR, S. E. J.; GONÇALVES, P. S. Seringueira: panorama, pesquisa e perspectiva de clones. Pesquisa & Tecnologia, v. 8, n. 47, 2011. JUNQUEIRA, L. C.; CARNEIRO, J. Biologia Celular e Molecular. 7ª edição; Ed. Guanabara e Koogan, Rio de Janeiro, 2000. KAEISER, M.; BOYCE, S. G. The relationship of gelatinous fibers to wood structure in eastern cottonwood (Populus deltoides). American Journal of Botany, p. 711-715, 1965. KILLMANN, W.; HONG, L. T. Rubberwood - the success of an agricultural by-product. Disponível em: <http://www.fao.org/docrep/x4565e/x4565e11.htm>. Acesso em: 31/05/2014. KOZLOWSKI, T.T.; PALLARDY, S. G. Physiology of woody plants. 2nd Edn. Academic Press, San Diego. 1997. LEHRINGER, C.; DANIEL, G.; SCHMITT, U. TEM/FE-SEM studies on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Wood Science and Technology, n. 43, p. 691–702, 2009. LEONELLO, E. C. et al. Classificação Estrutural e Qualidade da Madeira do Clone GT 1 de Hevea brasiliensis Muell. Arg. Floresta e Ambiente, n.19, v. 2, p. 229-235, 2012. LIMA, A. M. Negócios da borracha: Uma abordagem da economia gomífera amazônica através da teoria do desenvolvimento econômico de Schumpeter. Revista de Estudos Sociais, v. 10, n. 20, p. 3, 2008. 16 LOBÃO, M. S. Dendrocronologia, fenologia, atividade cambial e qualidade do lenho de árvores de Cedrela odorata L., Cedrela fissilis Vell. e Schizolobium parahyba var. amazonicum Hub. ex Ducke, no estado do Acre, Brasil. 2011. Tese (Doutorado em Recursos Florestais) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2011. LOPEZ, D.; TOCQUARD, K.; VENISSE, J. S.; LEGUÉ, V.; ROECKEL-DREVET, P. Gravity sensing, a largely misunderstood trigger of plant orientated growth. Frontiers in Plant Science, v. 5, n. November, p. 1–6, 2014. MELLEROWICZ, E. J.; SUNDBERG, B. Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Current opinion in plant biology, v. 11, n. 3, p. 293–300, jun. 2008. METCALFE, C. R. Distribution of latex in the plant kingdom. Economic Botany, v. 21, n. 2, p. 115–127, 1967. MONTEIRO, T. C. et al. Influência do lenho de tração nas propriedades físicas da madeira de Eucalyptus sp. Journal of Biotechnology and Biodiversity, v. 1, n. 2, p. 6-11, 2010. MUÑOZ, C.; BAEZA, J.; FREER, J.; MENDONÇA, R. T. Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation. Journal of industrial microbiology & biotechnology, v. 38, n. 11, p. 1861-1866, 2011. NOVAES, E.; KIRST, M.; CHIANG, V.; WINTER-SEDEROFF, H.; SEDEROFF, R. Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiology, v. 154, n. 2, p. 555-561, 2010. NUGROHO, W. D. YAMAGISHI, Y.;NAKABA, S.; FUKUHARA, S.; BEGUM, S.; MARSOEM, S. N.; KO, J. H.; JIN, H. O.; FUNADA, R. Gibberellin is required for the formation of tension wood and stem gravitropism in Acacia mangium seedlings. Annals of Botany, v. 110, n. 4, p. 887–895, 2012. OHASHI, Y. et al. Annual rhythm of xylem growth in rubberwood (Hevea brasiliensis) trees grown in Malaysia. Holzforschung, v. 55, n. 2, p. 151–154, 2001. PARHAM, R. A.; ROBINSON, K. W.; ISEBRANDS, J. G. Effects of tension wood on kraft paper from a short-rotatio hardwood (Populus “Tristis no. 1”). Wood Science and Technology, v. 11, p. 291–303, 1977. PEE, T. Y. Technical Innovations in Natural Rubber. Commodities and Export Projections Division, Economic Analysis and Projections Department, Development Policy Staff, World Bank, 1982. PEREIRA, R. P. W.; MONTEIRO, M. B. O; ABREU, H. S. Bioinformação do Processo de Lignificação. EDUR/UFRRJ. 