Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9429
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMenezes, Veronica Cristina Lopes
dc.date.accessioned2023-12-21T18:39:15Z-
dc.date.available2023-12-21T18:39:15Z-
dc.date.issued2020-05-08
dc.identifier.citationMENEZES, Veronica Cristina Lopes. Avaliação do reservatório de sódio na pele e do equilíbrio hidromineral em função da idade e do dimorfismo sexual em ratos Wistar normotensos e espontaneamente hipertensos (SHR). 2020. 202 f. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9429-
dc.description.abstractO presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001. A linhagem de animais espontaneamente hipertensos (SHR) é considerada como modelo de hipertensão essencial, sendo o modelo que mais se aproxima da hipertensão do ser humano. A reserva de sódio corporal pode ser armazenada, na pele, na cartilagem e em músculos, sendo também responsável pelo balanço de sódio e água corporais. O estoque de sódio armazenado na pele seria um possível mecanismo extrarrenal de regulação da excreção de eletrólitos e homeostase de volume. O objetivo central deste trabalho foi avaliar o status fisiológico das reservas ativa e inativa de sódio acumulado na pele em animais SHR e Wistar. Os objetivos secundários foram: identificar as mudanças no padrão ingestivo dos animais fazendo uma relação com a pressão arterial, reserva de sódio e hormônios; comparar machos e fêmeas e comparar as idades em condições fisiológicas. Foram analisados 10 grupos experimentais: na idade de 4 semanas (1) machos Wistar; (2) machos SHR, (3) fêmeas Wistar; (4) fêmeas SHR; na idade de 12 semanas (5) machos SHR; (6) machos Wistar; (7) fêmeas SHR (proestro/estro); (8) fêmeas SHR (metaestro/diestro); (9) fêmeas Wistar (proestro/estro) e (10) fêmeas Wistar (metaestro/diestro), obtidos do Biotério Central do Departamento de Ciências Fisiológicas da UFRRJ e foram mantidos em condições-padrão de luz, temperatura e alimento. Esse estudo foi submetido ao Comitê de Ética para o uso de animais da UFRRJ sob o nº 23083.026847/2017-01. Realizamos 4 protocolos: avaliações comportamentais em gaiolas metabólicas, radioimunoensaio, avaliação indireta da pressão arterial (tail cuff) e análises do conteúdo de sódio e água da pele. Nossos resultados mostraram que na idade de 4 semanas machos e fêmeas SHR ingerem mais sódio e menos água e esse mesmo perfil comportamental também foi observado nos SHR adultos. Animais da linhagem SHR apresentaram menores índices ponderais em relação aos Wistar. Com o avanço da idade, ocorreu diminuição da concentração plasmática de AVP nos machos SHR, enquanto que as fêmeas SHR não apresentaram alteração em comparação à linhagem Wistar. A concentração plasmática de ANG II não foi modificada nos Machos SHR adultos em comparação aos filhotes, enquanto que nas fêmeas SHR adultas em proestro/estro e em metaestro/diestro apresentaram aumento em relação às fêmeas SHR de 4 semanas de idade. Machos SHR apresentaram aumento da pressão sistólica com 4 semanas de idade, enquanto que as fêmeas SHR em proestr/estro e em metaestro/diestro a partir da sexta semana de idade. A reserva ativa ou inativa acumulada não se altera em função da linhagem em machos adultos ou filhotes. Quando comparamos machos e fêmeas adultos, houve aumento na reserva osmoticamente inativa. Concluímos que a ingestão de sódio e água é influenciada pela linhagem e pelo dimorfismo sexual e maioria das variações hormonais ocorreram devido às diferenças de linhagem, na qual houve um estímulo predominante para retenção de sódio e água e inibição da sede nos SHR jovens e adultos. Animais SHR são hipertensos desde 4 semanas de idade e a hipertensão não altera a reserva osmoticamente ativa ou inativa em condições fisiológicas, no entanto, as diferenças de idade e o dimorfismo sexual foram os principais fatores influenciadores da reserva de sódio acumulada.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjecthormôniospor
dc.subjectsódio epitelialpor
dc.subjecthipertensãopor
dc.subjectdimorfismopor
dc.subjectcomportamentopor
dc.subjecthormoneseng
dc.subjectepitelial sodiumeng
dc.subjecthypertensioneng
dc.subjectdimorphismeng
dc.subjectbehavioureng
dc.titleAvaliação do reservatório de sódio na pele e do equilíbrio hidromineral em função da idade e do dimorfismo sexual em ratos Wistar normotensos e Espontaneamente Hipertensos (SHR)por
dc.title.alternativeEvaluation of the skin sodium reservoir and hydromineral balance as a function of age and sexual dimorphism in Wistar normotensive and Spontaneously Hypertensive rats (SHR)eng
dc.typeTesepor
