Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9604
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerreira, Jessica da Silva
dc.date.accessioned2023-12-21T18:41:55Z-
dc.date.available2023-12-21T18:41:55Z-
dc.date.issued2019-05-09
dc.identifier.citationFERREIRA, Jessica da Silva. Evidências sorológicas e moleculares de infecção natural por Mycobacterium leprae em tatus (Euphractus sexcinctus) no estado do Rio Grande do Norte, Brasil.129 f. Tese (Doutorado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9604-
dc.description.abstractA hanseníase é uma doença crônica e infecciosa com alto potencial para causar incapacidade física. Até recentemente, acreditava-se que Mycobacterium leprae era um patógeno exclusivamente humano. No entanto, a detecção de fontes não humanas da bactéria, mais notadamente em tatus, levantou questões sobre a cadeia de transmissão da hanseníase. Os tatus da espécie Dasypus novemcinctus são conhecidos por estarem envolvidos na manutenção e transmissão de M. leprae a humanos nos Estados Unidos da América (EUA), onde a hanseníase é classificada como uma zoonose. No Brasil, tatus (principalmente D. novemcinctus) naturalmente infectados por M. leprae foram relatados em algumas regiões. Além disso, o contato via caça, manejo, reprodução e consumo de carne de tatu é considerado um fator de risco para transmissão de M. leprae ao homem. No entanto, em contraste com os dados conclusivos apresentados nos EUA, as evidências que sustentam a existência de hanseníase zoonótica, envolvendo tatus no Brasil, são essencialmente sugestivas. O presente estudo avaliou tatus Euphractus sexcinctus (n=20), coletados em localidades rurais no estado do Rio Grande do Notre (RN), Brasil, para investigar infecção por M. leprae. O soro foi analisado através de dois ensaios imunoenzimáticos “in-house” (ELISAs) e dois testes imunocromatográficos de fluxo lateral (LF) comercialmente disponíveis (ML flow e NDOLID®), a fim de detectar reposta ao PGL-I e LID-1, ambos antígenos da bactéria. A presença do DNA de M. leprae no tecido hepático foi analisado utilizando o elemento repetitivo específico de M. leprae (RLEP), como alvo em ensaios de PCR convencional e nested. Dados moleculares e sorológicos (ELISA anti-PGL-1) indicaram que 20/20 (100%) dos tatus foram infectados por M. leprae. Os níveis de detecção correspondentes aos testes LF, foram 17/20 (85%) e 16/20 (80%), para os testes de fluxo NDO-LID® e ML, respectivamente. A genotipagem de isolados de M. leprae oriundos de pacientes e tatus foi conduzida utilizando sistemas baseados em marcadores moleculares como Números Variáveis de Repetições Tandem (VNTRs) e Polimorfismos de Nucleotídeo Único (SNPs), quando possível. Estes perfis genotípicos foram combinados com os resultados de outros estudos brasileiros e internacionais, incluindo os de tatus nos EUA, para gerar um banco de dados. Análises baseadas em VNTRs evidenciaram que os isolados de M. leprae oriundos de E. sexcinctus são altamente relacionadas entre si. A análise comparativa dos isolados de M. leprae oriundos de E. sexcinctus com os perfis contidos na base de dados de VNTRs, embora evidenciasse correlação, não forneceu evidências definitivas para um perfil genético comum entre pacientes e tatus brasileiros. Portanto, dadas as deficiências nos perfis genotípicos das amostras oriundas de tatu e em uma porção substancial das oriundas dos humanos, devido a dificuldades encontradas na amplificação de alguns marcadores, seria incorreto afirmar que nossos dados forneceram evidências conclusivas da existência de perfil genotípico de M. leprae comum entre pacientes e humanos no Brasil. Recomenda-se que, para resolver esta lacuna, as melhorias nos protocolos de genotipagem baseada em VNTRs existentes devem ser uma prioridade para futuras pesquisas sobre este importante tópico. Apesar da natureza inconclusiva dos dados de genotipagem, concluiu-se que, em comum com D. novemcinctus, tatus E. sexcinctus representam um reservatório de M. leprae e, como tal, seu papel em um possível ciclo zoonótico de hanseníase no Brasil merece mais investigação.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectMycobacterium lepraepor
dc.subjectTatupor
dc.subjectImunodiagnósticopor
dc.subjectGenotipagempor
dc.subjectZoonosepor
dc.subjectMycobacterium lepraeeng
dc.subjectArmadilloeng
dc.subjectImunodiagnosticseng
dc.subjectGenotypingeng
dc.titleEvidências sorológicas e moleculares de infecção natural por Mycobacterium leprae em tatus (Euphractus sexcinctus) no estado do Rio Grande do Norte, Brasilpor
dc.title.alternativeSerological and molecular evidences of natural Mycobacterium leprae infection in armadillos (Euphractus sexcinctus) in the state of Rio Grande do Norte, Brazileng
dc.typeTesepor
dc.description.abstractOtherLeprosy is a chronic and infectious disease with a high potential for causing physical disability. Until recently, it was believed that Mycobacterium leprae was an exclusively human pathogen. However, the detection of non-human sources of the bacterium, most notably in armadillos, raised questions about the transmission chain of leprosy. Armadillos of the species Dasypus novemcinctus are known to be involved in the maintenance and transmission of M. leprae to humans in the United States of America (USA), where leprosy is classified as a zoonotic disease. In Brazil, armadillos (principally D. novemcinctus) naturally infected by M. leprae have been reported in some regions. In addition, contact via hunting, handling, breeding and consumption of armadillo meat are considered a risk factor for transmission of M. leprae to humans. Yet, in contrast to the conclusive data presented by in the USA, evidence to support the existence of zoonotic leprosy, involving armadillos, in