124p, 2012. PERRE, P. et al. Stiffness of normal, opposite, and tension poplar wood determined using micro-samples in the three material directions. Wood Science and Technology, 13 out. 2012. PLOMION, C.; LEPROVOST, G.; STOKES, A. Wood Formation in Trees Wood Formation in Trees. Plant physiology, v. 127, n. December, p. 1513–1523, 2001. PRAMOD, S.; PATEL, P. B.; RAO, K. S. Ethylene and its interaction with other hormones in tension wood formation in Leucaena leucocephala (Lam.) de Wit. Journal of the Indian Academy of Wood Science, v. 9, n. 2, p. 130–139, 18 set. 2012. 17 PRAMOD, S.; RAO, K. S.; SUNDBERG, A. Structural, histochemical and chemical characterization of normal, tension and opposite wood of Subabul (Leucaena leucocephala (lam.) De wit.). Wood Science and Technology, v. 47, n. 4, p. 777–796, 2013. PREMAKUMARI, D.; PANIKKAR, A. O. N. Anatomy and ultracytology of latex vessels. In: Developments in crop science. Elsevier, 1992. p. 67-87. PRIYADARSHIAN, P. M. Biology of Hevea rubber. Wallingford: CABI, 2011. RAMOS, L. M. A.; LATORRACA, J. V. F.; CASTOR NETO, T. C.; MARTINS, L. S.; SEVERO, E. T. D. Anatomical characterization of tension wood in Hevea brasiliensis (Willd. ex A. Juss.) Mull. Arg. Revista Árvore, v. 40, n. 6, p. 1099-1107, 2016. RATNASINGAM, J.; IORAS, F. Effect of heat treatment on the machining and other properties of rubberwood. European Journal of Wood Products, v. 70, n. 5, p. 759-761, 2012. RATNASINGAM, J.; RAMASAMY, G.; KANER, J.; IORAS, F.; WENMING, L. Production potential of rubberwood in Malaysia: its economic challenges. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, v. 40, n. 2, p. 317-322, 2012. RAVEN, P. H., EVERT, R. F., EICHHORN, S. E. Biologia Vegetal. 6ª ed. Rio de Janeiro: Guanabara Koogan, 17-39, 2001. RUELLE, J.; BEAUCHÊNE, J.; YAMAMOTO, H.; THIBAUT, B. Variations in physical and mechanical properties between tension and opposite wood from three tropical rainforest species. Wood Science and Technology, v. 45, n. 2, p. 339–357, 27 abr. 2011. RUELLE, J.; BEAUCHENE, J.; THIBAUT, A.; THIBAUT, B. Comparison of physical and mechanical properties of tension and opposite wood from ten tropical rainforest trees from different species. Annals of Forest Science, v. 64, p. 503-510, 2007. SCHWEINGRUBER, F. H. Wood Structure and Environment. Springer-Verlag, Berlin, Heidelberg. 2007. SCURFIELD, G. Reaction wood: Its structure and function. Science, v. 179, p. 647-655, 1973. SEVERO, E. T. D.; OLIVEIRA, E. F.; SANSIGOLO, C. A.; ROCHA, C. D.; CALONEGO, F. W. Properties of juvenile and mature woods of Hevea brasiliensis untapped and with tapping panels. European Journal of Wood and Wood Products, v. 71, n. 6, p. 815-818, 2013. SHIGEMATSU, A.; MIZOUE, N.; KAJISA, T.; YOSHIDA, S. Importance of rubberwood in wood export of Malaysia and Thailand. New Forests, v. 41, n. 2, p. 179-189, 2011. SILPI, U.; THALER, P.; KASEMSAP, P.; LACOINTE, A.; CHANTUMA, A.; ADAM, B.; GOHET, E.; THANISAWANYANGKURA, S.; AMÉGLIO, T. Effect