Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9433
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMonteiro, Lívia da Rocha Natalino
dc.date.accessioned2023-12-21T18:39:16Z-
dc.date.available2023-12-21T18:39:16Z-
dc.date.issued2021-02-24
dc.identifier.citationMONTEIRO, Lívia da Rocha Natalino. Análise do transcriptoma do núcleo dorsal da rafe mediante desafios à homeostase hidroeletrolítica e energética. 2021. 105 f. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9433-
dc.description.abstractO íon sódio figura como elemento chave na regulação do balanço hidroeletrolítico, de forma que seus níveis devem ser mantidos numa estreita faixa compatível com a vida. Para tal regulação, uma série de mecanismos renais, endócrinos e comportamentais são acionados. O núcleo dorsal da rafe (DRN) tem sido implicado como um importante núcleo encefálico para a modulação do comportamento alimentar, em especial, do apetite específico ao sódio. Neste trabalho nós investigamos as alterações trancriptômicas do DRN em resposta a diferentes desafios à homeostase hidromineral e energética. Ratos Wistar com cerca de 60 dias de vida foram randomicamente separados em cinco grupos experimentais: a) controle (CTRL); b) dieta pobre em sódio (DP); c) furosemida (FURO); d) sobrecarga salina (SS); e) privação alimentar. Após quatro dias de tratamento ou 48 horas de privação alimentar foi feita eutanásia para coleta de sangue e encéfalos. Os animais submetidos ao tratamento com a furosemida na água de beber e à sobrecarga salina (NaCl 0,3M) apresentaram aumento significativo no hematócrito (FURO 10,5%; SL 12,5%) e redução (FURO –2,3%) e aumento (SL 13,6%) na concentração plasmática de sódio, respectivamente, sem alteração dos níveis plasmáticos de potássio. O grupo submetido à dieta pobre não apresentou qualquer alteração significativa nos parâmetros analisados. Já os animais submetidos à privação alimentar apresentaram aumento do hematócrito (13%) e redução do peso corporal (12,9%). O sequenciamento de RNA do DRN revelou a expressão de aproximadamente 18.600 transcritos. Dentre os genes mais expressos neste núcleo foram identificados os mRNAs que codificam a triptofano hidroxilase 2 (Tph2), transportador de serotonina SERT (Slc6a4) e o transportador vesicular de monoaminas (Slc18a2), confirmando a prevalência de neurônios serotonérgicos. A comparação dos genes diferencialmente expressos entre os grupos experimentais revelou uma alteração significativamente baixa no grupo FURO (6 genes), nenhum gene alterado no grupo DP, e 22 genes alterados pela SS. Entre os 22 genes alterados no transcriptoma, selecionamos 10 alvos para o RT-qPCR, dentre os quais, 7 genes foram validados com sucesso. Por fim, o sequenciamento do grupo submetido à privação alimentar demonstrou 108 genes significativamente alterados. Ao comparar este resultado ao modelo de SS observamos que os grupos apresentaram 6 genes comumente alterados (C3, Etnppl, Gjb6, RT1-T24-4, Slc35d3 e Sult1a1). Apesar da necessidade de validar os resultados da privação alimentar por RT-qPCR, estes dados indicam uma possível convergência entre mecanismos moleculares no DRN para regulação do apetite ao sódio e o comportamento alimentar.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectTranscriptomapor
dc.subjectNúcleo dorsal da rafepor
dc.subjectApetite ao sódiopor
dc.subjectPrivação alimentarpor
dc.subjectTranscriptomeeng
dc.subjectDorsal raphe nucleuseng
dc.subjectSodium appetiteeng
dc.subjectFood deprivationeng
dc.titleAnálise do transcriptoma do núcleo dorsal da rafe mediante desafios à homeostase hidroeletrolítica e energéticapor
dc.title.alternativeAnalysis of the dorsal rafe nucleus transcriptome after challenges to hydroelectrolytic and energy homeostasiseng
dc.typeTesepor
