Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/9716
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Silva, Emily Mesquita da | |
dc.date.accessioned | 2023-12-21T18:43:02Z | - |
dc.date.available | 2023-12-21T18:43:02Z | - |
dc.date.issued | 2023-02-27 | |
dc.identifier.citation | SILVA, Emily Mesquita da. Influência da microbiota e dos patógenos de carrapatos na ação de fungos entomopatogênicos. 2023. 72 f. Tese (doutorado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2023. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9716 | - |
dc.description.abstract | Estudos acerca do uso de fungos entomopatogênicos no controle biológico de carrapatos demonstram alta eficácia, no entanto não é sabido qual a importância da microbiota desse artrópode na ação fúngica. Além disso, o papel da presença de patógenos transmitidos por carrapatos no momento do tratamento fúngico ainda é desconhecido. Portanto, a presente tese teve como objetivo: avaliar a influência da microbiota de Rhipicephalus microplus para sua sobrevivência sob ação de Metarhizium anisopliae; avaliar composição e diversidade de bactérias no intestino de R. microplus após tratamento com M. anisopliae; além de analisar se a administração de antibiótico é compatível com uso de fungos entomopatogênicos. Além disso, utilizando o modelo de Ixodes scapularis e Borrelia burgdorferi fez-se como objetivo comparar a sobrevivência e ingurgitamento de I. scapularis infectado ou não com B. burgdorferi após tratamento com M. anisopliae; analisar a respostas imune dos grupos citados anteriormente pela expressão da molécula adaptadora Myd88 em receptores “Toll-like”; avaliar a colonização de B. burgdorferi em carrapatos tratados ou não com M. anisopliae através da expressão do gene flaB; investigar a influência da coinfecção de B. burgdorferi e M. anisopliae na microiota de I. scapularis pela expressão do gene 16S. Para os testes com R. microplus, fêmeas parcialmente ingurgitadas foram retiradas do corpo de um bezerro e alimentadas artificialmente com sangue do mesmo animal. A administração de tetraciclina foi realizada adicionando o antibiótico ao sangue na alimentação, formando assim quatro grupos: fêmeas alimentadas apenas com sangue bovino puro (C) e sangue + tetraciclina (T); e dois outros grupos que receberam a mesma dieta, apenas sangue ou sangue+tetraciclina, porém cada um destes grupos foi tratado topicamente com M. anisopliae LCM S04 (F e T+F, respectivamente). Para os estudos com I. scapularis, ninfas infectadas ou não com B. burgdorferi foram inoculadas com M. anisopliae ARSEF 549. Os primeiros ensaios foram realizados avaliando a sobrevivência das ninfas após exposição ao fungo; nos ensaios seguintes as ninfas estiveram em contato com camundongos para se alimentarem ad libitum. As ninfas alimentadas foram pesadas e dissecadas, e o RNA dos intestinos foi extraído e transformado em cDNA para análise dos genes. A administração de tetraciclina em fêmeas de R. microplus não alterou a sobrevivência dos carrapatos. Ainda, a alteração na microbiota e o uso de antibiótico não prejudicaram a ação fúngica, e ambos os grupos tratados com M. anisopliae apresentaram curvas de sobrevivência similares. O grupo (T+F) teve a composição bacteriana com maior diversidade. A inoculação de M anisopliae em I. scapularis infectados ou não com B. burgdorferi não foi diferente entre si; o ingurgitamento das ninfas de I. scapularis não foi afetado pelo tratamento fúngico em carrapatos infectados ou não com B. burgdorferi. A expressão relativa do gene flaB associado a colonização de B. burgdorferi nas ninfas se manteve similar com ou sem tratamento fúngico, ainda entre os mesmos grupos, o número de bactérias através da expressão relativa do gene 16S não foi alterada após tratamento com M. anisopliae; contudo as ninfas infectadas com B. burgdorferi apresentaram maior expressão relativa do gene Myd88. Assim, os resultados demonstrados aqui reiteram a necessidade de mais estudos relacionados as múltiplas interações entre carrapatos, os patógenos transmitidos por eles e fungos entomopatogênicos, com o objetivo de entender a complexidade para pensar em programas de controle biológico eficientes. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | por |
dc.description.sponsorship | FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | controle biológico | por |
dc.subject | microbiota intestinal | por |