dc.description.abstractOtherThis study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior- Brasil (CAPES)-Finance code 001. Spontaneously hypertensive rats (SHR) are considered as a model of essential hypertension, being the model that most closely resembles human hypertension. The body’s sodium reserve can be stored in the skin, cartilage and muscles, and is also responsible for the body’s sodium and water balance. The skin sodium storage would be a possible extra-renal mechanism for regulating electrolyte excretion and volume homeostasis. The main objective of this work was to evaluate the physiological status of the active and inactive reserves of sodium accumulated in the skin in SHR and Wistar animals. The secondary objectives were: to identify changes in the animals’intake pattern by making a relationship with blood pressure, sodium reserve and hormones; compare males and females and compare ages under physiological conditions. Tem experimental groups of rats were analysed: at 4 weeks-age (1) Wistar males; (2) SHR males; (3) Wistar females; (4) SHR females; at 12 weeks-age (5) SHR males; (6) Wistar males; (7) SHR females (proestrus/estrus); (8) SHR females (metestrus/diestrus); (9) Wistar females (proestrus/estrus); (10) Wistar females (metestrus/diestrus), obtained from the Central Vivarium of the Department of Physiological Sciences at UFRRJ and were kept under standard conditions of light, temperature and food. This study was submitted to the Ethical Commitee for the Use of Laboratory Animals in the UFRRJ (23083.026847/2017-01). We performed 4 protocols: behavioral assessments in metabolic cages, radioimmunoassay, indirect assessment of blood pressure (tail cuff) and analysis of the sodium and water content of the skin. Our results showed that at the age of 4 weeks males and females SHR ingest more sodium and less water and this same behavioral profile was also observed in adult SHR. SHR strain showed lower weight indexes compared to Wistar. With advancing age, there was a decrease in the plasma concentration of AVP in SHR males, while SHR females showed no change compared to the Wistar strain. The plasma concentration of ANG II was not modified in adult SHR males, while SHR females showed no change compared to the Wistar strain. The ANG II plasma concentration was not modified in adult SHR males compared to puppies, whereas in adult SHR females in the proestrus/estrus and in the metestrus/diestrus showed an increase in relation to SHR females of 4 weeks-age. SHR males showed na increase in systolic pressure at 4 weeks of age, while SHR females in proestrus/estrus and metestrus/diestrus from the sixth week of age. The accumulated active or inactive skin sodium reserve does not change depending on the strain in adult males or young rats. When comparing adult males and females, there was an increase in the osmotically inactive skin sodium reserve. We conclude that sodium and water intake are influenced by lineage and sexual dimorphism and most hormonal variations occurred due to lineage differences, in which there was a predominant stimulus for sodium and water retention and thirst inhibition in young and adult SHR. SHR animals are hypertensive since 4 weeks-age and hypertension does not change the osmotically active or inactive reserve under physiological conditions, however, age diferences and sexual dimorphism were the main factors influencing the accumulated skin sodium reserve.eng
dc.contributor.advisor1Reis, Luis Carlos
dc.contributor.advisor1ID484.252.577-00por
dc.contributor.referee1Reis, Luis Carlos
dc.contributor.referee2Côrtes, Wellington da Silva
dc.contributor.referee3Olivares, Emerson Lopes
dc.contributor.referee4Ventura, Renato Rizo
dc.contributor.referee5Almeida, Claudio da Silva
dc.creator.ID133.786.427-77por
dc.creator.IDhttps://orcid.org/0000-0001-9624-9182por
dc.creator.Latteshttp://lattes.cnpq.br/7496176002669568por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesAGUILAR, E.; RODRÍGUEZ M.L.; BELLIDO, C.; DE LA FUENTE, M.; PINILLA, L. Changes in growth hormone secretion in spontaneously hypertensive rats. Neuroendocrinology, 52(4):337-41, 1990. ALMEIDA-PEREIRA, G.; VILHENA-FRANCO, T.; COLETTI, R.; COGNUCK, S.Q.; SILVA, H.V.P.; ELIAS, L.L.K.; ANTUNES-RODRIGUES, J. 17β-Estradiol attenuates p38MAPK activity but not PKCα induced by angiotensin II in the brain. J Neuroendocrinol, 240:345-360, 2019. ANDERSSON, O.; MCCANN, S.M. The Effect of Hypothalamic Lesions on the Water Intake of the Dog. Acta Physiologica Scandinavica, 35(3,4): 312–320,1955. ANTUNES-RODRIGUES, J.; COVIAN, M.R. Hypothalamic control of sodium chloride and water intake. Acta Physiol Lat Am, 13: 94-100, 1963. ANTUNES-RODRIGUES, J.; FAVARETTO, A.L.; GUTKOWSKA,J.; MCCANN, S.M. The neuroendocrine control of atrial natriuretic peptide release. Mol Psychiatry, 2(5):359-67, 1997. ANTUNES-RODRIGUES, J.; COVIAN, M.R.; Hypothalamic control of sodium chloride and water intake. Acta Physiol Lat Am, 13: 94-100, 1963. ANTUNES-RODRIGUES,J.; MCCANN, S.M.; ROGERS, L.C.; SAMSON, K. Atrial natriuretic fator inhibits dehydration and angiotensin II-induced water intake in the conscius, unrestrained rat. Proc Natl Acad Sci U S A. 82(24):8720-3, 1985. ARAI, K.; CHOROUSOS, G.P. Hormone-nuclear receptor interactions in health and disease. Glucocorticoid resistance. Baillieres Clin Endocrinol Metab. 