Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/9424
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Carmo, Fábio Henrique Della Justina do | |
dc.date.accessioned | 2023-12-21T18:38:40Z | - |
dc.date.available | 2023-12-21T18:38:40Z | - |
dc.date.issued | 2022-08-31 | |
dc.identifier.citation | CARMO, Fábio Henrique Della Justina do. Crescimento radial e propriedades tecnológicas da madeira de Tectona grandis Linn f. frente as variações climáticas e ocorrência de evento El Niño na Amazônia. 2022. 74 f. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9424 | - |
dc.description.abstract | As condições do ambiente onde as plantas se localizam afetam o seu crescimento. Durante o desenvolvimento da planta, a assimilação de recursos permite que a planta invista em crescimento, reprodução, proteção etc. Em algumas espécies de árvores, essas informações ficam documentadas nos anéis de crescimento, que representam uma medida relativa do seu crescimento anual e podem inferir sobre o funcionamento da árvore para os próximos períodos. A partir dessas informações contidas nos anéis de crescimento é possível estudar quais as respostas/estratégias das plantas em um ambiente impulsionado pelas mudanças climáticas. Estas mudanças têm relação direta com a ocorrência de eventos climáticos extremos, como o El Niño, que é responsável pelo aumento da temperatura e redução da precipitação em várias partes do mundo, incluindo a região Amazônica. Assim, nesta pesquisa buscou-se avaliar o efeito do clima e da ocorrência de evento El Niño (2015/2016) no crescimento e nas propriedades tecnológicas da madeira de Tectona grandis Linn f.. Para isso 60 árvores, com 12 anos de idade, foram coletadas de um plantio localizado na região sudeste do estado do Pará. Estas árvores foram amostradas de forma destrutiva, retirando-se discos em diferentes alturas do fuste (base, 1,0, 4,1, 7,2 e 10,3 metros). Dos discos da base mediu-se da largura dos anéis de crescimento e avaliou-se a anatomia da madeira. Analisou-se também a densidade aparente, por anel, dos discos da base e demais alturas. Aliado ao estudo dos anéis de crescimento, empregou-se ferramentas de sensoriamento remoto para contribuir com a compreensão das respostas das árvores ao clima. Foram utilizados dados do sensor MODIS para obtenção do Índice de Vegetação por Diferença Normalizada (NDVI) e Produtividade Primária Bruta (GPP) e do satélite Landsat-8 para obtenção do Fluxo de CO2. O NDVI foi utilizado para extração de métricas fenológicas de Início, Pico, Final e Comprimento do período de crescimento, considerando-se para isso a amplitude de seus valores, para cada período de crescimento, para definição de cada uma dessas métricas. Para avaliar a influência do evento de El Niño, considerou-se os períodos pré-El Niño (2012 e 2013), El Niño (2014 e 2015) e pós-El Niño (2016 e 2017). O GPP e o fluxo de CO2 foram utilizados para ajudar na compreensão das respostas da árvore quanto ao acúmulo de biomassa, durante o evento de El Niño. O estudo demonstrou que o crescimento radial, o comprimento do período de crescimento, a dimensão dos elementos de vaso e a densidade da madeira se correlacionaram positivamente com a precipitação e negativamente com a temperatura, principalmente nos meses iniciais de crescimento. O evento de El Niño afetou de forma negativa o crescimento radial, as dimensões dos elementos de vaso e o acúmulo de biomassa. Além disso, observou-se que o comprimento do período de crescimento prévio afetou de forma negativa o crescimento radial corrente. Assim, demonstrou-se a aclimatação da espécie ao clima e que, além de afetar diretamente a produtividade, o clima pode afetar também o crescimento do próximo período. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Anéis de crescimento | por |
dc.subject | Sensoriamento remoto | por |
dc.subject | Tecnologia da madeira | por |
dc.subject | Mudanças climáticas | por |
dc.subject | Growth rings | eng |
dc.subject | Remote sensing | eng |
dc.subject | Wood technology | eng |
dc.subject | Climate change | por |
dc.title | Crescimento radial e propriedades tecnológicas da madeira de Tectona grandis Linn f. frente as variações climáticas e ocorrência de evento El Niño na Amazônia | por |