dc.description.abstractOtherThe sodium ion is as a key element in the regulation of the hydroelectrolytic balance, so that its levels must be kept in a narrow range compatible with life. For such regulation, a series of renal, endocrine, and behavioural mechanisms are activated. The dorsal raphe nucleus (DRN) has been implicated as an important brain nucleus involved in the modulation of food-intake behaviour, especially sodium-specific appetite. In this work we investigate the transcriptomic changes in the DRN after challenges to hydroelectrolytic and energy homeostasis. Male Wistar rats, approximately 60 days old, were randomly separated into five experimental groups: a) control (CTRL); b) low sodium diet (LS); c) furosemide (FURO); d) salt loading (SL); and (e) food deprivation for 48 hours. After the experimental period, euthanasia was performed to collect blood and brain. Animals submitted to treatment with furosemide and saline overload showed a significant increase in hematocrit (FURO 12.4%, SL 14,9%) and reduction (FURO 1.25%) and increase in plasma sodium (SL 13%), respectively. Animals subjected to food deprivation showed an increase in hematocrit (13%) and a reduction in body weight (12.9%). The DRN RNA sequencing resulted in approximately 18,600 genes mapped in total. Among the most expressed genes, tryptophan hydroxylase isoform 2 (Tph2), the gene encoding the serotonin transporter SERT (Slc6a4) and the vesicular monoamine transporter (Slc18a2) were found, confirming the prevalence of serotonergic neurons. The comparison of differentially expressed genes using the Venn diagram revealed a low altered number in the FURO group (6 genes), no altered genes in the DP group and 22 genes altered by saline overload. Based on the results, we performed the RT-qPCR validation only for the saline overload group. Among the 22 altered genes in the transcriptome, we selected 10 targets for RT-qPCR, among which, 7 genes were successfully validated. Finally, the sequencing of the group subjected to food deprivation revealed 108 altered genes, when comparing this result to that obtained in salt loading, we saw that the groups have 6 altered genes in common (C3, Etnppl, Gjb6, RT1-T24-4, Slc35d3 e Sult1a1). Despite the need to validate the results of food deprivation, they indicate a possible overlap in the level of DRN between mechanisms that regulate specific sodium appetite and eating behaviour.eng
dc.contributor.advisor1Mecawi, André de Souza
dc.contributor.advisor1ID1003.378.127-48por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7081349017203771por
dc.contributor.referee1Mecawi, André de Souza
dc.contributor.referee2Zangrossi Junior, Hêlio
dc.contributor.referee3Malvar, David do Carmo
dc.contributor.referee4Leitão, Silvia Graciela Ruginsk
dc.contributor.referee5Côrtes, Wellington da Silva
dc.creator.ID127.683.267-20por
dc.creator.IDhttps://orcid.org/0000-0003-2158-9611por
dc.creator.Latteshttp://lattes.cnpq.br/2107648850040072por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesALEXANDER, J. C. et al. The role of calsenilin/DREAM/KChIP3 in contextual fear conditioning. Learning and Memory, v. 16, n. 3, p. 167–177, 2009. ALEXANDER, J. J. Blood-brain barrier (BBB) and the complement landscape. Molecular Immunology, v. 102, n. June, p. 26–31, 2018. ANAND, BK AND BROBECK, J. HYPOTHALAMIC CONTROL OF FOOD INTAKE IN RATS AND CATS. 1951. ANDERSSON, B. Regulation of water intake. Physiol Rev, v. 58, n. 3, p. 582, 1978. ANTUNES-RODRIGUES, J. et al. Neuroendocrine control of body fluid metabolism. Physiological reviews, v. 84, n. 1, p. 169–208, 2004. AZMITIA, E. C. Handbook of the Behavioral Neurobiology of Serotonin. [s.l: s.n.]. AZMITIA, E. C.; SEGAL, M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. The Journal of comparative neurology, v. 179, n. 3, p. 641–667, 1978. BADAUÊ-PASSOS, D. et al. Dorsal raphe nuclei integrate allostatic information evoked by depletion-induced sodium ingestion. Experimental Neurology, v. 206, n. 1, p. 86–94, 2007. BALYAN, R. et al. Repeated restraint stress upregulates rat sulfotransferase 1A1. Journal of Basic and Clinical Physiology and Pharmacology, v. 30, n. 2, p. 265–273, 2019. BARKHOLT, P. et al. Global transcriptome analysis of rat hypothalamic arcuate nucleus demonstrates reversal of hypothalamic gliosis following surgically and diet induced weight loss. Scientific Reports, v. 9, n. 1, p. 1–10, 2019. BERNARDIS, L. L.; BELLINGER, L. L. The lateral hypothalamic area revisited: Ingestive behavior. Neuroscience and Biobehavioral Reviews, v. 20, n. 2, p. 189–287, 1996. BOLES PONTO, L. L.; SCHOENWALD, R. D. Furosemide (Frusemide): A Pharmacokinetic/Pharmacodynamic Review (Part I). Clinical Pharmacokinetics, v. 18, n. 6, p. 460–471, 1990a. BOLES PONTO, L. L.; SCHOENWALD, R. D. Furosemide (Frusemide): A Pharmacokinetic/Pharmacodynamic Review (Part I). Clinical Pharmacokinetics, v. 18, p. 460–471, 1990b. BOOTHMAN, L. J.; SHARP, T. A role for midbrain raphe γ aminobutyric acid neurons in 5- hydroxytryptamine feedback control. NeuroReport, v. 16, n. 9, p. 891–896, 2005. BOTTARI, S. P. et al. Angiotensin II receptor subtypes: Characterization, signalling mechanisms, and possible physiological implicationsFrontiers in Neuroendocrinology, 1993. BOURQUE, C. W.; OLIET, S. H.; RICHARD, D. Osmoreceptors, osmoreception, and osmoregulation.Frontiers in neuroendocrinology, 1994. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0091302284710107> BOYLE, C. N. et al. Dehydration-Anorexia Derives From A Reduction In Meal Size, But Not Meal Number. Physiol Behav., v. 105, n. 4, p. 305–314, 2013. BREISCH, S., ZEMLAN, F., & HOEBEL, B. Hyperphagia and obesity following serotonin depletion by intraventricular p-chlorophenylalanine. Science, v. 192(4237), p. 382–385, 1976. CAMPBELL, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nature Neuroscience, v. 20, n. 3, p. 484–496, 2017. CANCELLIERE, N. M.; FERGUSON, A. V. Subfornical organ neurons integrate cardiovascular and metabolic signals. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, v. 312, n. 2, p. R253–R262, 2017. CAVALCANTE-LIMA et al. Chronic excitotoxic lesion of the dorsal raphe nucleus induces sodium appetite. Brazilian journal of medical and biological research = Revista brasileira de pesquisas médicas e biológicas / Sociedade Brasileira de Biofísica [et al], v. 38, n. 11, p. 1669–1675, 2005a. CAVALCANTE-LIMA, H. R. et al. Dipsogenic stimulation in ibotenic DRN-lesioned rats induces concomitant sodium appetite. Neuroscience letters, v. 374, n. 1, p. 5–10, 2005b. CHAPA, R. et al. Contribution of Uptake and Efflux Transporters to Oral Pharmacokinetics of Furosemide. ACS Omega, v. 5, n. 51, p. 32939–32950, 2020. CHOE, K. Y. et al. Effects of Salt Loading on the Morphology of Astrocytes in the Ventral Glia Limitans of the Rat Supraoptic Nucleus. Journal of Neuroendocrinology, v. 28, n. 4, 2016. CHOE, K. Y.; OLSON, J. E.; BOURQUE, C. W. Taurine release by astrocytes modulates osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus. Journal of Neuroscience, v. 32, n. 36, p. 12518–12527, 2012. CIURA, S., B. C. W. Transient Receptor Potential Vanilloid 1 Is Required for Intrinsic Osmoreception in Organum Vasculosum Lamina Terminalis Neurons and for Normal Thirst Responses to Systemic Hyperosmolality. Journal of Neuroscience, v. 26, n. 35, p. 9069–9075, 2006. COLIN, C.; HINDMARCH, T.; FERGUSON, A. V. Physiological roles for the subfornical organ : a dynamic transcriptome shaped by autonomic state. v. 6, n. August 2014, p. 1581– 1589, 2016. COOK, I.; WANG, T.; LEYH, T. S. Sulfotransferase 1A1 Substrate Selectivity: A Molecular Clamp Mechanism. Biochemistry, v. 54, n. 39, p. 6114–6122, 2015. DE GASPARO, M. et al. International Union of Pharmacology . XXIII . The Angiotensin II Receptors. Pharmacological Reviews, v. 52, p. 415–472, 2000. DOUGALIS, A. G. et al. Functional properties of dopamine neurons and co-expression of vasoactive intestinal polypeptide in the dorsal raphe nucleus and ventro-lateral periaqueductal grey. European Journal of Neuroscience, v. 36, n. 10, p. 3322–3332, 2012. DRUART, M.; LE MAGUERESSE, C. Emerging Roles of Complement in Psychiatric Disorders. Frontiers in Psychiatry, v. 10, n. August, p. 1–13, 2019. DUTRA, S. G. V et al. Erratum: Physiological and transcriptomic changes in the hypothalamicneurohypophysial system after 24 h of furosemide-induced sodium depletion (Neuroendocrinology. DOI: 10.1159/000505997). Neuroendocrinology, v. 111, n. 1–2, p. 178, 2020. ELIAS, L. L. K.; CAMPOS, A. D.; MOREIRA, A. C. The opposite effects of short- and longterm salt loading on pituitary adrenal axis activity in rats. Hormone and Metabolic Research, v. 34, n. 4, p. 207–211, 2002. EPSTEIN, A N.; FITZSIMONS, J. T.; ROLLS, B. J. Drinking induced by injection of angiotensin into the rain of the rat. The Journal of physiology, v. 210, p. 457–474, 1970. ERCAN, E. et al. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex. The Journal of experimental medicine, v. 214, n. 3, p. 681– 697, 2017. FITTS, D. A.; THUNHORST, R. L. Rapid elicitation of salt appetite by an intravenous infusion of angiotensin II in rats. American Physiological Society, 1996. FITZSIMONS, B. J. T.; SIMONS, B. J. The effect on drinking in the rat of intravenous infusion of angiotensin , given alone or in combination with other stimuli of thirst. J. Physiol., v. 203, p. 45–57, 1969. FITZSIMONS, J. T. Angiotensin , Thirst , and Sodium Appetite. Physiological reviews, v. 78, p. 583–686, 1998. FLETCHER, P. J.; DAVIES, M. Dorsal raphe microinjection of 5-HT and indirect 5-HT agonists induces feeding in rats. European Journal of Pharmacology, v. 184, n. 2–3, p. 265– 271, 1990. FONSECA, F. V. et al. Role of the 5-HT1A somatodendritic autoreceptor in the dorsal raphe nucleus on salt satiety signaling in rats. Experimental Neurology, v. 217, n. 2, p. 353–360, 2009. FRANCHINI, L. F. et al. Sodium appetite and Fos activation in serotonergic neurons. American journal of physiology. Regulatory, integrative and comparative physiology, v. 282, n. 1, p. R235-43, 2002. FRY M, F. A. The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior. Physiol Behav, v. 24;91, n. 4, p. :413-23, 2007. GARATTINI, S. et al. Biochemical pharmacology of the anorectic drug fenfluramine: A review. Current Medical Research and Opinion, v. 6, n. S1, p. 15–27, 1979. GARATTINI, S. et al. Neurochemical mechanism of action of drugs which modify feeding via the serotoninergic system. Appetite, v. 7, p. 15–38, 1986. GARATTINI, S.; MENNINI, T.; SAMANIN, R. Reduction of food intake by manipulation of central serotonin: Current experimental results. British Journal of Psychiatry, v. 155, n. DEC. SUPPL. 8, p. 41–51, 1989. GHORBEL, M. T. et al. Microarray screening of suppression subtractive hybridization-PCR cDNA libraries identifies novel RNAs regulated by dehydration in the rat supraoptic nucleus. n. 15, p. 163–172, 2006. GODINO, A. et al. Oxytocinergic and serotonergic systems involvement in sodium intake regulation: satiety or hypertonicity markers? American journal of physiology. Regulatory, integrative and comparative physiology, v. 293, n. 3, p. R1027–R1036, 2007. GODINO, A. et al. Body sodium overload modulates the firing rate and fos immunoreactivity of serotonergic cells of dorsal raphe nucleus. PloS one, v. 8, n. 9, p. e74689, 2013. GONZÁLEZ-GARCÍA, N. et al. Multivariate analysis reveals differentially expressed genes among distinct subtypes of diffuse astrocytic gliomas: diagnostic implications. Scientific Reports, v. 10, n. 1, p. 1–12, 2020. GONZALEZ, D. et al. The inhibition of CTGF/CCN2 activity improves muscle and locomotor function in a murine ALS model. Human Molecular Genetics, v. 27, n. 16, p. 2913–2926, 2018. GORELIK, A. et al. Developmental activities of the complement pathway in migrating neurons. Nature Communications, v. 8, n. May, p. 1–12, 2017. GRAEBNER, A. K.; IYER, M.; CARTER, M. E. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Frontiers in Systems Neuroscience, v. 9, n. AUGUST, p. 1–16, 2015. GREENWOOD, M. et al. Transcription Factor CREB3L1 Regulates Vasopressin Gene Expression in the Rat Hypothalamus. The Journal of neuroscience : the official journal of the Society for Neuroscience, v. 34, n. 11, 2014a. GREENWOOD, M. et al. Transcription factor CREB3L1 mediates cAMP and glucocorticoid regulation of arginine vasopressin gene transcription in the rat hypothalamus. Molecular Brain, p. 1–12, 2015a. GREENWOOD, M. P. et al. Salt appetite is reduced by a single experience of drinking hypertonic saline in the adult rat. PloS one, v. 9, n. 8, p. e104802, 2014b. GREENWOOD, M. P. et al. A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, v. 308, n. 7, 2015b. GREENWOOD, M. P. et al. A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol 308:, p. 559–568, 2015c. GREENWOOD, M. P. et al. Rasd1, a small G protein with a big role in the hypothalamic response to neuronal activation. Molecular Brain, v. 9, n. 1, p. 1–17, 2016. GUIARD, B. P.; DI GIOVANNI, G. Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: The missing link? Frontiers in Pharmacology, v. 6, n. MAR, p. 1– 17, 2015. GUO, Y. P. et al. Global gene knockout of kcnip3 enhances pain sensitivity and exacerbates negative emotions in rats. Frontiers in Molecular Neuroscience, v. 12, n. January, 2019. HATTON, G. I. Glial-neuronal interactions in the mammalian brain. American Journal of Physiology - Advances in Physiology Education, v. 26, n. 1–4, p. 225–237, 2002. HETHERINGTON, A. W. AND RANSON, S. W. Experimental Hypothalamico-Hypophyseal Obesity in the Rat. p. 465–466, 1938. HINDMARCH, C. et al. A comprehensive description of the transcriptome of the hypothalamoneurohypophyseal system in euhydrated and dehydrated rats. v. 103, n. 5, 2006. HINDMARCH, C. et al. Microarray analysis of the transcriptome of the subfornical organ in the rat : regulation by fluid and food deprivation. v. 6, p. 1914–1920, 2008. HINDMARCH, C. et al. Over-expression of V1A receptors in PVN modulates autonomic cardiovascular control. v. 114, p. 185–195, 2016. HINDMARCH, C. C. T. et al. The transcriptome of the medullary area postrema : the thirsty rat , the hungry rat and the hypertensive rat. p. 495–504, 2011. HINDMARCH, C. C. T. et al. Whole transcriptome organisation in the dehydrated supraoptic nucleus. v. 46, p. 1000–1006, 2013. HIYAMA, T. Y. The Subfornical Organ is the Primary Locus of Sodium-Level Sensing by Nax Sodium Channels for the Control of Salt-Intake Behavior. Journal of Neuroscience, v. 24, n. 42, p. 9276–9281, 2004. HOENIG, M. P.; ZEIDEL, M. L. Homeostasis, the Milieu Intérieur, and the Wisdom of the Nephron. Clin J Am Soc Nephrol 9:, v. 9, p. 1–10, 2014. HOLMES, F. L. Claude Bernard, The “Milieu Intérieur”, and Regulatory Physiology. History and Philosophy of the Life Sciences, v. 8, n. 1, p. 3–25, 1986. HUANG, K. W. et al. Molecular and anatomical organization of the dorsal raphe nucleus. bioRxiv, p. 1–34, 2019. HUSSY, N. et al. Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine. Journal of Neuroscience, v. 21, n. 18, p. 7110–7116, 2001. ISHIMURA, K. et al. Quantitative analysis of the distribution of serotonin-immunoreactive cell bodies in the mouse brain. Neuroscience Letters, v. 91, n. 3, p. 265–270, 1988. JOHNSON, A. K.; GROSS, P. M. Sensory circumventricular organs and brain homeostatic pathways. The FASEB Journal, v. 7, n. 8, p. 678–686, 1993. JOHNSON A. K, T. R. L. The neuroendocrinology, neurochemistry and molecular biology of thirst and salt appetite. In: LAJTHA A, B. J. D. (Ed.). . Handbook of Neurochemistry and Molecular Neurobiology. 3rd. ed. Berlin: Springer-Verlag, 2007. p. 641–687. JOHNSON, K. R. et al. A RNA-Seq Analysis of the Rat Supraoptic Nucleus Transcriptome : Effects of Salt Loading on Gene Expression. p. 1–28, 2015. JUSZCZAK, G. R.; STANKIEWICZ, A. M. Glucocorticoids, genes and brain function. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 82, n. November 2017, p. 136–168, 2018. KONOPACKA, A. et al. Osmoregulation requires brain expression of the renal Na-K-2Cl cotransporter NKCC2. The Journal of neuroscience : the official journal of the Society for Neuroscience, v. 35, n. 13, p. 5144–55, 2015a. KONOPACKA, A. et al. RNA binding protein Caprin-2 is a pivotal regulator of the central osmotic defense response. p. 1–23, 2015b. LAMBERT, S. A. et al. The Human Transcription Factors. Cell, v. 172, n. 4, p. 650–665, 2018. LECHNER, S. G. et al. The molecular and cellular identity of peripheral osmoreceptors. Neuron, v. 69, n. 2, p. 332–344, 2011. LEE, M. G.; CHIOU, W. L. Evaluation of potential causes for the incomplete bioavailability of furosemide: Gastric first-pass metabolism. Journal of Pharmacokinetics and Biopharmaceutics, v. 11, n. 6, p. 623–640, 1983. LENKEI, Z. et al. Expression of angiotensin type-1 ( AT1 ) and type-2 ( AT2 ) receptor mRNAs in the adult rat brain : a functional neuroanatomical review. Frontiers in neuroendocrinology, v. 18, p. 383–439, 1997. LEVENTOUX, N. et al. Transformation Foci in IDH1-mutated Gliomas Show STAT3 Phosphorylation and Downregulate the Metabolic Enzyme ETNPPL, a Negative Regulator of Glioma Growth. Scientific Reports, v. 10, n. 1, p. 1–15, 2020. LIEDTKE, W. B. et al. Relation of addiction genes to hypothalamic gene changes subserving genesis and grati fi cation of a classic instinct , sodium appetite. v. 108, n. 30, p. 12509–12514, 2011. LIMA, H. R. C. et al. Brain serotonin depletion enhances the sodium appetite induced by sodium depletion or beta-adrenergic stimulation. Anais da Academia Brasileira de Ciências, v. 76, n. 1, p. 85–92, 2004. LIND RW, T. R. & J. A. The subfornical organ and the integration of multiple factors in thirst. Physiology and Behavior, v. 32, p. 69- 74., 1984. LOPES-MENEZES, V. C. et al. Acute body sodium depletion induces skin sodium mobilization in female Wistar rats. Experimental Physiology, v. 104, n. 12, p. 1754–1761, 2019. LOUGHRIDGE, A. B. et al. Microarray analyses reveal novel targets of exercise-induced stress resistance in the dorsal raphe nucleus. Frontiers in Behavioral Neuroscience, v. 7, n. APR 2013, p. 1–21, 2013. LUNDY, R. F. et al. Furosemide, sodium appetite, and ingestive behavior. Physiology & Behavior, v. 78, n. 3, p. 449–458, 2003. MATTHEWS, G. A. et al. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation. Cell, v. 164, n. 4, p. 617–631, 2016. MAZARÉ, N. et al. Connexin 30 is expressed in a subtype of mouse brain pericytes. Brain Structure and Function, v. 223, n. 2, p. 1017–1024, 2018. MCCLINTICK, J. N. et al. Gene expression changes in serotonin, GABA-A receptors, neuropeptides and ion channels in the dorsal raphe nucleus of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking. Pharmacol Biochem Behav, v. 23, n. 1, p. 1–7, 2011. MCKINLEY, M. J.; HARDS, D. K.; OLDFIELD, B. J. Identification of neural pathways activated in dehydrated rats by means of Fos-immunohistochemistry and neural tracing. Brain research, v. 653, n. 1–2, p. 305–14, 1994. MCKINLEY, M. J.; JOHNSON, A. K. The Physiological Regulation of Thirst and Fluid Intake. News in Physiological Sciences, v. 19, n. 1, p. 1–6, 2004. MECAWI, A S. et al. The role of angiotensin II on sodium appetite after a low-sodium diet. Journal of neuroendocrinology, v. 25, p. 281–91, 2013. MECAWI, A. DE S. et al. Neuroendocrine regulation of hydromineral homeostasis. Comprehensive Physiology, v. 5, n. 3, 2015. MECAWI, A. S. et al. Estradiol potentiates hypothalamic vasopressin and oxytocin neuron activation and hormonal secretion induced by hypovolemic shock. Am J Physiol Regul Integr Comp Physiol, p. 905–915, 2011. MEDEIROS, M. A. et al. A reassessment of the role of serotonergic system in the control of feeding behavior. Anais da Academia Brasileira de Ciencias, v. 77, n. 1, p. 103–111, 2005. MEDEROS, S.; GONZÁLEZ-ARIAS, C.; PEREA, G. Astrocyte–Neuron Networks: A Multilane Highway of Signaling for Homeostatic Brain Function. Frontiers in Synaptic Neuroscience, v. 10, n. November, p. 1–12, 2018. METSALU, T.; VILO, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, v. 43, n. W1, p. W566–W570, 2015. MIMEE, A.; SMITH, P. M.; FERGUSON, A. V. Circumventricular organs: Targets for integration of circulating fluid and energy balance signals?Physiology and Behavior, 2013. MOE KE, WEISS ML, E. A. Sodium appetite during captopril blockade of endogenous angiotensin II formation. Am J Physiol., v. 247, n. 2 Pt 2, p. R356- 65., 1984. MOORMAN, S.; MELLO, C. V.; BOLHUIS, J. J. From songs to synapses: Molecular mechanisms of birdsong memory. BioEssays, v. 33, n. 5, p. 377–385, 2011. MUTZ, K. et al. Transcriptome analysis using next-generation sequencing. p. 22–30, 2013. NECTOW, A. R. et al. Identification of a Brainstem Circuit Controlling Feeding. Cell, v. 170, n. 3, p. 429- 442.e11, 2017. NEILL, J. C.; COOPER, S. J. Selective reduction by serotonergic agents of hypertonic saline consumption in rats: evidence for possible 5-HT1C receptor mediation. Psychopharmacology, v. 99, n. 2, p. 196–201, 1989. NIKOLAIENKO, O. et al. Arc protein: a flexible hub for synaptic plasticity and cognition. Seminars in Cell and Developmental Biology, v. 77, p. 33–42, 2018. NODA, M.; HIYAMA, T. Y. Sodium sensing in the brain. Pflügers Archiv - European Journal of Physiology, v. 467, n. 3, p. 465–474, 2015. OKATY, B. W. et al. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System. Neuron, v. 88, n. 4, p. 774–791, 2015. OLIVARES, E. L. et al. Effect of electrolytic lesion of the dorsal raphe nucleus on water intake and sodium appetite. Brazilian Journal of Medical and Biological Research, v. 36, n. 12, p. 1709–1716, 2003. PALKOVITS, M. Isolated removal of hypothalamic or other brair ~ nuclei of the rat. v. 59, p. 449–450, 1973. PASTUZYN, E. D. et al. The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer. Cell, v. 173, n. 1, p. 275, 2018. PAXINOS, G.; WATSON, C. The Rat Brain in Stereotaxic Coordinates. San Diego, CA: Academic Press, 2004. PEREZ-CATALAN, N. A.; DOE, C. Q.; ACKERMAN, S. D. The role of astrocyte‐mediated plasticity in neural circuit development and function. Neural Development, v. 16, n. 1, p. 1– 14, 2021. PETIT, J. M. et al. VIP-like immunoreactive projections from the dorsal raphe and caudal linear raphe nuclei to the bed nucleus of the stria terminalis demonstrated by a double immunohistochemical method in the rat. Neuroscience Letters, v. 193, n. 2, p. 77–80, 1995. POLLAK DOROCIC, I. et al. A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei. Neuron, v. 83, n. 3, p. 663–678, 2014. PORCARI, C. Y. et al. Whole body sodium depletion modifies AT1 mRNA expression and serotonin content in the dorsal raphe nucleus. Journal of Neuroendocrinology, v. 31, n. 4, p. 1–10, 2019. QESSEVEUR, G. et al. Genetic dysfunction of serotonin 2A receptor hampers response to antidepressant drugs: A translational approach. Neuropharmacology, v. 105, p. 142–153, 2016. QUÉRÉE, P.; PETERS, S.; SHARP, T. Further pharmacological characterization of 5-HT 2C receptor agonist-induced inhibition of 5-HT neuronal activity in the dorsal raphe nucleus in vivo. British Journal of Pharmacology, v. 158, n. 6, p. 1477–1485, 2009. QUESSEVEUR, G. et al. 5-HT2A receptor inactivation potentiates the acute antidepressantlike activity of escitalopram: Involvement of the noradrenergic system. Experimental Brain Research, v. 226, n. 2, p. 285–295, 2013. QUINTON, R. L’eau De Mer, Milieu Organique: Constance Du Milieu Marin Originel, Comme Milieu Vital Des Cellules, À Travers La Série Animale. [s.l: s.n.]. RAMACHANDRAN, P. L. et al. The potassium channel interacting protein 3 (DREAM/KChIP3) heterodimerizes with and regulates calmodulin function. Journal of Biological Chemistry, v. 287, n. 47, p. 39439–39448, 2012. REIS, L. C. Role of the serotoninergic system in the sodium appetite control. Anais da Academia Brasileira de Ciências, v. 79, n. 2, p. 261–83, 2007. REYES-HARO, D. et al. Anorexia Reduces GFAP + Cell Density in the Rat Hippocampus. v. 2016, p. 1–11, 2016. RITZ, E. Salt appetite and addiction — unholy twins ? v. 32, n. May, p. 2146–2148, 2012. RODRÍGUEZ, E. M.; BLÁZQUEZ, J. L.; GUERRA, M. The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: The former opens to the portal blood and the latter to the cerebrospinal fluid. Peptides, v. 31, n. 4, p. 757–776, 2010. ROUAH-ROSILIO M, OROSCO M, N. S. Serotoninergic Modulation of Sodium Appetite in the Rat. v. 55, n. 5, p. 811–816, 1994. SAKAI, E. G. K. AND R. R. Richter and sodium appetite: from adrenalectomy to molecular biology. Appetite, v. 49, n. 2, p. 353–367, 2007. SAKAI, K. et al. causes elevated drinking Local production of angiotensin II in the subfornical organ causes elevated drinking. v. 117, n. 4, p. 1088–1095, 2007. SAKUTA, H. et al. Na x signaling evoked by an increase in [ Na ϩ ] in CSF induces water intake via EET-mediated TRPV4 activation. n. 37, 2016. SCHWARTZ, M. W. et al. Central nervous system control of food intake. Nature, v. 404, n. 6778, p. 661–671, 2000. SHAO, L.; VAWTER, M. P. Shared Gene Expression Alterations in Schizophrenia and Bipolar. Biol Psychiatry, v. 23, n. 1, p. 1–7, 2008. SHARIF NAEINI, R. et al. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nature neuroscience, v. 9, n. 1, p. 93–8, 2006. SMAGIN, D. A. et al. Dysfunction in Ribosomal Gene Expression in the Hypothalamus and Hippocampus following Chronic Social Defeat Stress in Male Mice as Revealed by RNA-Seq. v. 2016, 2016. SOIZA-REILLY, M.; GASPAR, P. From B1 to B9: a guide through hindbrain serotonin neurons with additional views from multidimensional characterization. In: Handbook of Behavioral Neuroscience. [s.l: s.n.]. v. 31p. 23–40. STANKIEWICZ, A. M. et al. Social stress increases expression of hemoglobin genes in mouse prefrontal cortex. BMC Neuroscience, v. 15, n. 1, p. 1–16, 2014. STEINBUSCH, H. W. M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-Cell bodies and terminals. [s.l: s.n.]