8(2):317-31, 1994. AUGER, C.J.; COSS, D.; AUGER, A.P.; FORBES-LORMAN, R.M. Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain. Proc Natl Acad Sci U S A, 8;108(10):4242-7, 2011. BAE, O.K.; NOH, M.; CHUN, Y.J.; JEONG, T.C. Keratinocytic vascular endothelial growth factor as a novel biomarker for pathological skin condition. Biomol Ther, 23(1): 12-18, 2015. BHATIA, K.; ELMARAKBY, A.A.; EL-REMESSY, A.B.; SULLIVAN,J.C. Oxidative stress contributes to sex differences in angiotensin II-mediated hypertension in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 15;302(2):R274-82, 2012. BALMENT, R.J.; BRIMBLE, M.J.; FORSLING, M.L. Release of oxytocin induced by salt loading and its influence on renal excretion in the male rat. J Physiol. 308:439-49, 1980. BASTOS, R.; FAVARETTO, A.L.; GUTKOWSKA, J.; MCCANN, S.M.; ANTUNES-RODRIGUES, J. Alpha-adrenergic agonists inhibit the dipsogenic effect of angiotensin II by their stimulation of atrial natriuretic peptide release. Brain Res. 895(1- 2):80-8, 2001. BASSAM, H.; BASSAM M.; PINHASOV, A.; KARIV, N.; GILADI E.; GOZES I, HAREL S. The pregnant spontaneusly hypertensive rat as a model of asymetric intrauterine growth retardation and neurodevelopment delay. Hypertension in pregnancy, 24(3), 201-211, 2005. BINGHAM, B.; WANG, N.X.; INNALA, L.; VIAU, V. Postnatal aromatase blockade increases c-fos mRNA responses to acute restraint stress in adult male rats. Endocrinology, 153(4):1603-8, 2012. BLAGONRAVOV, M.L.; FROLOV, V.; AZOVA, M.M.; GORYACHEV, V.A. Characteristics of circadian rhythm of blood pressure during longterm hypertension development in SHR rats. Bull Exp Biol Med. 155(5):612-4, 2013. BLAGONRAVOV, M.L.; MEDVEDEVA, E.V.; BRYK, A.A.; GORYACHEV, V.A.; RABINOVICH, A.E.; LETOSHNEVA, A. S.; DEMUROV, E. A. 24-Hour Profile of Blood Pressure, Heart Rate, Excretion of Electrolytes, and Locomotor Activity in Wistar-Kyoto and SHR Rats Under Conditions of Free-Run Rhythm. Bulletin of Experimental Biology and Medicine, 166(2), 192–196, 2018. BOTELHO, L.M.; BLOCK, C.H.; KHOSLA, M.C.; SANTOS, R.A. Plasma angiotensin (1-7) immunoreactivity is increased by salt load, water deprivation, and hemorrhage. Pept, 15(4):723-9, 1994. BROOKS, V.L.; OSBORN, J.W. Hormonal-sympathetic interactions in long-term regulation of arterial pressure: an hypothesis. Am J Physiol Regulatory Integrative Comp. Physiol., 268:R1343-R I358, 1995. BURREL, L.M.; RISVANIS, J.; DEAN, R.G.; PATEL,S.K.; VELKOSKA, E.; JOHNSTON, C.I. Age-dependent regulation of renal vasopressin V(1A) and V₂ receptors in rats with genetic hypertension: implications for the treatment of hypertension. J Am Soc Hypertens. 7(1):3-13, 2013. BUTERA, P.C.; CLOUGH, S.J.; BUNGO, A. Cyclic estradiol treatment modulates the orexigenic effects of ghrelin in ovariectomized rats. Pharmacol Biochem Behav. 124:356-60, 2014 BUTERA, P.C. WOJCIK, D.M.; CLOUGH, S.J. Effects of estradiol on food intake and meal patterns for diets that differ in flavor and fat content. Physiol Behav. 99(1):142-5, 2010. CABRAL, A.D.; KAPUSTA,D.R.; KENIGS, V.A.; VARNER, K.J. Central alpha2- receptor mechanisms contribute to enhanced renal responses during ketamine-xylazine anesthesia. American Journal of Physiology. 275(6 Pt 2):R1867-74, 1998. CANNON, W.B. The Wisdom of the Body. W. W. Norton & Company, Inc., p. 294, 1932. CERUTI, J.M.; LEIROS, G.J.; BALANA, M.E. Androgens and androgen receptor action in skin and hair follicles. Mol Cell Endocrinol, 465:122-33, 2018. CHEN, P.; XU, B.; FENG, Y.; LI, K.X.; LIU, Z.; SUN, X.; LU, X.L.; WANG, L.Q.; CHEN, Y.W.; FAN, X.X.; YANG, X.L.; WANG, N.; QIAO, G.F.; LI, B.Y.FGF- 21 ameliorates essential hypertension of SHR via baroreflex afferent function. Brain Res Bull. 2019 Oct 15;154:9-20. doi: 10.1016/j.brainresbull.2019.10.003. [Epub ahead of print] CHEN, W.; THIBOUTOT, D.; ZOUBOULIS, C.C. Cutaneous androgen metabolism: basic research and clinical perspectives. J Invest Dermatol, 119(5):992-1007, 2002. CHOW, S.Y.; SAKAI, R.R., WITCHER, J.A. ADLER, N.T. EPSTEIN, A.N. Sex and sodium intake in the rat. Behav Neurosci,106(1):172-80, 1992. COWLEY, A.W. Long-term control of arterial blood pressure. Physiol Rev. , 72:23 1- 300, 1992. COX, K.H.; QUINNIES, K.M.; ESCHENDROEDER, A.; DIDRICK, P.M.; EUGSTER, E.A.; RISSMAN, E.F. Number of X-chromosome genes influences social behavior and vasopressin gene expression in mice. Psychoneuroendocrinology. 