Brazil is essentially suggestive. The current study evaluated twenty specimens of the sixbanded armadillo (Euphractus sexcinctus), collected from rural locations in the state of Rio Grande do Notre (RN), Brazil for evidence of infection with M. leprae. Serum was examined using two “in-house” enzyme-linked immunosorbent assays (ELISAs) and via two commercially available (ML flow and NDO-LID®) immunochromatographic lateral flow (LF) tests, for detection of the PGL-I and/or LID-1 antigens of the bacterium. The presence of M. leprae DNA in liver tissue was examined using the M. leprae-specific repetitive element (RLEP), as target in conventional and nested PCR assays. Molecular and anti-PGL-1-ELISA data indicated that 20/20 (100%) of the armadillos were infected with M. leprae. The corresponding detection levels, recorded with the LF tests were 17/20 (85%) and 16/20 (80%), for the NDO-LID® and ML flow tests respectively. Genotyping of M. leprae strains generated from patients in Mossoró, (RN) and armadillos was conducted using systems based on Single Nucleotide Polymorphisms (SNPs) and Variable Numbers of Tandem Repeats (VNTRs) molecular markers. Those profiles were combined with the findings of other Brazilian and international studies, including those from armadillos in the USA, to generate a database. Analyses, based on VNTRs, of the M. leprae samples from E. sexcinctus showed them to be highly related to each other. Comparative analysis of the E. sexcinctus samples with the profiles contained in the VNTR database did not provide definitive evidence for a M. leprae genetic profile common between human and armadillo in Brazil. Therefore, given the deficiencies in the profiles of both the armadillo samples and a substantial portion of the human isolates, due to difficulties encountered in the amplification of some markers, it would be incorrect to affirm that our data provided conclusive evidence the existence of a common M. leprae genetic profile in Brazil. It is recommended that, to resolve this uncertainty, improvements in the existing VNTR protocols should be made a priority for future research on this important topic. Despite the inconclusive nature of the genotyping data, it was concluded that, in common with D. novemcinctus, six banded armadillos represent a reservoir of M. leprae and as such, their role in a possible zoonotic cycle of leprosy within Brazil warrants further investigation.eng
dc.contributor.advisor1McIntosh, Douglas
dc.contributor.advisor1ID054.046.627-19por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5166697605343047por
dc.contributor.advisor-co1Suffys, Philip Noel
dc.contributor.advisor-co1ID024.820.347-95por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3568607645909585por
dc.contributor.referee1McIntosh, Douglas
dc.contributor.referee1ID054.046.627-19por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5166697605343047por
dc.contributor.referee2Matias, Carlos Alexandre Rey
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5557059490253265por
dc.contributor.referee3Santos, Tiago Marques dos
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3348705741012678por
dc.contributor.referee4Pessolani, Maria Cristina Vidal
dc.contributor.referee4Latteshttp://lattes.cnpq.br/3751433613018861por
dc.contributor.referee5Roque, André Luiz Rodrigues
dc.contributor.referee5Latteshttp://lattes.cnpq.br/4648411135225077por
dc.creator.ID124.188.277-04por
dc.creator.Latteshttp://lattes.cnpq.br/6472093146291659por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspor
dc.relation.referencesADAMS, L. B. et al. Insights from animal models on the immunogenetics of leprosy: a review. Memorias do Instituto Oswaldo Cruz, v. 107 Suppl 1, p. 197–208, dez. 2012. AHMED, R. et al. Phage-typing scheme for Escherichia coli O157:H7. The Journal of infectious diseases, v. 155, n. 4, p. 806–9, abr. 1987. AHUJA, M. et al. Detection of Mycobacterium lepromatosis in patients with leprosy in India. Infection and drug resistance, v. 11, p. 1677–1683, 2018. ALVES, R. R. et al. Hunting strategies used in the semi-arid region of northeastern Brazil. Journal of Ethnobiology and Ethnomedicine, v. 5, n. 1, p. 12, 22 dez. 2009. AVANZI, C. et al. Red squirrels in the British Isles are infected with leprosy bacilli. Science, v. 354, n. 6313, p. 744–747, 11 nov. 2016. AVNI, E. et al. A phylogenomic study quantifies competing mechanisms for pseudogenization in prokaryotes-The Mycobacterium leprae case. PloS one, v. 13, n. 11, p. e0204322, 2018. BAGAGLI, E. et al. High frequency of Paracoccidioides brasiliensis infection in armadillos (Dasypus novemcinctus): an ecological study. Medical mycology, v. 41, n. 3, p. 217–23, jun. 2003. BAKKER, M. I. et al. Risk factors for developing leprosy--a population-based cohort study in Indonesia. Leprosy review, v. 77, n. 1, p. 48–61, mar. 2006. BALAMAYOORAN, G. et al. The armadillo as an animal model and reservoir host for Mycobacterium leprae. Clinics in Dermatology, v. 33, n. 1, p. 108–115, 1 jan. 2015. BANG, P. D. et al. Evaluation of polymerase chain reaction-based detection of Mycobacterium leprae for the diagnosis of leprosy. The Journal of Dermatology, v. 36, n. 5, p. 269–276, maio 2009. BATISTA, J. S. et al. Hepatic Lipidosis in Banded Armadillos (Euphractus sexcinctus) Bred in Captivity. Acta Scientiae Veterinariae, v. 44, n. 1, p. 4, 16 jan. 2019. BEYENE, D. et al. Nasal carriage of Mycobacterium leprae DNA in healthy individuals in Lega Robi village, Ethiopia. Epidemiology and infection, v. 131, n. 2, p. 841–8, out. 2003. BONATO, V. et al. Ecology of the Armadillos Cabassous unicinctus and Euphractus sexcinctus (Cingulata: Dasypodidae) in a Brazilian Cerrado. Journal of Mammalogy, v. 89, n. 1, p. 168–174, 19 fev. 2008. BRAET, S. et al. The Repetitive Element RLEP Is a Highly Specific Target for Detection of Mycobacterium leprae. Journal of Clinical Microbiology, v. 56, n. 3, 5 jan. 2018. BRASIL. Lei Federal Nº 9.605, de 12 de fevereiro de 1998. Dispõe sobre as sanções penais e administrativas derivadas de condutas e atividades lesivas ao meio ambiente, e dá outras providências. Disponível em http://www.planalto.gov.br/ccivil_03/leis/L9605.htm. Acesso em maio de 2019. 