of tapping activity on the dynamics of radial growth of Hevea brasiliensis trees. Tree physiology, v. 26, n. 12, p. 1579–87, dez. 2006. SILPI, U.; LACOINTE, A.; KASEMPSAP, P.; THANYSAWANYANGKURA, S.; CHANTUMA, P.; GOHET, E.; MUSIGAMART, N.; CLÉMENT, A.; AMÉGLIO, T.; THALER, P. Carbohydrate reserves as a competing sink: evidence from tapping rubber trees. Tree physiology, v. 27, n. 6, p. 881-889, 2007. SILVA, J. Q.; SOUZA, M. I. T.; GONÇALVES, P. S.; PINOTTI, R. N. Sistemas de explotação de seringueira utilizados em clones asiáticos Prang Besar no Oeste paulista. Pesquisa agropecuária brasileira, v. 42, n. 7, p. 949-955, 2007. SJOSTROM, E. Wood chemistry: fundamentals and applications. Elsevier, 2013. 18 STERN, K. R.; JANSKY, S.; BIDLACK, J. E. Introductory plant biology. New York: McGraw-Hill, 2003. TARMIAN, A. REMOND, R.; FAEZIPOUR, M.; KARIMI, A.; PERRÉ, P. Reaction wood drying kinetics: tension wood in Fagus sylvatica and compression wood in Picea abies. Wood Science and Technology, v. 43, n. 1-2, p. 113–130, 2009. TARMIAN, A. REMOND, R.; DASHTI, H.; PERRÉ, P. Moisture diffusion coefficient of reaction woods: compression wood of Picea abies L. and tension wood of Fagus sylvatica L. Wood Science and Technology, v. 46, n. 1-3, p. 405–417, 22 mar. 2012. TARMIAN, A.; PERRÉ, P. Air permeability in longitudinal and radial directions of compression wood of Picea abies L. and tension wood of Fagus sylvatica L. Holzforschung, v. 63, n. 3, p. 352–356, 2009. WANG, C.; ZHANG, N.; GAO, C.; CUI, Z.; SUN, D.; YANG, C.; WANG, Y. Comprehensive transcriptome analysis of developing xylem responding to artificial bending and gravitational stimuli in Betula platyphylla. PLoS ONE, v. 9, n. 2, 2014. WARDROP, A.; DADSWELL, H. E. The nature of reaction wood. Australian Journal of Biological Sciences, 1948. YOSHIZAWA, N. ABE, K.; ARAKAWA, Y.; OKUYAMA, T.; GRIL, J. Anatomy and lignin distribution of reaction wood in two Magnolia species. Wood Science and Technology, v. 34, n. 3, p. 183–196, 2000. ZHANG, J.; NIEMINEN, K.; SERRA, J. A. A.; HELARIUTTA, Y. The formation of wood and its control. Current Opinion in Plant Biology, v. 17, n. 1, p. 56–63, 2014 ANDERSSON‐GUNNERÅS, S.; MELLEROWICZ, E. J.; LOVE, J.; SEGERMAN, B.; OHMIYA, Y.; COUTINHO, P. M.; NILSSON, P.; HENRISSAT, B.; MORITZ, T.; SUNDBERG, B. Biosynthesis of cellulose‐enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. The Plant Journal, v. 45, n. 2, p. 144-165, 2006. ARBELLAY, E.; P. FONTI, P.; STOFFEL, M. Duration and extension of anatomical changes in wood structure after cambial injury. Journal of Experimental Botany, v. 63, p. 3271–3277, 2012. BRASIL. Decreto n. 5.975, de 30 de nov. de 2006. Brasília, DF, novembro de 2006. Disponível em: <http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2006/decreto/d5975.htm. /> Acesso em: 22 Nov. 2017. BUKATSCH, F. Bemerkungen zur Doppelfärbung Astrablau-Safranin. Mikrokosmos, Sttutgart, v.61, n.8, p.255, 1972. DÉJARDIN, A.; LAURANS, F.; ARNAUD, D.; BRETON, C.; PILATE, G.; LEPLÉ, J. C. Wood formation in Angiosperms. Comptes Rendus Biologies, n. 333, p. 325-334, 2010. EVERT, R. F. Esau’s plant anatomy, Meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Hoboken, NJ: John Wiley & Sons, Inc. 2006. FONTI, P.; TABAKOVA, M. A.; KIRDYANOV, A. V.; BRYUKHANOVA, M. V.; ARX, G. von. Variability of ray anatomy of Larix gmelinii along a forest productivity gradient in Siberia. Trees, v. 29, p. 1165-1175, 2015. 