51:271- 81, 2015. DALMASSO, C.; PATIL, C.N.; YANES CARDOSO, L.L.; ROMERO, D.G.; MARANON, R.O. Cardiovascular and Metabolic Consequences of Testosterone Supplements in Young and Old Male Spontaneously Hypertensive Rats: Implications for Testosterone Supplements in Men. J Am Heart Assoc, 6, pii: e007074, 2017. DANIELSEN, J.; BUGGY, J. Depression of ad lib and angiotensin-induced sodium intake at oestrus. Brain Res Bull, 5, 501–504, 1980. DE LANNOY, L. M., DANSER, A. H. J., BOUHUIZEN, A. M. B., SAXENA, P. R., SCHALEKAMP, M. A. D. H. Localization and production of angiotensin II in the isolated perfused rat heart. Hypertension.. v. 31, p. 1111 – 1117, 1998. DE LUCA JR. , L.A.; GALAVERNA, O.; SCHULKIN, J.; YAO, S.Z.; EPSTEIN, A.N. The anteroventral wall of the third ventricle and the angiotensinergic component of need-induced sodium intake in the rat. Brain Res Bull., 28:73-87, 1992. DENG, Y.; TAN, X.; LI, M.L.; WANG, W.Z.; WANG, Y.K. Angiotensin-Converting Enzyme 2 in the Rostral Ventrolateral Medulla Regulates Cholinergic Signaling and Cardiovascular and Sympathetic Responses in Hypertensive Rats. Neurosci Bull. 35(1):67-78, 2019. DOS-SANTOS, R.C.; MONTEIRO, L.D.R.N.; PAES-LEME, B.; LUSTRINO, D.; ANTUNES-RODRIGUES, J.; MECAWI, A.S.; REIS, L.C. Central angiotensin-(1-7) increases osmotic thirst. Exp Physiol, 102:1397-1404, 2017. DU BOIS, D.; DU BOIS, E.F. A formula to estimate the approximate surface area if height and weight be known. Nutrition, 5:303-11, 1989. ECHEM, C.; COSTA, T.J.D.; OLIVEIRA, V.; GIGLIO, C.L.; LANDGRAF, M.A.; RODRIGUES, S.F.; FRANCO, M.D.C.P.; LANDGRAF, R.G.; SANTOS-EICHLER, R.A.; BOMFIM, G.F.; AKAMINE, E.H.; DE CARVALHO, M.H.C. Mitochondrial DNA: A new driver for sex differences in spontaneous hypertension. Pharmacol Res, 144:142-150, 2019. EDWARDS, C.R.; STEWART, P.M.; BURT, D.; BRETT, L.; MCINTYRE, MA.; SUTANTO, W.S.; KLOE, E.R.; MONDER, C. Localisation of 11 beta-hydroxysteroid dehydrogenase-tissue specific protector of the mineralocorticoid receptor. Lancet, 2: 986- 989, 1988. EMANUELE, M.A.; WEZEMAN, F.; EMANUELE, N.V Alcohol's effects on female reproductive function. Alcohol Res Health, 26:274-81, 2002. ELIAS, P.C.L.; ELIAS, L.L.K,.; MOREIRA, A.C. Padronização do teste de infusão de salina hipertônica para o diagnóstico de diabetes insípido com dosagem da vasopressina plasmática. Arq Bras Endocrinol Metabol, 42:198-204, 1998. ELY, D.; TURNER, M.; MILSTED A. Review of the Y chromosome and hypertension. Braz J Med Biol Res, 33(6):679-91, 2000. EPSTEIN, A.N. Control of salt intake by steroids and cerebral peptides. Pharmacol Res, 25(2):113-24, 1992. EVERED, M.D.; ROBINSON, M.M.; ROSE, P.A. Effec of arterial pressure on drinking and urinary responses to angiotensin II. Am J Physiol, 254:269-274, 1988. FARBER, S.J.; SCHUBERT, M.; SCHUSTER, N. The biding of cations by chondroitin sulfate. J Clin Invest, 36: 1715-1722, 1957. FALLER, C.E.; GUVENCH, O. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides. J Phys Chem B, 119: 6063-6073, 2015. FILEP, J.; FEJES-TÓTH, G. Does vasopressin sustain blood pressure in conscious spontaneously hypertensive rats? Hypertension, 8(6):514-9, 1986. FERREYRA, M.D.; CHIARAVIGLIO, E. Changes in volemia and natremia and onset of sodium appetite in sodium depleted rats. Physiol Behav, 19:197-201, 1977. FITZSIMONS JT. Angiotensin, thirst, and sodium appetite. Physiol Rev, 78: 583– 686, 1998. FORSLING, M.L; BRIMBLE, M.J.; BALMENT, R.J. The influence of vasopressin on oxytocin-induced changes in urine flow in the male rat. Acta Endocrinol (Copenh). 100(2):216-20, 1982. FRINDT, G.; PALMER, L.G. Regulation of epithelial Na+ channels by adrenal steroids: mineralocorticoid and glucocorticoid effects. Am J Physiol Renal Physiol, 302(1): 20– 26, 2012. FUNDER, J.W. Aldosterone mineralocorticóide receptors and vascular inflammation. Moll Cell Endocrinology, 217:263-269, 2004. GAVRAS, H. & GAVRAS, I. Endothelial Function in Cardiovascular Disease: The Role of Bradykinin. London, England: Science Press; 1996. GERRLING, J.C.; KAWATA, M.; LOEWY, A.D. Aldosterone-sensitive neurons in the rat central nervous system. Comp Neurol, 494(3):515-27, 2006. GRIFFIN, J.E.; WILSON, J.D. Disorders of the testes and male reproductive tract. Williams Textbook of Endocrinology, 10 ed. P.R. Larsen, H.M. Kronenberg, S. Melmed and K.S. Polonsky, eds, Saunders, Phyladelphia, p. 709-769, 2003. GODIN, B.; TOUITOU, E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Ver, 59: 1152–1161, 2007. GOULD, E.M. The effect of ketamine/xylazine and carbon dioxide on plasma luteinizing hormone releasing hormone and testosterone concentrations in the male Norway rat. Laboratory Animals. 42: 483-488, 2008. GUTKOWSKA, J.; THIBAULT, G.; JANUSZEWICZ, P.; CANTIN, M.; GENEST, J. Direct radioimmunoassay of atrial natriuretic factor. Biochem Biophys ResCommun, 122(2):593-601, 1984. HAANWINCKEL, M.A.; ELIAS, L.K.; FAVARETTO, A.L.; GUTKOWSKA, J.; MCCANN, S.M.; ANTUNES-RODRIGUES, J. Oxytocin mediates atrial natriuretic peptide 102 release and natriuresis after volume expansion in the rat. Proc Natl Acad Sci, USA, 92(17):7902-7906, 1995. HALL, J.E.; GRANGER, I.P.; HESTER, R.L.; COLEMAN, T.G.; SMITH Jr. M.I.; CROSS, R.B. Mechanisms of escape from sodium retention during angiotensin II hypertension. Am J Physiol Renal Fluid Electrolyte Physiol., 246:F627-F634, 1984. HERLITZ, H.; LUNDIN, S.; HENNINH, M.; AURELL, M.; KARLBERG, B.E.; BERGLUND, G. Hormonal Pattern During Development of Hypertension in Spontaneously Hypertensive Rats (SHR). Clin Exp Hypertens. 