105 BRATSCHI, M. W. et al. Current knowledge on Mycobacterium leprae transmission: a systematic literature review. Leprosy review, v. 86, n. 2, p. 142–55, jun. 2015. BRETT, S. J. et al. Serological activity of a characteristic phenolic glycolipid from Mycobacterium leprae in sera from patients with leprosy and tuberculosis. Clinical and experimental immunology, v. 52, n. 2, p. 271–9, maio 1983. BÜHRER-SÉKULA, S. et al. The ML flow test as a point of care test for leprosy control programmes: potential effects on classification of leprosy patients. Leprosy review, v. 78, n. 1, p. 70–9, mar. 2007. BÜHRER-SÉKULA, S. Sorologia PGL-I na hanseníase. Revista da Sociedade Brasileira de Medicina Tropical, v. 41, n. SUPPL. 2, p. 3–5, 2008. CARDONA-CASTRO, N. et al. Identification and comparison of Mycobacterium leprae genotypes in two geographical regions of Colombia. Leprosy review, v. 80, n. 3, p. 316–21, set. 2009a. CARDONA-CASTRO, N. et al. Identification and comparison of Mycobacterium leprae genotypes in two geographical regions of Colombia. Leprosy review, v. 80, n. 3, p. 316–21, set. 2009b. CARDONA-CASTRO, N. et al. Detection of Mycobacterium leprae DNA in nine-banded armadillos (Dasypus novemcinctus) from the Andean region of Colombia. Leprosy review, v. 80, n. 4, p. 424–31, dez. 2009c. CARDONA-CASTRO, N. et al. Mycobacterium leprae in Colombia described by SNP7614 in gyrA, two minisatellites and geography. Infection, Genetics and Evolution, v. 14, p. 375– 382, mar. 2013. CARDOSO, L. P. V et al. Development of a quantitative rapid diagnostic test for multibacillary leprosy using smart phone technology. BMC Infectious Diseases, v. 13, n. 497, p. 1–10, 2013. CHEHL, S.; JOB, C. K.; HASTINGS, R. C. Transmission of leprosy in nude mice. The American journal of tropical medicine and hygiene, [s. l.], v. 34, n. 6, p. 1161–6, 1985 CLARK-CURTISS, J. E.; DOCHERTY, M. A. A species-specific repetitive sequence in Mycobacterium leprae DNA. The Journal of infectious diseases, v. 159, n. 1, p. 7–15, jan. 1989. CLARK, B. M. et al. Case-control study of armadillo contact and Hansen’s disease. The American journal of tropical medicine and hygiene, v. 78, n. 6, p. 962–7, jun. 2008. COLE, S. T. et al. Massive gene decay in the leprosy bacillus. Nature, v. 409, n. 6823, p. 1007–1011, 22 fev. 2001. CURTISS, R. et al. Leprosy research in the post-genome era. Leprosy review, v. 72, n. 1, p. 8–22, mar. 2001. 106 DA SILVA, M. B. et al. Evidence of zoonotic leprosy in Pará, Brazilian Amazon, and risks associated with human contact or consumption of armadillos. PLOS Neglected Tropical Diseases, v. 12, n. 6, p. e0006532, 28 jun. 2018. DE BEER, J. L. et al. Optimization of Standard In-House 24-Locus Variable-Number Tandem-Repeat Typing for Mycobacterium tuberculosis and Its Direct Application to Clinical Material. Journal of Clinical Microbiology, v. 52, n. 5, p. 1338–1342, 1 maio 2014. DEPS, P. D.; SANTOS, A. R.; YAMASHITA-TOMIMORI, J. Detection of Mycobacterium leprae DNA by PCR in blood sample from nine-banded armadillo: preliminary results. International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association, v. 70, n. 1, p. 34–5, mar. 2002. DEPS, P. D. et al. Epidemiological features of the leprosy transmissionin relation to armadillo exposure. Hansenologia Internationalis (Online), v. 28, n. 2, p. 138–144, 2003. DEPS, P. D.; ANTUNES, J. M. A. DE P.; TOMIMORI-YAMASHITA, J. Detection of Mycobacterium leprae infection in wild nine-banded armadillos (Dasypus novemcinctus) using the rapid ML Flow test. Revista da Sociedade Brasileira de Medicina Tropical, v. 40, n. 1, p. 86–7, 2007. DEPS, P. D. et al. Contact with armadillos increases the risk of leprosy in Brazil: a case control study. Indian journal of dermatology, venereology and leprology, v. 74, n. 4, p. 338–42, 2008a. DEPS, P. D. et al. Research regarding anti-PGL-I antibodies by ELISA in wild armadillos from Brazil. Revista da Sociedade Brasileira de Medicina Tropical, v. 41 Suppl 2, p. 73–6, 2008b. DEVIDES, A. C. et al. Can anti–PGL-1 and anti–NDO-LID-1 antibody titers be used to predict the risk of reactions in leprosy patients? Diagnostic Microbiology and Infectious Disease, v. 91, n. 3, p. 260–265, jul. 2018. DOMOZYCH, R. et al. Increasing incidence of leprosy and transmission from armadillos in Central Florida: A case series. JAAD case reports, v. 2, n. 3, p. 189–92, maio 2016. DONOGHUE, H.D.SPIGELMAN, M.HOLTON, J. PCR primers that can detect low levels of Mycobacterium leprae DNA. Journal of Medical Microbiology, v. 50, n. 2, p. 177–182, 1 fev. 2001. DUTHIE, M. S. et al. Use of Protein Antigens for Early Serological Diagnosis of Leprosy. Clinical and Vaccine Immunology, v. 14, n. 11, p. 1400–1408, 1 nov. 2007. DUTHIE, M. S. et al. Insight toward Early Diagnosis of Leprosy through Analysis of the Developing Antibody Responses of Mycobacterium leprae -Infected Armadillos. Clinical and Vaccine Immunology, v. 18, n. 2, p. 254–259, fev. 2011. DUTHIE, M. S. et al. Rapid quantitative serological test for detection of infection with Mycobacterium leprae, the causative agent of leprosy. Journal of clinical microbiology, v. 52, n. 2, p. 613–9, fev. 2014. 107 ENCARNAÇÃO, C. D. da.. Contribuição à ecologia dos tatus (Xenarthra, Dasypodidae) da Serra da Canastra, Minas Gerais. Dissertação de Mestrado, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1987. EXCOFFIER, L.; SMOUSE, P. E. Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics, v. 136, n. 1, p. 343–59, jan. 1994. EYBPOOSH, S. et al. Molecular epidemiology of infectious diseases. Electronic physician, v. 9, n. 8, p. 5149–5158, ago. 2017. FERREIRA, J. DA S. et al. Ticks as potential vectors of Mycobacterium leprae: Use of tick cell lines to culture the bacilli and generate transgenic strains. PLoS neglected tropical diseases, v. 12, n. 12, p. e0007001, 19 dez. 2018. FERREIRA MARÇAL, P. H. et al. Utility of immunoglobulin isotypes against LID-1 and NDO-LID for, particularly IgG1, confirming the diagnosis of multibacillary leprosy. Mem Inst Oswaldo Cruz Rio de Janeiro, v. 113, n. 5, 2018. FONTES, A. N. B. et al. Genetic diversity of Mycobacterium leprae isolates from Brazilian leprosy patients. Leprosy review, v. 80, n. 3, p. 302–15, set. 2009. FONTES, A. N. B. et al. Genotyping of Mycobacterium leprae present on Ziehl-Neelsenstained microscopic slides and in skin biopsy samples from leprosy patients in different geographic regions of Brazil. Memorias do Instituto Oswaldo Cruz, p. 143–9, dez. 2012. FONTES, A. N. B. et al. Genotyping of Mycobacterium leprae for better understanding of leprosy transmission in Fortaleza, Northeastern Brazil. PLOS Neglected Tropical Diseases, v. 11, n. 12, p. e0006117, 15 dez. 2017. FOSS, N. T. Hanseníase: aspectos clínicos, imunológicos e terapêuticos. Anais brasileiros de imunologia, v. 74, n. 2, 1999. FRADE, M. A. C. et al. Unexpectedly high leprosy seroprevalence detected using a random surveillance strategy in midwestern Brazil: A comparison of ELISA and a rapid diagnostic test. PLOS Neglected Tropical Diseases, v. 11, n. 2, p. e0005375, 23 fev. 2017. FROTA, C. C. et al. Mycobacterium leprae in six-banded (Euphractus sexcinctus) and ninebanded armadillos (Dasypus novemcinctus) in Northeast Brazil. Memorias do Instituto Oswaldo Cruz, v. 107 Suppl, p. 209–13, dez. 2012. GARDNER, A. L. Mammals of South America. Volume 1, Marsupials, xenarthrans, shrews, and bats. [s.l.] University of Chicago Press, 2008. GELUK, A. Challenges in immunodiagnostic tests for leprosy. Expert Opinion on Medical Diagnostics, v. 7, n. 3, p. 265–274, 28 maio 2013. GROATHOUSE, N. A. et al. Multiple polymorphic loci for molecular typing of strains of Mycobacterium leprae. Journal of clinical microbiology, v. 42, n. 4, p. 1666–72, abr. 2004. 108 GROSSI, M. A. DE F. et al. A influência do teste sorológico ML Flow na classificação da hanseníase. Revista da Sociedade Brasileira de Medicina Tropical, v. 41, n. suppl 2, p. 34– 38, 2008. HAMPSON, S. J. et al. DNA probes demonstrate a single highly conserved strain of Mycobacterium avium infecting aids patients. The Lancet, v. 333, n. 8629, p. 65–68, 14 jan. 1989. HAN, X. Y. et al. A New Mycobacterium Species Causing Diffuse Lepromatous Leprosy. American Journal of Clinical Pathology, v. 130, n. 6, p. 856–864, 1 dez. 2008. HAN, X. Y. et al. The leprosy agents Mycobacterium lepromatosis and Mycobacterium leprae in Mexico. International journal of dermatology, v. 51, n. 8, p. 952–9, ago. 2012. HAN, X. Y.; JESSURUN, J. Severe Leprosy Reactions Due to Mycobacterium lepromatosis. The American Journal of the Medical Sciences, v. 345, n. 1, p. 65–69, jan. 2013. HANSEN, G. Investigations concerning the etiology of leprosy. Norsk Mag Laegervidenskaben. Steen: Christiania, 1874. HE, Z.-X. et al. Development of a Lateral Flow Immunoassay for the Rapid Diagnosis of Invasive Candidiasis. Frontiers in Microbiology, v. 7, p. 1451, 13 set. 2016. HOFFMANN, C. et al. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proceedings of the National Academy of Sciences of the United States of America, v. 105, n. 10, p. 3963–7, 11 mar. 2008. HONAP, T. P. et al. Mycobacterium leprae genomes from naturally infected nonhuman primates. PLoS neglected tropical diseases, v. 12, n. 1, p. e0006190, 2018. HOUSMAN, G. et al. Validation of qPCR Methods for the Detection of Mycobacterium in New World Animal Reservoirs. PLoS neglected tropical diseases, v. 9, n. 11, p. e0004198, nov. 2015. HUNGRIA, E. M. et al. Can baseline ML Flow test results predict leprosy reactions? An investigation in a cohort of patients enrolled in the uniform multidrug therapy clinical trial for leprosy patients in Brazil. Infectious diseases of poverty, v. 5, n. 1, p. 110, 6 dez. 2016. HUNTER, P. R.; GASTON, M. A. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. Journal of clinical microbiology, v. 26, n. 11, p. 2465–6, nov. 1988. ILLARRAMENDI, X. et al. Cutaneous lesions sensory impairment recovery and nerve regeneration in leprosy patients. Memórias do Instituto Oswaldo Cruz, v. 107, n. suppl 1, p. 68–73, dez. 2012. JAGIELSKI, T. et al. Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clinical microbiology reviews, v. 29, n. 2, p. 239–90, abr. 2016. 109 JOB, C. K. Developments in experimental leprosy. Indian journal of leprosy, v. 72, n. 1, p. 143–54, 2000. JOB, C. K. et al. Transmission of leprosy: a study of skin and nasal secretions of household contacts of leprosy patients using PCR. The American journal of tropical medicine and hygiene, v. 78, n. 3, p. 518–21, mar. 2008. JOSEPH, B. Z.; YODER, L. J.; JACOBSON, R. R. Hansen’s disease in native-born citizens of the United States. Public health reports (Washington, D.C. : 1974), v. 100, n. 6, p. 666– 71, 1985. KAMPIRAPAP, K. et al. DNA amplification for detection of leprosy and assessment of efficacy of leprosy chemotherapy. International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association, v. 66, n. 1, p. 16–21, mar. 1998. KAPLAN, G.; COHN, Z. A. Regulation of cell-mediated immunity in lepromatous leprosy. Leprosy review, v. 57 Suppl 2, p. 199–202, dez. 1986. KATOCH, V. M. Newer diagnostic techniques for tuberculosis. The Indian journal of medical research, v. 120, n. 4, p. 418–28, out. 2004. KEIM, P. et al. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. Journal of bacteriology, v. 182, n. 10, p. 2928–36, maio 2000. KERR-PONTES, L. R. et al. Socioeconomic, environmental, and behavioural risk factors for leprosy in North-east Brazil: results of a case–control study. International Journal of Epidemiology, v. 35, n. 4, p. 994–1000, 1 ago. 2006. KERR, L. et al. Human-armadillo interaction in Ceará, Brazil: Potential for transmission of Mycobacterium leprae. Acta tropica, v. 152, p. 74–79, dez. 2015. KIMURA, M. et al. Rapid variable-number tandem-repeat genotyping for Mycobacterium leprae clinical specimens. Journal of clinical microbiology, v. 47, n. 6, p. 1757–66, jun. 2009. KIRCHHEIMER, W. F.; STORRS, E. E. Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association, v. 39, n. 3, p. 693–702, 1971. KLEVYTSKA, A. M. et al. Identification and characterization of variable-number tandem repeats in the Yersinia pestis genome. Journal of clinical microbiology, v. 39, n. 9, p. 3179– 85, set. 2001. KURUWA, S.; VISSA, V.; MISTRY, N. Distribution of Mycobacterium leprae Strains among Cases in a Rural and Urban Population of Maharashtra, India. Journal of Clinical Microbiology, v. 50, n. 4, p. 1406–1411, 1 abr. 2012. 110 LAGUNA, A. F. El cachicamo sabanero : aspectos de su biología y ecología. Caracas: Fondo Editorial Acta Científica Venezolana, 1984. LAHIRI, R.; RANDHAWA, B.; KRAHENBUHL, J.. Application of a viability-staining method for Mycobacterium leprae derived from the athymic (nu/nu) mouse foot pad. Journal of Medical Microbiology, [s. l.], v. 54, n. 3, p. 235–242, 2005. LANCEFIELD, R. C. The antigenic complex of Streptococcus haemolyticus : i. Demonstration of a type-specific substance in extracts of Streptococcus haemolyticus. The Journal of experimental medicine, v. 47, n. 1, p. 91–103, 1 jan. 1928. LASTÓRIA, J. C. et al. Leprosy: review of the epidemiological, clinical, and etiopathogenic aspects - Part 1. Anais Brasileiros de Dermatologia, v. 89, n. 2, p. 205–218, abr. 2014. LAVANIA, M. et al. Detection of Mycobacterium leprae DNA from soil samples by PCR targeting RLEP sequences. The Journal of communicable diseases, v. 38, n. 3, p. 269–73, mar. 2006. LAVANIA, M. et al. Predominance of three copies of tandem repeats in rpoT gene of Mycobacterium leprae from Northern India. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, v. 7, n. 5, p. 627–31, set. 2007. LAVANIA, M. et al. Detection of viable Mycobacterium leprae in soil samples: insights into possible sources of transmission of leprosy. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, v. 8, n. 5, p. 627–631, 2008. LAVANIA, M. et al. Molecular typing of Mycobacterium leprae strains from northern India using short tandem repeats. The Indian journal of medical research, v. 133, p. 618–26, jun. 2011. LAVANIA, M. et al. Genotyping of Mycobacterium leprae strains from a region of high endemic leprosy prevalence in India. Infection, Genetics and Evolution, v. 36, p. 256–261, dez. 2015. LIMA, L. N. C. et al. Genotyping comparison of Mycobacterium leprae isolates by VNTR analysis from nasal samples in a Brazilian endemic region. Pathogens and Global Health, v. 112, n. 2, p. 79–85, 17 fev. 2018. LOBATO, L. S. et al. Statins increase rifampin mycobactericidal effect. Antimicrobial agents and chemotherapy, v. 58, n. 10, p. 5766–74, out. 2014. LOW, D. A. et al. Isolation and comparison of Escherichia coli strains from canine and human patients with urinary tract infections. Infection and immunity, v. 56, n. 10, p. 2601– 9, out. 1988. MAIDEN, M. C. et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences of the United States of America, v. 95, n. 6, p. 3140–5, 17 mar. 1998. 111 MANUEL ABBA, A.; SUPERINA, M. The 2009/2010 Armadillo Red List Assessment. Edentata, v. 12, n. 2, p. 135–184, 1 dez. 2010. MARÇAL, P. H. F. et al. Utility of immunoglobulin isotypes against LID-1 and NDO-LID for, particularly IgG1, confirming the diagnosis of multibacillary leprosy. Memórias do Instituto Oswaldo Cruz, v. 113, n. 5, p. e170467, 26 fev. 2018. MARTELLI, C. M. et al. Single lesion paucibacillary leprosy: baseline profile of the Brazilian Multicenter Cohort Study. International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association, v. 68, n. 3, p. 247–57, set. 2000. MARTINEZ, A. N. et al. Evaluation of Real-Time and Conventional PCR Targeting Complex 85 Genes for Detection of Mycobacterium leprae DNA in Skin Biopsy Samples from Patients Diagnosed with Leprosy. Journal of Clinical Microbiology, v. 44, n. 9, p. 3154–3159, 1 set. 2006. MARTINEZ, A. N. et al. Molecular Determination of Mycobacterium leprae Viability by Use of Real-Time PCR. Journal of Clinical Microbiology, v. 47, n. 7, p. 2124–2130, 1 jul. 2009. MARTINEZ, A. N. et al. Evaluation of qPCR-Based assays for leprosy diagnosis directly in clinical specimens. PLoS Neglected Tropical Diseases, v. 5, n. 10, 2011. MARTINEZ, A. N. et al. PCR-based techniques for leprosy diagnosis: from the laboratory to the clinic. PLoS neglected tropical diseases, v. 8, n. 4, p. e2655, abr. 2014. MARTINS, K. et al. Trypanosoma cruzi III causing the indeterminate form of Chagas disease in a semi-arid region of Brazil. International Journal of Infectious Diseases, v. 39, p. 68– 75, out. 2015. MATSUOKA, M. et al. Mycobacterium leprae typing by genomic diversity and global distribution of genotypes. International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association, v. 68, n. 2, p. 121–8, 2000. MCBEE, K.; BAKER, R. J. Dasypus novemcinctus. Mammalian Species, n. 162, p. 1, 25 maio 1982. MEDRI, Í. M. Ecologia e história natural do tatu-peba, Euphractus sexcinctus (Linnaeus, 1758), no Pantanal da Nhecolândia, Mato Grosso do Sul. 2008. MEDRI, Í. M. et al. Ticks (Acari: Ixodidae) from yellow armadillo, Euphractus sexcinctus (Cingulata: Dasypodidae), in Brazil’s Pantanal wetlands. Neotropical Entomology, v. 39, n. 5, p. 823–825, out. 2010. MILKMAN, R. Electrophoretic variation in Escherichia coli from natural sources. Science (New York, N.Y.), v. 182, n. 4116, p. 1024–6, 7 dez. 1973. MOHANTY, P. et al. Viability of Mycobacterium leprae in the environment and its role in leprosy dissemination. Indian Journal of Dermatology, Venereology, and Leprology, v. 82, n. 1, p. 23, 2016. 