31 GROOVER, A. Gravitropisms and reaction woods of forest trees–evolution, functions and mechanisms. New Phytologist, v. 211, n. 3, p. 790-802, 2016. HUNG, L. F.; TSAI, C. C.; CHEN, S. J.; HUANG, Y. S.; KUO-HUANG, L. L. Study of tension wood in the artificially inclined seedlings of Koelreuteria henryi Dummer and its biomechanical function of negative gravitropism. Trees, v. 30, n. 3, p. 609-625, 2016. InsideWood. 2004. Publicado na internet. Disponívem em: <http://insidewood.lib.ncsu.edu/search>. Acesso em 29 Ago. 2017. JUNJITTAKARN, J.; LIMPINUNTANA, V.; PANNENGPETCH, K.; AYUTTHAYA, S. I. N.; ROCHETEAU, A.; COCHARD, H.; DO, F. Short term effects of latex tapping on micro-changes of trunk girth in Hevea brasiliensis. Australian Journal of Crop Science. V. 6, n. 1, p. 65–72, 2012. LEHRINGER, C.; DANIEL, G.; SCHMITT, U. TEM/FE-SEM studies on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Wood Science and Technology, n. 43, p. 691–702, 2009. MORRIS, H.; JANSEN, S. Secondary xylem parenchyma–from classical terminology to functional traits. IAWA Journal, Leiden v. 37, p. 1-13, 2016. MORRIS, H.; PLAVCOVÁ, L.; CVECKO, P; FICHTLER, E; GILLINGHAM, M. A. F.; CABRERA, H. I. M.; MCGLINN, D. J.; WHEELER, E.; ZHENG, J.; ZIEMINSKA, K.; STEVEN JANSEN, S. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist, v. 209, n. 4, p. 1553-1565, 2016. MYBURG, A. A.; SEDEROFF, R. R. Xylem Structure and Function. Enciclopedia of Life Sciences, 2001. NAKABA, S.; MORIMOTO, H.; ARAKAWA, I.; YMAGISHI, Y.; NAKADA, R.; FUNADA, R. Responses of ray parenchyma cells to wounding differ between earlywood and latewood in the sapwood of Cryptomeria japonica. Trees, v. 31, n. 1, p. 27-39, 2016. NOBUCHI, T.; MUNIANDY, D.; SAHRI, M. H. Formation and anatomical characteristics of tension wood in plantation-grown Hevea brasiliensis (Willd.) Muell.-Arg. Malaysian Forester, Kuala Lumpur, v. 74, n. 2, p. 133-142, 2011. PLAVCOVÁ, L.; JANSEN, S. The role of xylem parenchyma in the storage and utilization of nonstructural carbohydrates. In: Functional and ecological xylem anatomy. Springer International Publishing Switzerland, p. 209-234, 2015. RAMOS, L. M. A.; LATORRACA, J. V. D. F.; CASTOR NETO, T. C.; MARTINS, L. S.; SEVERO, E. T. D. Anatomical characterization of tension wood in Hevea brasiliensis (Willd. ex A. Juss.) Mull. Arg. Revista Árvore, Viçosa, v. 40, n. 6, p. 1099-1107, 2016. SAFFIAN, H. A.; TAHIR, P. M.; HARUN, J.; JAWAID, M.; HAKEEM, K. R. Influence of planting density on the fiber morphology and chemical composition of a new latex-timber clone tree of rubberwood (Hevea brasiliensis Muell. Arg.). BioResources, Raleigh, v. 9, n. 2, p. 2593-2608, 2014. SEVERO, E. T. D.; OLIVEIRA, E. F.; SANSIGOLO, C. A.; ROCHA, C. D.; CALONEGO, F. W. Properties of juvenile and mature woods of Hevea brasiliensis untapped and with tapping panels. European Journal of Wood and Wood Products, v. 71, n. 6, p. 815-818, 