4(6):915-35, 1982. HOFMEISTER, L.H.; PERISIC, S.; TITZE, J. Tissue sodium storage: evidence for kidney-like extrarenal countercurrent systems? Pflugers Arch. 467: 551–558, 2015. HOSFORD, P.S.; MILLAR, J.; RAMAGE, A.G.; MARINA, N. Abnormal oxygen homeostasis in the nucleus tractus solitari of the spontaneously hypertensive rat. Exp Physiol, 102(4):389-396, 2017. HORST B T, CHOUHAN G, MOIEMEN NS, GROVER LM. Advances in keratinocyte delivery in burn wound care. Adv Drug Deliv Ver, 1;123:18- 32, 2018. HSU, C.N.; LIN, Y.J.; LU, P.C.; TAIN, Y.L. Early Supplementation of d-Cysteine or l- Cysteine Prevents Hypertension and Kidney Damage In Spontaneously Hypertensive Rats Exposed to High-Salt Intake. Mol Nutr Food Res. 62(2), 2018. IKEDA, I.; LIMUNA, K.;TAKAI, M.;YANAGAWA, Y.;KURATA, K.;OGIHARA, T.;KUMAHARA, Y. Measurement of plasma renin activity by a simple solid phase radioimmunoassay. J Clin Endocrinol Metab. v. 54, p. 423 – 428, 1982. JACQUES, J. M.; DEBETS, A.E.; CALLAHAN, M.F.; SMITH, T.L. Effects of anesthetics on systemic hemodynamics in mice. American Journal of Physiology. 287: H1618–H1624, 2004. JASSEN, B.J.; DE CELLE, T.; DEBETS, J.J.; BROUNS, A.E.; CALLAHAN, M.F.; SMITH, T.L. Effects of anesthetics on systemic hemodynamics in mice. American Journal of Physiology. 287(4):H1618-24, 2004. JOHNSON, A.K.; THUNHORST, R.L. The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front Neuroendocrinol, 18(3):292-353, 1997. JÖHREN, O.; GOLSCH, C.; DENDORFER, A.; QADRI, F.; HÄUSER, W.; DOMINIAK,P. Differential expression of AT1 receptors in the pituitary and adrenal gland of SHR and WKY. Hypertension, 41(4):984-90, 2003. JULIUS, S. Autonomic nervous system dysregulation in human hypertension. Am J Cardiol., 67:B3-B7, 1991. JUNG, E.C.; MAIBACH, H.I. Animal models for percutaneous absorption. Appl Toxicol, 35:1-10, 2014. KATO, J.; KIDA, O.; KITA, T.; NAKAMURA, S.; SASAKI, A.; KODAMA, K.;TANAKA, K. Free and bound forms of atrial natriuretic peptide (ANP) in rat plasma: Preferential increase of free ANP in spontaneously hypertensive rats (SHR) and strokeprone SHR (SHRSP). Biochemical and Biophysical Research Communications, 153(3), 1084–1089, 1988. KENSICKI, E.; DUNPHY, G.; ELYJ, D. Estradiol increases salt intake in female normotensive and hypertensive rats Appl Physiol, 93: 479–483, 2002. KLUSSMANN, E.; MARIC, K.; ROSENTHAL, W. The mechanisms of aquaporin control in the renal collecting duct. Rev Physiol Biochem Pharmacol, 141:33-95, 2000. KOMOLOVA, M.; FRIBERG, P.; ADAMS, M.A. Altered vascular resistance properties and acute pressure-natriuresis mechanism in neonatal and weaning spontaneously hypertensive rats. Hypertension. 59(5):979-84, 2012. KOOP. C.; LINZ, P.; DAHLMANN, A.;HAMMON, M.; JANTSCH J.; MÜLLER, D.N.; SCHMIEDER, R.E; CAVALLARO, A.; ECKADT, K.U.; UNDER, M.; LUFT,F.C.; TITZE, J. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension, 61: 635–640, 2013. KUMTORNRUT, C.; YAMAUCHI, T.; KOIKE, S.; AIBA, S.; YAMASAKI, K.Androgens modulate keratinocyte differentiation indirectly through enhancing growth f actorproduction from dermal fibroblasts. J Dermatol Sci, 93(3):150-158, 2019. LANKHORST,S.; SEVERS, D.; MARKÓ, L.; RAKOVA, N.; TITZE, J.; MÜLLER, D.N.; DANSER, A.H.; MEIRACKER, A.H. Salt sensitivity of angiogenesis inhibitioninduced blood pressure rise: role of interstitial sodium accumulation? Hypertension, 69(5):919-926, 2017. LEWIS, R.M.; BATCHELOR. D.C.; BASSETT, N.S.; JOHNSTON, B.M.; NAPIER, J.; SKINNER, S.J. Perinatal growth disturbance in the spontaneously hypertensive rat. Pediatr Res, 42(6): 758-764, 1997. LI, J.; KEMP, B.A.; HOWELL, N.L.; MASSEY, J.; MINZUK, K.; HUANG, Q.; CHORDIA, M.S.; ROY, R.J.; PATRIE, J.T.; DAVOGUSTTO, G.E.; KRAMER, C.M.; EPSTEIN, F.H.; CAREY, R.M.; TAEGTMEYER, H.; KELLER, S.R.; KUNDU, B.K. Metabolic Changes in Spontaneously Hypertensive Rat Hearts Precede Cardiac Dysfunction and Left Ventricular Hypertrophy. J Am Heart Assoc. 19;8(4):e010926, 2019. LIARD, J.F. Effects of intra-arterial arginine-vasopressin infusions on peripheral blood flows in conscious dogs. Clin. Sci. (Lond). v. 71, p. 713-721, 1986. LOLAIT, S.J.; O’CARROL, A.M.; MCBRIDE, O.W.; KONIG, M.; MOREL, A.; BROWNSTEIN, M.J. Cloning and characterization of a vasopressin V2 receptor and possible link to nephogenic diabetes insipidus. Nature. v. 357, p. 336-339, 1992. LOH, S.Y.; SALLEH, N. Influence of testosterone on mean arterial pressure: A physiological study in male and female normotensive WKY and hypertensive SHR rats. Physiol Int, 104(1):25-34, 2017b. LOPES-MENEZES, V.C.; DOS-SANTOS, R.C.; FELINTRO, V.; MONTEIRO, L.R.N.; PAES-LEME, B.; LUSTRINO, D.; CASARTELLI, E.A.; VIVAS,L.; MECAWI, A.S.; REIS, L.C. Acute body sodium depletion induces skin sodium mobilization in female Wistar rats. Exp Physiol, 104(12):1754-1761, 2019. MACHNIK, A.;NEUHOFER, W.; JANTSCH, J.; DAHLMANN, A.; TAMMELA, T.; MACHURA, K.; PARK, J.K.; BECK, F.X.; MÜLLER, D.N.; DERER, W.; GOSS, J.; ZIOMBER, A.; DIETSCH, P.; WAGNER, H.; ROOIJEN, N.; KURTZ, A.; HILGERS, K.F.; ALITALO, K.; ECKARDT K.U.; LUFT, F.C.; KERJASCHKI, D.; TITZE, J. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med, 15(5):545-52, 2009. MACHNIK, A.; DAHLMANN, A.; KOOP, C.; GOSS, J.; WAGNER, H.; ROOIJEN, N.; ECKARDT, K.U.; MÜLLER, D.N.; PARK, J.K.; LUFT, F.C.; KERJASCHKI, D.; TITZE, J. Mononuclear phagocyte system depletion blocks interstitialtonicityresponsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension, 55(3):755-61, 2010. MANDL, A. M. The phases of the estrous cycle in the adult white rat. Experimental Biology, 28: 576-584, 1951. MAGNUSSON, K.; MEYERSON, B. Strain, age and sex differences in the release of vasopressin from the pituitary: A study in the spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rat. Neuropeptides, 30(5), 465–470, 1996. MANGIAPANE, M.L.; SIMPSON, J.B. Subfornical organ:forebrain site of pressor and dipsogenic action of angiotensin. Am J Physiol. 239:382-389, 1980. MANZANO-GARCIA, A.; GONZÁLEZ-HERNÁNDES, A.; TELLO-GARCÍA, I.A.;MARTINEZ-LORENZANA, G.;CONDÉS-LARA, M. The role of peripheral vasopressin 1A and oxytocin receptors on the subcutaneous vasopressin antinociceptive effects. Eur J Pain, 22: 511-526, 2018. MARCONDES, F.K.; BIANCHI, F.J.; TANNO, A.P. Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol, 62:609-14, 2002. MICHELINI, L.C.; KRIEGER, E.M. Importance of the time course of aortic diastolic calibre dilation for baroreceptor resetting in acute hypertension. J. Hypertens. 2:387-389, 1984. MINAMI, M.; TOGASHI, H.; SANO, M.; SAITO, I.; NOMURA, A.; KOIKE, Y.; KUROSAWA, M.; SAITO, H. A chronobiological study of behavioral changes in rats. Nihon Yakurigaku Zasshi, 83(4):363-71, 1984. MORRIS, M.; KELLER, M.; SUNDBERG, D.K. Changes in paraventricular vasopressin and oxytocin during the development of spontaneous hypertension. Hypertension. 5(4):476-81, 1983. MÜLLER, D.N.; WILCK, N.; HAASE,S.; KLEINEWIETFELD, M.; LINKER, R.A. Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat Rev Immunol, 19:243-254, 2019. NODA, M. Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain Exp Physiol, 92.3:513–522, 2007. NOVOTNÝ, M.; VASILENKO, T.; VARINSKÁ, L.; SMETANA, K. JR.; SZABO, P.; SARISSKÝ, M.; DVORÁNKOVÁ, B.; MOJZIZ, J.; BOBROV, N.; TOPORCEROVÁ, S.; SABOL, F.; MATTHEWS, B.J.; GÁL, P. ER-α agonist induces conversion of fibroblasts into myofibroblasts, while ER-β agonist increases ECM production and wound tensile strength of healing skin wounds in ovariectomised rats. Exp Dermatol, 20:703-8, 2011. PAES-LEME, B.; DOS-SANTOS, R.C.; MECAWI, A.S.; FERGUSON, A.V. Interaction bertween angiotensin II and glucose sensing at the subfornical organ. J neuroendocrinol, 30:e1265, 2018. PEREIRA-DERDERIAN, D.T.B.; VENDRAMINI, R.C.; MENANI, J.V.; A. DE LUCA JR, L. Water deprivation-induced sodium appetite and differential expression of encephalic c-Fos immunoreactivity in the spontaneously hypertensive rat. Am J Physiol Regul Integr Comp Physiol, 298: R1298–R1309, 2010. PEREIRA-DERDERIAN, D.T.B.; VENDRAMINI, R.C.; MENANI, J.V.;CHIAVEGATTO, S.; A. DE LUCA JR, L. Water deprivation-partial rehydration induces sensitization of sodium apetite and alteration of hypothalamic transcripts. Am J Physiol Regul Integr Comp Physiol, 310: R15–R23, 2016. PERZEOVA, V.; SABOL, F.;VASILENKO, T.; NOVOTNY, M.;KOVAC, I.; SLEZAK, M.; DURKAC, J.; HOLLY, M.;PILATOVA, M.;SZABO, P.;VARINSKA, L.;CRIEPOKOVA, Z.;KUCERA, T.;KALTNER, H.; ANDRÉ, S.; GABIUS, H.J.;MUCAJI, P.;SMETANA, K. JR.; GAL, P. Pharmacological activation of estrogen receptors-α and -β differentially modulates keratinocyte differentiation with functional impact on wound healing. Int J Mol Med, 37: 21-28, 2016. PORCARI, C.Y.; ARAUJO, I.G.; URZEDO-RODRIGUES, L.; DE LUCA, L.A.; MENANI, J.V.; CAEIRO, X.E.; IMBODEN, H.; ANTUNES-RODRIGUES, J.; REIS, L.C.; VIVAS, L.; GODINO, A.; MECAWI, A.S. Whole body sodium depletion modifies AT1 mRNA expression and serotonin content in the dorsal raphe nucleus. J Neuroendocrinol. 31:e12703, 2019. OKAMOTO K, AOKI K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J, 27:282-93,1963. OSTROWSKI, N.L.; LOLAIT, S.J.; BRADLEY, D.J.;O’CARROLL, A.M.; BROWNSTEIN, M.J.; YOUNG, W.S. Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology. 131(1):533-5, 1992. RABELINK, T.J.; ROTMANS, J.I. Salt is getting under our skin. Nephrol Dial Transplant, 24: 3282–3283, 2009. RAMSAY, D. J. Posterior pituitary gland. In: GREENSPAN, F. S. & FORSHAN, P. H. Basic and clinical endocrinology. Los Altos, CS. Lange Medical Plublications, p. 120- 129, 1983. RECKELHOFF, J.F.; ROMERO, D.G.; YANES, C.L.L. Sex, Oxidative Stress, and Hypertension: Insights From Animal Models. Physiology (Bethesda). 