. v. 6 STELLAR, E. Salt appetite: its neuroendocrine basis. Acta neurobiologiae experimentalis, v. 53, n. 3, p. 475–84, 1993. STEWART, L. et al. Hypothalamic Transcriptome Plasticity in Two Rodent Species Reveals Divergent Differential Gene Expression But Conserved Pathways Neuroendocrinology. n. 13, p. 177–185, 2011. SULTA, P. Pharmacogenomics. v. 15, p. 1823–1838, 2014. SWANSON, L. G. S. AND L. W. Drinking induced by injections of angiotensin into forebrain and mid-brain sites of the monkey. J Physiol., v. 239, n. 3, p. 595–622, 1974. TANAKA J, USHIGOME A, H. K. & N. M. Response of raphe nucleus projecting subfornical organ neurons to angiotensin II in rats. Brain Research Bulletin, v. 45, p. 315- 318., 1998. TANAKA, J. et al. Efferent pathways from the region of the subfornical organ to hypothalamic paraventricular nucleus: an electrophysiological study in the rat. Experimental Brain Research, v. 62, n. 3, p. 509–514, 1986. TIAN, N. X. et al. KCHIP3 N-terminal 31-50 fragment mediates its association with TRPV1 and alleviates inflammatory hyperalgesia in rats. Journal of Neuroscience, v. 38, n. 7, p. 1756– 1773, 2018. VEIGA-DA-CUNHA, M. et al. Molecular identification of hydroxylysine kinase and of ammoniophospholyases acting on 5-phosphohydroxy-L-lysine and phosphoethanolamine. Journal of Biological Chemistry, v. 287, n. 10, p. 7246–7255, 2012. VENTURA, R. R. et al. Neuronal nitric oxide synthase inhibition differentially affects oxytocin and vasopressin secretion in salt loaded rats. Neuroscience letters, v. 379, n. 2, p. 75–80, 2005. VERBALIS, E. M. S. AND J. G. Hormones and Behavior: The Biology of Thirst and Sodium Appetite. Scientist, American, v. 76, n. 3 (May-June ), p. 261–267, 1988. VERBALIS, J. G. Disorders of body water homeostasis. Best Practice & Research Clinical Endocrinology & Metabolism, v. 17, n. 4, p. 471–503, 2003. VERNEY, E. B. The Antidiuretic Hormone and the Factors Which Determine Its Release. Proc R Soc Lond B Biol Sci., v. 135, n. 878, p. 25–106, 1947. WANG, Y. F.; PARPURA, V. Astroglial modulation of hydromineral balance and cerebral edema. Frontiers in Molecular Neuroscience, v. 11, n. June, p. 1–18, 2018. WATANABE, E. et al. Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. The Journal of neuroscience : the official journal of the Society for Neuroscience, v. 20, n. 20, p. 7743–7751, 2000. WATANABE, E. et al. Nax sodium channel is expressed in non-myelinating Schwann cells and alveolar type II cells in mice. Neuroscience Letters, v. 330, n. 1, p. 109–113, 2002. WESTERHAUS, M. J.; LOEWY, A. D. Sympathetic-related neurons in the preoptic region of the rat identified by viral transneuronal labeling. Journal of Comparative Neurology, v. 414, n. 3, p. 361–378, 1999. WOLF, G.; STRICKER, E. Sodium appetite elicited by hypovolemia in adrenalectomized rats: reevaluation of the “reservoir” hypothesis. J Comp Physiol Psychol., v. Apr;63(2), p. 252–7, 1967. WU, C. et al. RNA sequencing in post-mortem human brains of neuropsychiatric disorders. Psychiatry and Clinical Neurosciences, v. 71, n. 10, p. 663–672, 2017. XU, Z.; XINGHONG, J. Drinking and Fos-immunoreactivity in rat brain induced by local injection of angiotensin I into the subfornical organ. p. 67–74, 1999. YAMADA, J. et al. Role of serotonergic mechanisms in leptin-induced suppression of milk intake in mice. Neuroscience Letters, v. 348, n. 3, p. 195–197, 2003. YANG, C. N. et al. Differential protective effects of connective tissue growth factor against Aβ neurotoxicity on neurons and glia. Human Molecular Genetics, v. 26, n. 20, p. 3909–3921, 2017. ZHANG, W. et al. Arc oligomerization is regulated by CaMKII phosphorylation of GAG domain; an essential mechanism for plasticity and memory formation. Mol Cell., v. 75, n. 1, p. 13–25, 2020.por
dc.subject.cnpqFisiologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/72996/2021%20-%20L%c3%advia%20da%20Rocha%20Natalino%20Monteiro.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6533
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-04-19T19:31:43Z No. of bitstreams: 1 2021 - Lívia da Rocha Natalino Monteiro.pdf: 1991643 bytes, checksum: ef7419b7b81eb7a215e6b3f335dc6006 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-04-19T19:31:43Z (GMT). No. of bitstreams: 1 2021 - Lívia da Rocha Natalino Monteiro.pdf: 1991643 bytes, checksum: ef7419b7b81eb7a215e6b3f335dc6006 (MD5) Previous issue date: 2021-02-24eng
Appears in Collections:Doutorado em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Lívia da Rocha Natalino Monteiro.pdf1.94 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.