2013. SILPI, U.; THALER, P.; KASEMSAP, P.; LACOINTE, A.; CHANTUMA, A.; ADAM, B.; GOHET, E.; THANISAWANYANGKURA, S.; AMÉGLIO, T. Effect of tapping activity on 32 the dynamics of radial growth of Hevea brasiliensis trees. Tree physiology, Victoria, v. 26, n. 12, p. 1579–87, dez. 2006. SILPI, U; LACOINTE, A.; KASEMPSAP, P; THANYSAWANYANGKURA, S.; CHANTUMA, P.; GOHET, E.; MUSIGAMART, N.; CLÉMENT, A.; AMÉGLIO, T.; THALER, P. Carbohydrate reserves as a competing sink: evidence from tapping rubber trees. Tree Physiology, Victoria, v. 27, p. 881–889, 2007. WHEELER, E. A.; BAAS, P.; GASSON, P. E. (Ed.). IAWA list of microscopic features for hardwood identification. Leiden, 1989 ABEDINI, R.; CLAIR, B.; POURTAHMASI, K.; LAURANS, F.; ARNOULD, O. Cell wall thickening in developing tension wood of artificially bent poplar trees. IAWA Journal, v. 36, n. 1, p. 44-57, 2015. BENTUM, A. L. K.; CÔTÉ, W. A.; DAY, A. C.; TIMELL, T. E. Distribution of lignin in normal and tension wood. Wood science and technology, v. 3, n. 3, p. 218-231, 1969. 46 CLAIR, B. RUELLE, J.; BEAUCHÊNE, J.; PRÉVOST, M. F.; FOURNIER, M. Tension wood and opposite wood in 21 tropical rain forest species. Iawa Journal, v. 27, n. 3, p. 329-338, 2006. CÔTÉ JR, W. A.; DAY, A. C.; TIMELL, T. E. A contribution to the ultrastructure of tension wood fibers. Wood Science and Technology, v. 3, n. 4, p. 257-271, 1969. DÉJARDIN, A.; LAURANS, F.; ARNAUD, D.; BRETON, C.; PILATE, G.; LEPLÉ, J. C. Wood formation in Angiosperms. Comptes Rendus Biologies, n. 333, p. 325-334, 2010. DONALDSON, L. A. Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry, v. 57, n. 6, p. 859-873, 2001. ENCINAS, O.; DANIEL, G. Degradation of the gelatinous layer in aspen and rubberwood by the blue stain fungus Lasiodiplodia theobromae. IAWA Journal, v. 18, n. 2, p. 107-115, 1997. FAIX, O. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung, v. 45, n. s1, p. 21-28, 1991. FANG, C. H.; CLAIR, B.; GRIL, J.; LIU, S. Q. Growth stresses are highly controlled by the amount of G-layer in poplar tension wood. Iawa Journal, v. 29, n. 3, p. 237-246, 2008. FISHER, J. B.; STEVENSON, J. W. Occurrence of reaction wood in branches of dicotyledons and its role in tree architeture. Botanical Gazette, v. 142, n. 1, p. 82–95, 1981. GHISLAIN, B. NICOLINI, E. A.; ROMAIN, R.; RUELLE, J.; YOSHINAGA, A.; ALFORD, M. H.; CLAIR, B. Multilayered structure of tension wood cell walls in Salicaceae sensu lato and its taxonomic significance. Botanical Journal of the Linnean Society, v. 182, n. 4, p. 744–756, 2016. JANTAMAS, S.; MATAN, N.; AEWSIRI, T. Improvement of antifungal activity of citronella oil against Aspergillus flavus on rubberwood (Hevea brasiliensis) using heat curing. Journal of Tropical Forest Science, p. 39-47, 2016. JIN, H.; KWON, M. Mechanical bending-induced tension wood formation with reduced lignin biosynthesis in Liriodendron tulipifera. Journal of wood science, v. 55, n. 6, p. 401, 2009. JOSELEAU, J.P.; IMAI, T.; KURODA, K.; RUEL, K. Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta, v. 219, n. 2, p. 338–45, jun. 2004. JOUREZ, B.; RIBOUX, A.; LECLERQ, A. Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana CV “Ghoy”). IAWA Journal, v. 22, n. 2, p. 133–157, 2001. LEV-YADUN, S. Plant fibers: Initiation, growth, model plants, and open questions. Russian journal of plant physiology, v. 57, n. 3, p. 305-315, 2010. LIM, S. C. Tension wood in rubberwood. Timber Technology Bulletin, n. 5, p. 1-3, 1998. LOURENÇO, A. Lignin composition and structure differs between xylem, phloem and phellem in Quercus suber L. Frontiers in plant science, v. 7, p. 1612, 2016. MARCHESSAULT, R. H. Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure and Applied Chemistry, v. 5, n. 1-2, p. 107-130, 1962. MELLEROWICZ, E. J.; GORSHKOVA, T. A. Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. Journal of Experimental Botany, v. 63, n. 2, p. 551-565, 2012. 47 NAKANO, J.; MESHITSUKA, G. The detection of lignin. In: Methods in lignin chemistry. Springer, Berlin, Heidelberg, 1992. p. 23-32. NAKAGAWA, K; YOSHINAGA, A; TAKABE, K. Anatomy and lignin distribution in reaction phloem fibres of several Japanese hardwoods. Annals of botany, v. 110, n. 4, p. 897-904, 2012. NAKAGAWA, K.; YOSHINAGA, A.; TAKABE, K. Xylan deposition and lignification in the multi-layered cell walls of phloem fibres in Mallotus japonicus (Euphorbiaceae). Tree Physiology, v. 34, n. 9, p. 1018–1029, 2014. NAWAWI, D. S.; AKIYAMA, T.; SYAFII, W.; MATSUMOTO, Y. Characteristic of β-O-4 structures in different reaction wood lignins of Eusideroxylon zwageri T. et B. and four other woody species. Holzforschung, v. 71, n. 1, p. 11-20, 2017. OKUYAMA, T.; YAMAMOTO, H.; YOSHIDA, M.; HATTORI, Y.; ARCHER, R. R Growth stresses in tension wood: Role of microfibrils and lignification. Annales des Sciences Forestieres, v. 51, n. 3, p. 291–300, 1994. PANDEY, K. K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science, v. 71, n. 12, p. 1969-1975, 1998. PANDEY, K. K.; NAGVENI, H. C. Rapid characterisation of brown and white rot degraded chir pine and rubberwood by FTIR spectroscopy. Holz als Roh-und Werkstoff, v. 65, n. 6, p. 477-481, 2007. PANDEY, K. K.; PITMAN, A. J. Weathering characteristics of modified rubberwood (Hevea brasiliensis). Journal of applied polymer science, v. 85, n. 3, p. 622-631, 2002. PILATE, G.; DÉJARDIN, A.; LAURANS, F.; LEPLÉ, J. C. Tension wood as a model for functional genomics of wood formation. New Phytologist, v. 164, n. 1, p. 63–72, 2004. POPESCU, C. M. Popescu, M. C.; Singurel, G.; Vasile, C.; Argyropoulos, D. S.; Willfor, S. Spectral characterization of eucalyptus wood. Applied spectroscopy, v. 61, n. 11, p. 1168-1177, 2007. PRAMOD, S.; RAO, K. S.; SUNDBERG, A. Structural, histochemical and chemical characterization of normal, tension and opposite wood of Subabul (Leucaena leucocephala (lam.) De wit.). Wood Science and Technology, v. 47, n. 4, p. 777–796, 2013. PRAMOD, S.; REGHU, C. P.; RAO, K. S. Biochemical Characterization of Wood Lignin of Hevea brasiliensis. In: Wood is Good. Springer, Singapore, 2017. p. 199-209. RAMOS, L. M. A.; LATORRACA, J. V. F.; CASTOR NETO, T. C.; MARTINS, L. S.; SEVERO, E. T. D. Anatomical characterization of tension wood in Hevea brasiliensis (Willd. ex A. Juss.) Mull. Arg. Revista Árvore, v. 40, n. 6, p. 1099-1107, 2016. RAMOS, L. M. A.; LATORRACA, J. V. F.; LIMA, H. R. P.; SANTOS, G. C. V. Variação intraespecífica na anatomia do lenho de Hevea brasiliensis (Willd. ex A. Juss.) Mull. Arg. relacionada à extração de latex. Floresta, Curitiba, (no prelo). RANA, R. LANGENFELD-HEYSER, R.; FINKELDEY, R.; POLLE, A. FTIR spectroscopy, chemical and histochemical characterization of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Science and Technology, v. 44, n. 2, p. 225-242, 2009. REYES-RIVERA, J.; TERRAZAS, T. Lignin Analysis by HPLC and FTIR. In: Xylem. Humana Press, New York, NY, p. 193-211, 2017. 