2019 May 1;34(3):178-188. doi: 10.1152/physiol.00035.2018. RENDELL, M.S.; MILLIKEN, B.K.; BANSET, E.J.; FINNEGAN, M.; STANOSHECK, C.; TERANDO, J.V. The effect of chronic hypertension on skin blood flow. J Hypertens, 14(5):609-14, 1996. ROMERO, M.; CANIFFI, C.; BOUCHET, G.; COSTA, M.A.; ELESGARAV, R.; ARRANZ, C.; TOMAT, A.L. Chronic treatment with atrial natriuretic peptide in spontaneously hypertensive rats: beneficial renal effects and sex differences. PLoS One. 10(3):e0120362, 2015. SARANTEAS, T.; ZOTOS, N.; CHANTZI, C.; MOUROZIZ, C.; RALLIS, G.; ANAGNOSTOPOLOU, S.; TESSEROMATIS, C. Ketamine-induced changes in metabolic and endocrine parameters of normal and 2-kidney 1-clip rats. European Journal of Anaesthesiology. 22(11):875-878. SANTOLLO, J.; DANIELS, D. Control of fluid intake by estrogens in the female rat: role of the hypothalamus. Front Syst Neurosci, 9:25, 2015. SAXENA, T.; ALI, A.O.; SAXENA, M. Pathophysiology of essential hypertension: an update. Expert Rev Cardiovasc Ther. 16:879-887, 2018. SCHAFFLHUBER, M.; VOLPI, N.; DAHLMANN, A.; HILGERS, K.F.; MACCARI, F.; DIETSCH, P.; WAGNER, H.; LUFT, F.C.; ECKARDT, K.U.; TITZE, J. Mobilization of osmotically inactive Na+ by growth and by dietary salt restriction in rats. Am J Physiol Renal Physiol, 292:F1490-1500, 2007. SCHRECKENBERG, R.;HORN, A.M.; DA COSTA REBELO, R.M.;SIMSEKYILMAZ,S.;NIEMANN, B.; LI, L.; ROHRBACH, S.; SCHLÜTER, K.D. Effects of 6-months Exercise on Cardiac Function, Structure and Metabolism in Female Hypertensive Rats-The Decisive Role of Lysyl Oxidase and Collagen III. Front Physiol, 3;8:556, 2017. SEGAR, J.L.; GROBE, C.C.; GROBE, J.L. Fetal storage of osmotically inactive sodium. Am J Physiol Regul Integr Comp Physiol. 318(3):R512-R514, 2020. SELVARAJAH, V.; CONNOLLY, K.; MCENIERY, C.; WILKISON, I. Skin Sodium and Hypertension: a Paradigm Shift? Curr Hypertens Rep. 20(11): 94, 2018. SIMPSON, J.B.; ROUTTENBERG, A. Subfornical organ: a dipsogenic site of action of angiotensin II. Science, 201:379-381, 1978. SOARES, B.D. Estudo da produção de óxido de cálcio por calcinação do calcário: caracterização dos sólidos, decomposição térmica e otimização paramétrica. Dissertação: Universidade Federal de Uberlândia, 383 p., 2007. SOMPONPUN, J. S. Neuroendocrine regulation of fluid and electrolyte balance by ovarian steroids: contributions from central oestrogen receptors. J Neuroendocrinol, 19(10):809-18, 2007. STOKER, S.D.; STRICKER, E.M.; SVED, A.F. Acute hypertension inhibits thirst stimulated by ANG II, hyperosmolality, or hypovolemia in rats. Am J Physiol., 280:214- 224, 2001. STRICKER, E.M.; WOLF,G. Behavioral control of intravascular fluid volume: thirst and sodium appetite. Ann N Y Acad Sci, 157:553-568, 1969. STRIKER, E.M.; VERBALIS, J.G. Interaction of osmotic and volume stimuli in regulation of neurohypophyseal secretion in rats. Am J Physiol. 250(2 Pt 2):R267-75, 1986. STRICKER, E.M.; VERBALIS, J.G. Central inhibition of salt appetite by oxytocin in rats. Regul Pept. 66(1-2):83-5, 1996. SULLIVAN, J.M.; RATTS, T.E. Sodium sensitivity in human subjects: Hemodynamic and hormonal correlates. Hypertension. 11:717-723, 1988. SZCZEPANSKA-SADOWSKA, E.; SOBOCINSKA, J.;SADOWSKI, B. Central dipsogenic effect of vasopressin. Am J Physiol. 242(3):R372-9, 1982. TANABE, A.; NARUSE, M.; ARAI, K.;NARUSE, K.;YOSHIMOTO, T.; SEKI, T.; IMAKI, T.;KOBAYASHI, M.; MIYAZAKI, H.;DEMURA, H. Angiotensin II stimulates both aldosterone secretion and DNA synthesis via type 1 but not type 2 receptors in bovine adrenocortical cells. J Endocrinol Invest. v. 21, n. 10, p. 668 – 672, 1998. TAKEDA, Y.;YONEDA, T.;DEMURA, M.; MIYAMORI, I.; MABUCHI, H. Cardiac aldosterone production in genetically hypertensive rats. Hypertension. 36(4):495-500, 2000. TITZE, J.; KRAUSE, H.; HECHT, H.; DIETSCH, P.; RITTWEGER, J.; LANG, R.; KIRSCH, K.A.; HILGERS, K.F. Reduced osmotically inactive Na storage capacity and hypertension in the Dahl model. Am J Physiol Renal Physiol, 283(1):F134-41, 2002. TITZE, J.; LANG, R.; ILIES, C.; SCHWIND, K.H.; KIRSCH, K.A.; DIETSCH, P.; LUFT, F.C.; HILGERS, K.F. Osmotically inactive skin Na storage in rats Am J Physiol Renal Physiol, 285: F1108–F1117, 2003. TITZE, J.;SHAKIBAIEI, M.; SCHAFFLHUBER, M.; SCHULZE-TANZIL, G.; PORST, M.; SHWIND, K.H.; DIERSCH, P.; HILGERS, K.F. Glycosaminoglycan polymerization may enable osmotically inactive Na storage in the skin Am J Physiol Heart Circ Physiol, 287: H203–H208, 2004. TITZE, J.; BAUER, K.; SCHAFFLHUBER, M.; SCHWIND, K.H.; LUFT, F.C.; ECKARDT, K.U.; HILGERS, K.F. Internal sodium balance in DOCA-salt rats: a body composition study. Am J Physiol Renal Physiol, 289(4):F793-802, 2005. TITZE, J. Sodium balance is not just a renal affair. Curr Opin Nephrol Hypertens, 23:101-5, 2014. VAN IJZENDOORN, M.; VAN DEN BORN J.; HIJMANS, R.; BODDE, R.; BUTER, H.; DAM, W.; KINGMA, P.; MAES, G.; VAN DER VEEN T.; ZIJLSTRA, W.; DIJKSTRA, B.; NAVIS, G.; BOERMA, C. An observational study on intracutaneous sodium storage in intensive care patients and controls. PLoS One. 3;14(10):e0223100, 2019. VAN TOL, H.H.; VAN DEN BUUSE, M.; DE JONG, W.; BURBACH, J.P. Vasopressin and oxytocin gene expression in the supraoptic and paraventricular nucleus of the spontaneously hypertensive rat (SHR) during development of hypertension. Brain Res. 464(4):303-11, 1988. VECSEI, P. Glucocorticoids: Cortisol, Corticosterone and Compounds. Methods of Hormone Radioimmunoassay Acad. Press, pp. 767–792, 1979. VERBALIS, J.G.; HOFFMAN, G.E.;ROSENBAUM, L.C.;NILAVER, G.; LOH, Y.P. Generation and characterization of an antiserum directed against neurohypophyseal prohormones. J Neuroendocrinol. 