dc.subject | patógenos transmitidos por carrapatos | por |
dc.subject | Biological control | eng |
dc.subject | gut microbiota | eng |
dc.subject | tick-borne pathogens | eng |
dc.title | Influência da microbiota e dos patógenos de carrapatos na ação de fungos entomopatogênicos | por |
dc.title.alternative | Influence of tick microbiota and tick pathogens on the action of entomopathogenic fungi | eng |
dc.type | Tese | por |
dc.description.abstractOther | Reports on the use of entomopathogenic fungi in the biological control of ticks have shown good efficacy, however the importance of tick’s microbiota, including tick-borne pathogens, during fungal infection remains largely unexplored. Therefore, this thesis aimed to evaluate the influence of the microbiota of Rhipicephalus microplus on its survival under the action of Metarhizium anisopliae; evaluate composition and diversity of bacteria in the gut of R. microplus after treatment with M. anisopliae; in addition, to analyze whether the administration of antibiotics is compatible with the use of entomopathogenic fungi. Moreover, using the model of Ixodes scapularis and Borrelia burgdorferi, the objective was to compare the survival and engorgement of I. scapularis infected or not with B. burgdorferi after treatment with M. anisopliae; to analyze the immune response of the groups mentioned above by the expression of the Myd88 daptor molecule in “Toll-like” receptors; evaluate the colonization of B. burgdorferi in ticks treated or not with M. anisopliae through expression of the flaB gene; to investigate the influence of co-infection of B. burgdorferi and M. anisopliae in the microbiota of I. scapularis by the expression of the 16S gene. For tests with R. microplus, partially engorged females were removed from the body of a calf and artificially fed with blood from the same animal. Tetracycline administration was performed by adding the antibiotic into the blood by the time of feeding, thus forming four groups: females fed only with pure bovine blood (C) and blood+tetracycline (T); and two other groups that received the same diet, only blood or blood + tetracycline, but each of these groups was topically treated with M. anisopliae LCM S04 (F and T+F, respectively). For the studies with I. scapularis, nymphs infected or not with B. burgdorferi were inoculated with M. anisopliae ARSEF 549. The first assays were carried out to evaluate the survival of nymphs after exposure to the fungus; in the following tests, the nymphs were in contact with mice to feed ad libitum. The fed nymphs were weighed on the and dissected and the RNA from the guts was extracted and transformed into cDNA for gene expression analysis. Administration of tetracycline to R. microplus females did not alter tick survival. Furthermore, the disruption of tick microbiota and the use of antibiotics, did not impair fungal action, and both groups treated with M. anisopliae showed similar survival curves. The group T+F had the bacterial composition with the highest diversity. Inoculation of M anisopliae in I. scapularis infected or not with B. burgdorferi was not different; engorgement of I. scapularis nymphs was not affected by fungal treatment in ticks infected or not with B. burgdorferi. The relative expression of the flaB gene associated with the colonization of B. burgdorferi in nymphs remained similar with or without fungal treatment. Still among the same groups, the number of bacteria through the relative expression of the 16S gene was not altered after treatment with M. anisopliae; however, nymphs infected with B. burgdorferi, and fungus treated showed a higher relative expression of the Myd88 gene. Thus, the results shown here reiterate the need for further studies related to the multiple interactions between ticks, tick pathogens and entomopathogenic fungi, with the aim of understanding the complexity and to design efficient biological control programs. | eng |
dc.contributor.advisor1 | Gôlo, Patrícia Silva | |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/3935275742919097 | por |
dc.contributor.advisor-co1 | Coelho, Irene da Silva | |
dc.contributor.advisor-co2 | Narasimhan, Sukanya | |
dc.contributor.referee1 | Gôlo, Patrícia Silva | |
dc.contributor.referee2 | Peixoto, Maristela Peckle | |
dc.contributor.referee3 | Klafke, Guilherme Marcondes | |
dc.contributor.referee4 | Fernandes, Éverton Kort Kamp | |