112 MONOT, M. et al. On the origin of leprosy. Science (New York, N.Y.), v. 308, n. 5724, p. 1040–2, 13 maio 2005. MONOT, M. et al. Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nature genetics, v. 41, n. 12, p. 1282–9, 1 dez. 2009. MORENO, C. M. DA C.; ENDERS, B. C.; SIMPSON, C. A. Avaliação das capacitações de hanseníase: opinião de médicos e enfermeiros das equipes de saúde da família. Revista Brasileira de Enfermagem, v. 61, n. spe, p. 671–675, nov. 2008. MOURA, R. S. DE et al. Leprosy serology using PGL-I: a systematic review. Revista da Sociedade Brasileira de Medicina Tropical, v. 41 Suppl 2, p. 11–8, 2008. NAVES, M. M. et al. Contribution of Nasal Biopsy to Leprosy Diagnosis. American Journal of Rhinology & Allergy, v. 23, n. 2, p. 177–180, mar. 2009. NOBRE, M. L. et al. Human migration, railways and the geographic distribution of leprosy in Rio Grande do Norte State--Brazil. Leprosy review, v. 86, n. 4, p. 335–44, dez. 2015. OLI, M. K. et al. Dynamics of leprosy in nine-banded armadillos: Net reproductive number and effects on host population dynamics. Ecological Modelling, v. 350, p. 100–108, 24 abr. 2017. OPROMOLLA, PA, MARTELLI, A. Terminology related to Hansen’s disease. . Anais Brasileiros de Dermatologia, v 80, n 3, p.293-294, 2005. PEDRINI, S. C. B. et al. Search for Mycobacterium leprae in wild mammals. The Brazilian journal of infectious diseases : an official publication of the Brazilian Society of Infectious Diseases, v. 14, n. 1, p. 47–53, 2010. PHETSUKSIRI, B. et al. SNP genotypes of Mycobacterium leprae isolates in Thailand and their combination with rpoT and TTC genotyping for analysis of leprosy distribution and transmission. Japanese journal of infectious diseases, v. 65, n. 1, p. 52–6, 2012. PLIKAYTIS, B. B.; GELBER, R. H.; SHINNICK, T. M. Rapid and sensitive detection of Mycobacterium leprae using a nested-primer gene amplification assay. Journal of clinical microbiology, v. 28, n. 9, p. 1913–7, set. 1990. REECE, S. T. et al. ML0405 and ML2331 Are Antigens of Mycobacterium leprae with Potential for Diagnosis of Leprosy. Clinical and Vaccine Immunology, v. 13, n. 3, p. 333– 340, 1 mar. 2006. REES, R.J.W. The microbiology of leprosy. In: HASTING, R.C (ED.). New York: Churchill Livingstone, p.31-52, 1985 REIS, N. R. NELIO R. et al. Mamíferos do Brasil. Londrina, p.347-406, 2006. RICHARDUS, J. H. et al. Incidence of acute nerve function impairment and reactions in leprosy: a prospective cohort analysis after 5 years of follow-up. International Journal of Epidemiology, v. 33, n. 2, p. 337–343, 1 abr. 2004. 113 RIDLEY, D. S.; JOPLING, W. H. Classification of leprosy according to immunity. A fivegroup system. International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association, v. 34, n. 3, p. 255–73, 1966. ROBBINS, G. et al. Ancient Skeletal Evidence for Leprosy in India (2000 B.C.). PLoS ONE, v. 4, n. 5, p. e5669, 27 maio 2009. ROUSE, J.W., R.H. Haas, J.A. Schell, and D.W. Deering, Monitoring vegetation systems in the Great Plains with ERTS, In: S.C. Freden, E.P. Mercanti, and M. Becker (eds) Third Earth Resources Technology Satellite–1 Syposium. Volume I: Technical Presentations, NASA SP351, NASA, Washington, D.C., pp. 309-317, 1974. ROSNER, B. Fundamentals of biostatistics (7th ed.). Boston, MA: Brooks/Cole, 2011. SAEED, A. F.; WANG, R.; WANG, S. Microsatellites in Pursuit of Microbial Genome Evolution. Frontiers in Microbiology, v. 6, p. 1462, 5 jan. 2016. SAKAMURI, R. M. et al. A continuation: study and characterisation of Mycobacterium leprae short tandem repeat genotypes and transmission of leprosy in Cebu, Philippines. Leprosy review, v. 80, n. 3, p. 272–9, set. 2009a. SAKAMURI, R. M. et al. Population-Based Molecular Epidemiology of Leprosy in Cebu, Philippines. Journal of Clinical Microbiology, v. 47, n. 9, p. 2844–2854, 1 set. 2009b. SALGADO, C. G. et al. High anti-phenolic glycolipid-I IgM titers and hidden leprosy cases, Amazon region. Emerging infectious diseases, v. 18, n. 5, p. 889–90, maio 2012. SALIPANTE, S. J.; HALL, B. G. Towards the molecular epidemiology of Mycobacterium leprae: Strategies, successes, and shortcomings. Infection, Genetics and Evolution, v. 11, n. 7, p. 1505–1513, out. 2011a. SALIPANTE, S. J.; HALL, B. G. Inadequacies of Minimum Spanning Trees in Molecular Epidemiology. Journal of Clinical Microbiology, v. 49, n. 10, p. 3568–3575, 1 out. 2011b. SANI, M. et al. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS pathogens, v. 6, n. 3, p. e1000794, 5 mar. 2010. SANTOS, A. R. et al. Method for high yield preparation in large and small scale of nucleic acids from mycobacteria. Journal of Microbiological Methods, v. 15, n. 2, p. 83–94, 1 abr. 1992. SCHMITT, J. V. et al. Armadillo meat intake was not associated with leprosy in a case control study, Curitiba (Brazil). Memórias do Instituto Oswaldo Cruz, v. 105, n. 7, p. 857– 862, nov. 2010. SCHUENEMANN, V. J. et al. Genome-Wide Comparison of Medieval and Modern Mycobacterium leprae. Science, v. 341, n. 6142, 2013. SCOLLARD, D. M. et al. The continuing challenges of leprosy. Clinical microbiology reviews, v. 19, n. 2, p. 338–81, 1 abr. 2006. 