dc.title.alternative | Radial growth and technological properties of Tectona grandis Linn f. against climatic variations and the occurrence of El Niño event in the Amazon | eng |
dc.type | Tese | por |
dc.description.abstractOther | The conditions of the environment where the plants are located affect their growth. During the plant development, resources assimilation allows the plant to invest in growth, reproduction, protection, etc. For some tree species, this information is documented in the growth rings, which represent a relative measure of their annual growth and may infer about the operation of the tree for the next periods. From this information documented in the growth rings it is possible to study the responses/strategies of plants in an environment driven by climate change. Climate change have a direct relationship with the occurrence of extreme weather events, such as El Niño, responsible for increasing temperature and reducing precipitation in various parts of the world, including the Amazon region. Thus, this research aimed to evaluate the effect of climate and the occurrence of El Niño event (2015/2016) on the growth and technological properties of the wood of Tectona grandis Linn f.. We used 60 young trees, aged 12 years, from a plantation located in the southeast region of the state of Pará. The trees were sampled by destructive technique, removing discs at different heights of the stem (base, 1.0, 4.1, 7.2 and 10.3 meters). The discs from the base were used to measure the tree-ring width and to evaluate the wood anatomy. Also, the apparent density per ring, was analyzed using the discs from the base and other heights. Allied to the study of growth rings, remote sensing tools were used to contribute to the understanding of tree responses to climate. We used images from the MODIS sensor to obtain the Normalized Difference Vegetation Index (NDVI) and Gross Primary Productivity (GPP) and from landsat-8 satellite to obtain the CO2 flux. The NDVI was used to extract phenological metrics of Start, Peak, End and Length of the growing season, considering the amplitude of its values, for each growth period, to define each of these metrics. To assess the influence of the El Niño event, we considered the pre-El Niño (2012 and 2013), El Niño (2014 and 2015) and post-El Niño (2016 and 2017) periods. Both GPP and CO2 flux were used to better understand the tree's responses regarding biomass accumulation during the El Niño event. The study showed that radial growth, length of growth season, size of vessel elements and wood density were positively correlated with precipitation and negatively with temperature, especially in the initial months of growth season. The El Niño event negatively affected the radial growth, the vessel element size and biomass accumulation. In addition, it was observed that the length of the previous growth season negatively affected the current radial growth. Thus, our study demonstrated the acclimatization of the species to the climate and that, in addition to directly affecting productivity, the climate can also affect the growth of the next season. | eng |
dc.contributor.advisor1 | Latorraca, João Vicente de Figueiredo | |
dc.contributor.advisor1ID | 284.741.551-34 | por |
dc.contributor.advisor1ID | https://orcid.org/0000-0002-5969-5199 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/9612404360795583 | por |
dc.contributor.referee1 | Latorraca, João Vicente de Figueiredo | |
dc.contributor.referee1ID | 284.741.551-34 | por |
dc.contributor.referee1ID | https://orcid.org/0000-0002-5969-5199 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/9612404360795583 | por |
dc.contributor.referee2 | Mendonca, Bruno Araujo Furtado de | |
dc.contributor.referee2ID | https://orcid.org/0000-0003-0288-0024 | por |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/8081324794152785 | por |
dc.contributor.referee3 | Carvalho, Alexandre Monteiro de | |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/1858250183196632 | por |
dc.contributor.referee4 | Vidaurre, Graziela Baptista | |
dc.contributor.referee4ID | https://orcid.org/0000-0001-9285-7105 | por |