3(3):267-72, 1991. VERNEY EB. The antidiuretic hormone and the factors which determine its release. Proc R Soc Lond B Biol Sci, 135(878):25-106,1947. VIJANDE, M.; COSTALES, M.; SCHIAFFINI, O. MARIN, B. Angiotensin-induced drinking: sexual differences. Pharmacol Biochem Behav, 8(6):753-5, 1978. VISWANATHAN, M.; SAAVEDRA, J.M. Expression of angiotensin II AT2 receptors in the rat skin during experimental wound healing. Peptides, 13, 783-786, 1992. WAKABAYASHI, K. Stress, Anesthesia and Blood Hormone Levels. Shibayagi’s Academic Information, 1-10, 2001. WANG, H.; SUN, X.; AHMAD, S.; SU,J.; FERRARIO, C.M.; GROBAN, L. Estrogen modulates the differential expression of cardiac myocyte chymase isoforms and diastolic function.Mol Cell Biochem, 456(1-2):85-93, 2019. WANG, K.; XU, Y.; YANG, W.; ZHANG, Y. Insufficient hypothalamic angiotensinconverting enzyme 2 is associated with hypertension in SHR rats. Oncotarget, 8:12, 20244-20251, 2017. WEINSTEIN, G.D.; MCCULLOIUGH, J.L.; ROSS, P. Cell proliferation in normal epidermis, J.Invest. Dermatol. 82 (6) (1984) 623–628, 1984. WIIG, H.; SCHRÖDER, A.; NEUHOFER,W.; JANTSCH, J.; KOPP,C.;KARLSEN, T.V.; BOSCHMANN, M.; BRY, M.;RAKOVA,N.; DAHLMANN, A.; BRENNER, S.; TENSTAD, O.; NURMI, H.; MERVAALA, E.; WAGNER, H.; BECK, F.X.; MÜLLER, D.N.; KERJASCHKI,D.; LUFT, F.C.; HARRISON, D.G.; ALITALO, K.; TITZE, J. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest, 123: 2803-15, 2013. WIIG, H.; LUFT, F.C.; TITZE, J.M. The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol (Oxf), 222(3), 2018. WOLF, G.; MCGOVERN, J.F.; DICARA, L.V. Sodium appetite: some conceptual and methodologic aspects of a model drive system. Behav Biol, 10, 27-42, 1974. WSOL, A.; WOJNO, O.; PUCHALSKA, L.; WRZESIEN, R.; SZCZEPANSKASADOWSKA, E.K.; CUDNOCH-JEDRZEJEWSKA, A. Impaired hypotensive effects of centrally acting oxytocin in SHR and WKY rats exposed to chronic mild stress. Am J Physiol Regul Integr Comp Physiol. 2019 doi: 10.1152/ajpregu.00050.2019. [Epub ahead of print] WSOL, A.; SZCZEPANSKA-SADOWSKA, E.; KOWALEWSKI, S.; KOWALEWSKI, S.; PUCHALSKA, L.; CUDNOCH-JEDRZEJEWSKA, A. Oxytocin differently regulates pressor responses to stress in WKY and SHR rats: the role of central oxytocin and V1a receptors. Stress. 17(1):117-25, 2014. XU, C.; TANA, S.; ZHANG, J.; SEUBERT, C.N.; GRAVENSTEIN, N.; SUMNERS, C.; VASILOPOULOS, T.; MARTYNYUK, A.E. Anesthesia with sevoflurane in neonatal rats: developmental neuroendocrine abnormalities and alleviating effects of the corticosteroid and Cl? importer antagonists. Psychoneuroendocrinology. 60:173–181, 2015. YAMAMOTO, T.; SASAKI, S.; FUSHIMI, K.;KAWASAKI, K.; YAOITA, E.;OOTA, K.;HIRATA, Y.; MARUMO, F.; KIHARA, I. Localization and expression of a collecting duct water channel, aquaporin, in hydrated and dehydrated rats. Exp Nephrol. 3(3):193-201, 1995. YANES, L.L.; ROMERO, D.G.; ILES, J.W.; LLIESCU, R.; GOMEZ-SANCHEZ, C.; RECKELHOFF, J.F.Sexual dimorphism in the renin-angiotensin system in aging spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol,291(2):R383-90, 2006. YOUNG, M.;FULLERTON, M.;DILLEY, R.;FUNDER, J. Mineralocorticoids, hypertension and cardiac fibrosis. J Clin Invest. v. 93, p. 2578 – 2583, 1994. YEN, J.; ADASHI, E.Y. The ovarian life cycle. Reproductive Endocrinology. Physiology, Pathophysiology, and Clinical Management. W.B. Saunders Company, Philadelphia, 1999, USA. YILMÁZ, A.; BUIJS, F.N.; KASLSBEEK, A.; BUIJS, R.M. Neuropeptide changes in the suprachiasmatic nucleus are associated with the development of hypertension. Chronobiol Int. 36(8):1072-1087, 2019.por
dc.subject.cnpqFisiologiapor
dc.subject.cnpqFarmacologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69648/2020%20-%20Veronica%20Cristina%20Lopes%20Menezes.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5744
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-06-06T19:15:24Z No. of bitstreams: 1 2020 - Veronica Cristina Lopes Menezes.pdf: 2695598 bytes, checksum: 0b18d61b8840c8c64d0bcdefeb4e67d8 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-06-06T19:15:24Z (GMT). No. of bitstreams: 1 2020 - Veronica Cristina Lopes Menezes.pdf: 2695598 bytes, checksum: 0b18d61b8840c8c64d0bcdefeb4e67d8 (MD5) Previous issue date: 2020-05-08eng
Appears in Collections:Doutorado em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Veronica Cristina Lopes Menezes.pdf2.63 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.