114 SHARMA, R. et al. The armadillo: a model for the neuropathy of leprosy and potentially other neurodegenerative diseases. Disease models & mechanisms, v. 6, n. 1, p. 19–24, jan. 2013. SHARMA, R. et al. Zoonotic Leprosy in the Southeastern United States. Emerging Infectious Diseases, v. 21, n. 12, p. 2127–34, dez. 2015. SHARMA, R. et al. Differential growth of Mycobacterium leprae strains (SNP genotypes) in armadillos. Infection, Genetics and Evolution, v. 62, p. 20–26, ago. 2018. SHEPARD, C. C. The Experimental Disease That Follows The Injection Of Human Leprosy Bacilli Into Foot-Pads Of Mice. The Journal of experimental medicine, v. 112, n. 3, p. 445– 54, 1 set. 1960. SHEPARD, C. C. Multiplication of Mycobacterium leprae in the foot-pad of the mouse. International journal of Leprosy, v. 30, p. 291–306, 1962. SHEPARD, C. C. Temperature optimum of Mycobacterium leprae in mice. Journal of bacteriology, v. 90, n. 5, p. 1271–5, nov. 1965. SHIMIZU, Y. Liver in systemic disease. World journal of gastroenterology, v. 14, n. 26, p. 4111–9, 14 jul. 2008. SHINDE, V. et al. VNTR typing of Mycobacterium leprae in South Indian leprosy patients. Leprosy review, v. 80, n. 3, p. 290–301, set. 2009. SILVA, D. R. X. et al. [Hansen’s disease, social conditions, and deforestation in the Brazilian Amazon]. Revista panamericana de salud publica = Pan American journal of public health, v. 27, n. 4, p. 268–75, abr. 2010. SILVA, A. B. S. DA et al. Hepatic steatosis in six-banded armadillo (Euphractus sexcinctus Linnaeus, 1758). Biota Neotropica, v. 18, n. 1, 1 fev. 2018. SINGH, P. et al. Insight into the evolution and origin of leprosy bacilli from the genome sequence of Mycobacterium lepromatosis. Proceedings of the National Academy of Sciences of the United States of America, v. 112, n. 14, p. 4459–64, 7 abr. 2015. SINGH, P.; COLE, S. T. Mycobacterium leprae: genes, pseudogenes and genetic diversity. Future microbiology, v. 6, n. 1, p. 57–71, jan. 2011. SMITH, J. H. et al. Leprosy in wild armadillos (Dasypus novemcinctus) of the Texas Gulf Coast: epidemiology and mycobacteriology. Journal of the Reticuloendothelial Society, v. 34, n. 2, p. 75–88, ago. 1983. SOUZA-FILHO, C. R. O relevo das Américas como nunca antes visto. MundoGEO. Disponível em: https://mundogeo.com/blog/2003/12/18/o-relevo-das-americas-como-nuncaantes-visto/> 18 de dezembro de 2003. Acesso em: 22 abr. 2019 SPENCER, J. S. et al. Identification of serological biomarkers of infection, disease progression and treatment efficacy for leprosy. Memorias do Instituto Oswaldo Cruz, v. 107 Suppl 1, p. 79–89, dez. 2012. 115 SRISUNGNAM, S. et al. Molecular epidemiology of leprosy based on VNTR typing in Thailand. Leprosy review, v. 80, n. 3, p. 280–9, set. 2009. STEFANI, M. M. DE A. Challenges in the post genomic era for the development of tests for leprosy diagnosis. Revista da Sociedade Brasileira de Medicina Tropical, v. 41 Suppl 2, p. 89–94, 2008. STEFANI, M. M. A. et al. Leprosy survey among rural communities and wild armadillos from Amazonas state, Northern Brazil. PLOS ONE, v. 14, n. 1, p. e0209491, 10 jan. 2019. SUPPLY, P. et al. Proposal for Standardization of Optimized Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Typing of Mycobacterium tuberculosis. Journal of Clinical Microbiology, v. 44, n. 12, p. 4498–4510, 1 dez. 2006. TEIXEIRA, A. S. et al. Not Seeing the Forest for the Trees: Size of the Minimum Spanning Trees (MSTs) Forest and Branch Significance in MST-Based Phylogenetic Analysis. PLOS ONE, v. 10, n. 3, p. e0119315, 23 mar. 2015. THIRUNAVUKKARASU, S. et al. Applying the One Health Concept to Mycobacterial Research - Overcoming Parochialism. Zoonoses and Public Health, v. 64, n. 6, p. 401–422, set. 2017. TIÓ-COMA, M. et al. Detection of Mycobacterium leprae DNA in soil: multiple needles in the haystack. Scientific Reports, v. 9, n. 1, p. 3165, 28 dez. 2019. TOLEDO-PINTO, T. Instituto Oswaldo Cruz Pós-Graduação em Biologia Celular e Molecular. [s.l: s.n.]. Disponível em: <https://www.arca.fiocruz.br/bitstream/icict/12065/1/thiago_pinto_ioc_mest_2013.pdf>. Acesso em: 6 abr. 2019. TRAUTMAN, J. R. A brief history of Hansen’s disease. Bulletin of the New York Academy of Medicine, v. 60, n. 7, p. 689–95, set. 1984. TRUMAN, R. W. et al. Evaluation of the origin of Mycobacterium leprae infections in the wild armadillo, Dasypus novemcinctus. The American journal of tropical medicine and hygiene, v. 35, n. 3, p. 588–93, maio 1986a. TRUMAN, R. W. et al. Evaluation of monitoring antibodies to PGL-I in armadillos experimentally infected with M. leprae. International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association, v. 54, n. 4, p. 556–9, dez. 1986b. TRUMAN, R. W.; JOB, C. K.; HASTINGS, R. C. Antibodies to the phenolic glycolipid-1 antigen for epidemiologic investigations of enzootic leprosy in armadillos (Dasypus novemcinctus). Leprosy review, v. 61, n. 1, p. 19–24, mar. 1990. TRUMAN, R. W. et al. Seasonal and spatial trends in the detectability of leprosy in wild armadillos. Epidemiology and infection, v. 106, n. 3, p. 549–60, jun. 1991. 