dc.contributor.referee4ID | 078.905.237-77 | por |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/2988548512574129 | por |
dc.contributor.referee5 | Xavier, Carolina Nogueira | |
dc.contributor.referee5ID | 133.377.787-63 | por |
dc.contributor.referee5ID | https://orcid.org/0000-0001-6195-6370 | por |
dc.contributor.referee5Lattes | http://lattes.cnpq.br/0493427948599513 | por |
dc.creator.ID | 034.842.691-70 | por |
dc.creator.ID | https://orcid.org/0000-0003-0741-2801 | por |
dc.creator.Lattes | http://lattes.cnpq.br/8383277049876088 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Florestas | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Ambientais e Florestais | por |
dc.relation.references | ALMEIDA, A. C. et al. Mapping the effect of spatial and temporal variation in climate and soils on Eucalyptus plantation production with 3-PG, a process-based growth model. Forest Ecology and Management. v. 259, p. 1730-1740, 2010. ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrif. v. 22, p. 711-728, 2013. BEHLING, M. et al. Relações entre parte aérea e raízes em povoamentos de teca. Revista Ceres. v. 65, n. 6, p. 463-473, 2018. BETTS, R. A. et al. ENSO and the carbon cycle. In: MCPHADEN, M. J.; SANTOSO, A.; CAI, W. El Niño Southern Oscillation in a changing climate. 1st ed. Washington, DC. 2020. BHAT, K. M.; PRIYA, P. B.; RUGMINI, P. Characterization of juvenile wood in teak. Wood Science and Technology. v. 34, p. 517-532, 2001. CAMPOS, J. C. C.; LEITE, H. G. Mensuração florestal: perguntas e respostas. 4ed. Editora UFV, Viçosa, MG, 2013. DELLA-SILVA, J. L. et al. CO2Flux Model Assessment and Comparison between an Airborne Hyperspectral Sensor and Orbital Multispectral Imagery in Southern Amazonia. Sustainability. v. 14, n. 5458, 2022. https://doi.org/10.3390/su14095458. DIÉ, A. et al. Tree rings show a different climatic response in a managed and non-managed plantation of teak (Tectona grandis) in West Africa. IAWA Journal. v. 36, p. 409-427, 2015. DOS SANTOS, C.V.B. Modelagem espectral para determinação de fluxo de CO2 em áreas de caatinga preservada e em regeneração. 75p. Dissertação (Mestrado em Ciências Ambientais), Universidade Estadual de Feira de Santana, Feira de Santana, Brasil, 2017. EZIZ, A. et al. Drought effect on plant biomass allocation: A meta-analysis. Ecology and Evolution. v. 7, p. 11002-11010, 2017. FAO. Understanding the drought impact of El Niño on the global agricultural areas: An assessment using FAO’s Agricultural Stress Index (ASI). 2014. GAITAN-ALVAREZ, J.; MOYA, R.; BERROCAL, A. The use of X-ray densitometry to evaluate the wood profile of Tectona grandis trees growing in fast-growth plantations. Dendrochronologia. v. 55, p. 71-79, 2019. https://doi.org/10.1016/j.dendro.2019.04.004 GAMON, J.A.; PEÑUELAS, J.; FIELD, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing Environment. v. 41, n. 1, p. 35–44, 1992. https://doi.org/10.1016/0034-4257(92)90059-S GAMON, J. A. et al. Remote sensing of the xanthophyll cycle and chlorophyll florescence in sunflower leaves and canopies. Oecologia. v. 85, p. 1-7, 1990. 60 HAO, J. et al. Growth process and heartwood formation for planted teak (Tectona grandis) in South China. Austrian Journal of Forest Science. v. 2, p. 97-116, 2022. HEINSCH, F. A. et al. User's Guide: GPP and NPP (MOD17A2/A3) products NASA MODIS land algorithm. p. 1–57, 2003. HUANG, J. G. et al. Response of forest trees to increased atmospheric CO2. Critical Reviews in Plant Sciences. v. 26, n. 5-6, p. 265-283, 2007. ISLAM, M.; RAHMAN, M.; BRÄUNING, A. Impact of extreme drought on tree-ring width and vessel anatomical features of Chukrasia tabularis. Dendrochronologia. v. 53, p. 63-72, 2019. KENZO, T. et al. General estimation models for above- and below-ground biomass of teak (Tectona grandis) plantations in Thailand. Forest Ecology and Management. v. 457, 2020. KOLLMANN, F. F. P. Physics of wood. In: KOLLMANN, F.F. P.; CÔTÉ JR, W. A. Principles of wood science and technology: I Solid wood. Springer-Verlag, New York Inc. 1968. 