48 RUELLE, J. Morphology, anatomy and ultrastructure of reaction wood. In: The biology of reaction wood. Springer, Berlin, Heidelberg, 2014. p. 13-35. RUELLE, J.; BEAUCHENE, J.; THIBAUT, A.; THIBAUT, B. Comparison of physical and mechanical properties of tension and opposite wood from ten tropical rainforest trees from different species. Annals of Forest Science, v. 64, p. 503-510, 2007. SCURFIELD, G. Reaction wood: Its structure and function. Science, v. 179, p. 647-655, 1973 TRAORÉ, M.; KAAL, J.; CORTIZAS, A. M. Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 153, p. 63-70, 2016. WARDROP, A. B.; DADSWELL, H. E. The nature of reaction wood. I. The sturcture and properties of tension wood fibres. Australian Journal of Science and Research B, v. 1, p. 1-16, 1948. WATANABE, Y.; KOJIMA, Y.; ONA, T.; ASADA, T.; SANO, Y.; FUKAZAWA, K.; FUNADA, R. Histochemical study on heterogeneity of lignin in Eucalyptus species II. The distribution of lignins and polyphenols in the walls of various cell types. IAWA Journal, v. 25, n. 3, p. 283-295, 2004. XU, F.; SUN, R. C., LU, Q.; JONES, G. L. Comparative study of anatomy and lignin distribution in normal and tension wood of Salix gordejecii. Wood Science and Technology, v. 40, n. 5, p. 358–370, 17 nov. 2006. YOSHIDA, M.; OHTA, H.; YAMAMOTO, H.; & OKUYAMA, T. Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera Linn. Trees, v. 16, n. 7, p. 457-464, 2002. YOSHIDA, M.; OKUDA, T.; OKUYAMA, T. Tension wood and growth stress induced by artificial inclination in Liriodendron tulipifera Linn. and Prunus spachiana Kitamura f. ascendens Kitamura. Annals of Forest Science, v. 57, n. 8, p. 739-746, 2000. YOSHIZAWA, N.; INAMI, A.; MIYAKE, S.; ISHIGURI, F.; YOKOTA, S. Anatomy and lignin distribution of reaction wood in two Magnolia species. Wood Science and Technology, v. 34, n. 3, p. 183–196, 2000. | por |
dc.subject.cnpq | Recursos Florestais e Engenharia Florestal | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/65959/2018%20-%20Let%c3%adcia%20Maria%20Alves%20Ramos.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/4854 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-07-19T12:15:13Z No. of bitstreams: 1 2018 - Letícia Maria Alves Ramos.pdf: 2182881 bytes, checksum: 13be87195bf275e50c95e350ed71b407 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2021-07-19T12:15:13Z (GMT). No. of bitstreams: 1 2018 - Letícia Maria Alves Ramos.pdf: 2182881 bytes, checksum: 13be87195bf275e50c95e350ed71b407 (MD5) Previous issue date: 2018-02-23 | eng |
Appears in Collections: | Doutorado em Ciências Ambientais e Florestais |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2018 - Letícia Maria Alves Ramos.pdf | Letícia Maria Alves Ramos | 2.13 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.