116 TRUMAN RW, SANCHEZ RM. Armadillos: models for leprosy. Laboratory Animal 22: 28-32, 1993. TRUMAN, R. W.; KRAHENBUHL, J. L. Viable M. leprae as a research reagent. International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association, v. 69, n. 1, p. 1–12, mar. 2001. TRUMAN, R. et al. Genotypic variation and stability of four variable-number tandem repeats and their suitability for discriminating strains of Mycobacterium leprae. Journal of clinical microbiology, v. 42, n. 6, p. 2558–65, jun. 2004. TRUMAN, R. Armadillos as a Source of Infection for Leprosy. Southern Medical Journal, v. 101, n. 6, p. 581–582, jun. 2008. TRUMAN, R.; FINE, P. E. M. “Environmental” sources of Mycobacterium leprae: issues and evidence. Leprosy review, v. 81, n. 2, p. 89–95, jun. 2010. TRUMAN, R. W. et al. Enumeration of Mycobacterium leprae Using Real-Time PCR. PLoS Neglected Tropical Diseases, v. 2, n. 11, p. e328, 4 nov. 2008. TRUMAN, R. W. et al. Probable Zoonotic Leprosy in the Southern United States. New England Journal of Medicine, v. 364, n. 17, p. 1626–1633, 28 abr. 2011. TRYLAND, M. et al. Persistence of antibodies in blood and body fluids in decaying fox carcasses, as exemplified by antibodies against Microsporum canis. Acta Veterinaria Scandinavica, v. 48, n. 1, p. 10, 21 jun. 2006. TURANKAR, R. et al. Presence of viable Mycobacterium leprae in environmental specimens around houses of leprosy patients. Indian Journal of Medical Microbiology, v. 34, n. 3, p. 315, 2016. TURANKAR, R. P. et al. Dynamics of Mycobacterium leprae transmission in environmental context: Deciphering the role of environment as a potential reservoir. Infection, Genetics and Evolution, v. 12, n. 1, p. 121–126, jan. 2012. TURANKAR, R. P. et al. Single nucleotide polymorphism-based molecular typing of M. leprae from multicase families of leprosy patients and their surroundings to understand the transmission of leprosy. Clinical Microbiology and Infection, v. 20, n. 3, p. O142–O149, mar. 2014. TURANKAR, R. P. et al. Comparative evaluation of PCR amplification of RLEP, 16S rRNA, rpoT and Sod A gene targets for detection of M. leprae DNA from clinical and environmental samples. International Journal of Mycobacteriology, v. 4, n. 1, p. 54–59, mar. 2015. VAN DER ZANDEN, A. G. et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis complex in paraffin wax embedded tissues and in stained microscopic preparations. Molecular pathology : MP, v. 51, n. 4, p. 209–14, ago. 1998. VAN EMBDEN, J. D. et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. Journal of clinical microbiology, v. 31, n. 2, p. 406–9, fev. 1993. 117 VERA-CABRERA, L. et al. Case of diffuse lepromatous leprosy associated with Mycobacterium lepromatosis ;. Journal of clinical microbiology, v. 49, n. 12, p. 4366–8, dez. 2011. VINEIS, P. Commentary: First steps in molecular epidemiology: Lower et al. 1979. International Journal of Epidemiology, v. 36, n. 1, p. 20–22, 1 fev. 2007. WALSH, G. P. et al. Leprosy-like disease occurring naturally in armadillos. Journal of the Reticuloendothelial Society, v. 18, n. 6, p. 347–51, dez. 1975. WALSH, G. P.; MEYERS, W. M.; BINFORD, C. H. Naturally acquired leprosy in the ninebanded armadillo: a decade of experience 1975-1985. Journal of leukocyte biology, v. 40, n. 5, p. 645–56, nov. 1986. WELSH, J.; MCCLELLAND, M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic acids research, v. 18, n. 24, p. 7213–8, 25 dez. 1990. WENG, X. et al. Identification and distribution of Mycobacterium leprae genotypes in a region of high leprosy prevalence in China: a 3-year molecular epidemiological study. Journal of clinical microbiology, v. 45, n. 6, p. 1728–34, 1 jun. 2007. WENG, X. et al. Transmission of leprosy in Qiubei County, Yunnan, China: insights from an 8-year molecular epidemiology investigation. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, v. 11, n. 2, p. 363–74, mar. 2011. WENG, X. et al. Molecular, ethno-spatial epidemiology of leprosy in China: novel insights for tracing leprosy in endemic and non endemic provinces. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, v. 14, p. 361–8, mar. 2013. WHEAT, W. H. et al. Long-term survival and virulence of Mycobacterium leprae in amoebal cysts. PLoS neglected tropical diseases, v. 8, n. 12, p. e3405, dez. 2014. WHO, 2016. Global Leprosy Strategy 2016–2020. WHO, 2018. WHO | Weekly Epidemiological Record, 31 August 2018, vol. 93, 35 (pp. 444– 456). WHO, 2018. WOODS, S. A.; COLE, S. T. A family of dispersed repeats in Mycobacterium leprae. Molecular microbiology, v. 4, n. 10, p. 1745–51, out. 1990. XING, Y. et al. VNTR typing studies of Mycobacterium leprae in China: assessment of methods and stability of markers during treatment. Leprosy review, v. 80, n. 3, p. 261–71, set. 2009. YAN, W. et al. Application of RLEP Real-Time PCR for Detection of M. leprae DNA in Paraffin-Embedded Skin Biopsy Specimens for Diagnosis of Paucibacillary Leprosy. The American Journal of Tropical Medicine and Hygiene, v. 90, n. 3, p. 524, 2014. 118 YOUNG, S. K. et al. Use of short tandem repeat sequences to study Mycobacterium leprae in leprosy patients in Malawi and India. PLoS neglected tropical diseases, v. 2, n. 4, p. e214, 9 abr. 2008. ZUMARRAGA, M. J. et al. PCR-restriction fragment length polymorphism analysis (PRA) of Mycobacterium leprae from human lepromas and from a natural case of an armadillo of Corrientes, Argentina. International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association, v. 69, n. 1, p. 21–5, mar. 2001.por
dc.subject.cnpqMedicina Veterináriapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/66980/2019%20-%20Jessica%20da%20Silva%20Ferreira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5097
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2021-09-28T15:24:39Z No. of bitstreams: 1 2019 - Jessica da Silva Ferreira.pdf: 6466295 bytes, checksum: 77102a04cbacf691d2692961d1f7e5ed (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-09-28T15:24:39Z (GMT). No. of bitstreams: 1 2019 - Jessica da Silva Ferreira.pdf: 6466295 bytes, checksum: 77102a04cbacf691d2692961d1f7e5ed (MD5) Previous issue date: 2019-05-09eng
Appears in Collections:Doutorado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Jessica da Silva Ferreira.pdf2019 - Jessica da Silva Ferreira6.31 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.