592p. KOZAK, A.; MUNRO, D. D.; SMITH, J. G. H. Taper functions and their applications in forest inventory. Forestry Chronicle. v. 45, n. 4, p. 278-283, 1969. L’HEUREUX, M. L. et al. Observing and predicting the 2015/16 El Niño. Bulletin of the American Meteorological Society. v. 98, n. 7, p. 1363-1382, 2017. LUO, X. et al. The impact of the 201/2016 El Niño on global photosynthesis using satellite remote sensing. Philosophical Transactions B. v. 373, 2018. MARIA, L. S. et al. Dendrometric evaluation of a clonal population of Tectona grandis in forest-livestock system. Ciência Rural. v. 49, n. 9, 2019. PALMER, P. I. The role of satellite observations in understanding the impact of El Niño on the carbon cycle: current capabilities and future opportunities. Philosophical Transactions B. v. 373, 2018. QUAN, Q. et al. Shifting biomass allocation determines community water use efficiency under climate warming. Environmental Research Letters. v. 15, 2020. RAHMAN, A.F. et al. Modeling spatially distributed ecosystem flux of boreal forest using hyperspectral indices from AVIRIS imagery. Journal of Geophysical Research. v. 106, n. D24, p. 33579-33591, 2001. https://doi.org/10.1029/2001jd900157 RAHMAN, M. et al. Trends in tree growth and intrinsic water-use efficiency in the tropics under elevated CO2 and climate change. Trees. v. 33, p. 623-640, 2019. ROUSE, J.W. et al. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the ERTS-1 Symposium. Washington, DC, USA, v. 351, p. 309-317, 1974. SCHÖEPFER, W. Automatisierung des Massen, Sorten und Wertberechnung stenender Waldbestande. Schriftenreihe Bad. Wurtt-Forstl, 1966. 61 SETIAWAN, B. et al. Model of community forest land management production and financial simulation of super teal, Solomon teak and sungkai trees in Samboja Kutai Kartanegara East Kalimantan, Indonesia. Energy and Environment Research. v. 9, n. 2, 2019. SILVA, P. V. C. et al. CO2 na floresta nativa de Caxiuanã – Melgaço/PA. Revista Brasileira de Iniciação Científica. v. 4, n. 9, 2017. SILVEIRA, E. M. O. et al. Pre-stratified modelling plus residuals kriging reduces the uncertainty of aboveground biomass estimation and spatial distribution in heterogeneous savannas and forest environments. Forest Ecology and Management. v. 445, n. 1, p. 96–109, 2019. https://doi.org/10.1016/j.foreco.2019.05.016 TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6th ed. Porto Alegre, Artmed. 2017. TURNER, D. P. et al. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sensing of Environment. v. 102, p. 282-292, 2006. VENEGAS-GONZÁLEZ, A. et al. Drought and climate change incidence on hotspot Cedrela forests from the Mata Atlântica biome in southeastern Brazil. Global Ecology and Conservation. v. 15, e00408, 2018. doi: 10.1016/j.gecco.2018.e00408 WARING, B. G.; POWERS, J. S. Overlooking what is underground: Root:shoot ratios and coarse root allometric equations for tropical forests. Forest Ecology and Management. v. 385, p. 10-15, 2017. ZHANG, H. et al. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests. Scientific Report. v. 5, n. 15997, 2015. ZHANG, Y. et al. Development of a coupled carbon and water model for estimating global gross primary productivity and evapotranspiration based on eddy flux and remote sensing data. Agricultural and Forest Meteorology. v. 223, p. 116-131, 2016. | por |
dc.subject.cnpq | Recursos Florestais e Engenharia Florestal | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/74649/2022%20-%20F%c3%a1bio%20Henrique%20Della%20Justina%20do%20Carmo.Pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6896 | |
dc.originais.provenance | Submitted by Leticia Schettini (leticia@ufrrj.br) on 2023-09-01T15:30:48Z No. of bitstreams: 1 2022 - Fábio Henrique Della Justina do Carmo.Pdf: 4084948 bytes, checksum: 8a44dd79ccbb3bd06e90056145488055 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-09-01T15:30:48Z (GMT). No. of bitstreams: 1 2022 - Fábio Henrique Della Justina do Carmo.Pdf: 4084948 bytes, checksum: 8a44dd79ccbb3bd06e90056145488055 (MD5) Previous issue date: 2022-08-31 | eng |
Appears in Collections: | Doutorado em Ciências Ambientais e Florestais |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022 - Fábio Henrique Della Justina do Carmo.Pdf | 2022 - Fábio Henrique Della Justina do Carmo | 3.99 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.