dc.contributor.referee5 | Oliveira, Pedro Lagerblad de | |
dc.creator.ID | https://orcid.org/0000-0002-4263-1332 | por |
dc.creator.Lattes | http://lattes.cnpq.br/5796471626277889 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Veterinária | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Veterinárias | por |
dc.relation.references | ABBAS, R. Z.; ZAMAN, M. A.; COLWELL, D. D.; GILLEARD, J.; IQBAL, Z. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Veterinary Parasitology, 2014. ABUBAKAR, M.; PERERA, P. K.; IQBAL, A.; MANZOOR, S. Introductory Chapter: Ticks and Tick-Borne Pathogens. In: Ticks and tick-borne pathogens. IntechOpen, 2018. AFZELIUS, B. A.; ALBERTI, G.; DALLAI, R.; GODULAAND, J.; WITALINSKI, W. Virus-and Rickettsia-Infected Sperm Cells in Arthropods. Journal of Invertebrate Pathology, v. 53, p. 365-377, 1989. AGUILAR-DÍAZ, H.; QUIROZ-CASTAÑEDA, R. E.; COBAXIN-CÁRDENAS, M.; SALINAS-ESTRELLA, E.; AMARO-ESTRADA, I. Advances in the study of the tick cattle microbiota and the influence on vectorial Capacity. Frontiers in Veterinary Science, v. 8, 2021. ALVES, F. M.; BERNARDO, C. C.; PAIXÃO, F. R. S.; BARRETO, L. P., LUZ, C., HUMBER, R. A., FERNANDES, É. K. Heat-stressed Metarhizium anisopliae: viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus. Parasitology Research, v. 116, p. 111–121, 2017. ANDREOTTI, R.; DE LEÓN, A. A. P.; DOWD, S. E.; GUERRERO, F. D., BENDELE, K. G., SCOLES, G. A. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiology, v. 11, 2011. ANDREOTTI, R; GARCIA, M. V; KOLLER, W. W. Controle estratégico dos carrapatos nos bovinos In: ANDREOTTI, R.; GARCIA, M. V.; KOLLER, W. W. (Ed.). Carrapatos na cadeia produtiva de bovinos. Brasília, DF: Embrapa, p- 123-133, 2019. BARRÉ, N.; UILENBERG, G. Spread of parasites transported with their hosts: case study of two species of cattle tick. 2010. BASTIAN, M.; HEYMANN, S.; JACOMY, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In: Proceedings of the international AAAI conference on web and social media. p. 361-362., p. 361–362, 2009. BLANFORD, S.; CHAN, B.H. K.; JENKINS, N.; SIM, D.; TURNER R. J. T.; READ, A.F.; THOMAS, M. B. Fungal pathogen reduces potential for malaria transmission. Science, v. 308, p. 1638-1641, 2005. BERNARDO, C. C., BARRETO, L.P., SILVA, C.R.S., LUZ, C., ARRUDA, W., FERNANDES, E.K.K. Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus. Ticks And Tick-borne Diseases, v. 9, p.1334-1342, 2018. BERRY, D; WIDDER, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in microbiology, v. 5, p. 219, 2014. BEYS-DA-SILVA, W. O.; ROSA, R. L.; BERGER, M.; COUTINHO-RODRIGUES, C. J., VAINSTEIN, M. H., SCHRANK, A.; BITTENCOURT, V.R.E.P; SANTI, L.. Updating the application of Metarhizium anisopliae to control cattle tick Rhipicephalus microplus (Acari: Ixodidae). Experimental Parasitology, v. 208, p. 107812, 2020. BHARADWAJ, A.; STAFFORD, K. C. Susceptibility of Ixodes scapularis (Acari: Ixodidae) to Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) using three exposure assays in the laboratory. Journal of Economic Entomology, v. 105, p. 222–231, 2012. BOCKENSTEDT, L. K. N.; SCHWARTZ, I.; FISH, D. MyD88 deficiency enhances acquisition and transmission of Borrelia burgdorferi by Ixodes scapularis ticks. Infection and immunity, v. 74, p. 2154-2160, 2006. BONNET, S. I.; BINETRUY, F.; HERNÁNDEZ-JARGUÍN, A. M.; DURON, O. The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Frontiers in Cellular and Infection Microbiology . v.7, p. 236, 2017 BOUCIAS, D. G.; ZHOU, Y.; HUANG, S.; KEYHANI, N. O. Microbiota in insect fungal pathology. Applied Microbiology and Biotechnology, v. 102, p. 5873-5888, 2018. BRENNER, A. E.; MUÑOZ-LEAL, S.; SACHAN, M.; LABRUNA, M. B.; RAGHAVAN, R. Coxiella burnetii and Related tick endosymbionts evolved from pathogenic ancestors. Genome Biology and Evolution, v. 13, 2021. BROWN, K.; UWIERA, R. R. E.; KALMOKOFF, M. L.; BROOKS, S. P. J.; INGLIS, G. D. Antimicrobial growth promoter use in livestock: a requirement to understand their modes of action to develop effective alternatives. International Journal of Antimicrobial Agents, v. 49, p. 12-24, 2017 CABEZAS-CRUZ, A.; POLLET, T.; ESTRADA-PEÑA, A.; ALLAIN, E., BONNET, S. I., MOUTAILLER, S. Handling the microbial complexity associated to ticks. In: ABUBAKAR, M.; PERERA, P. K. edit. Ticks and tick-borne pathogens, IntechOpen, 2018 v. 1, 2018. CABEZAS-CRUZ, A.; ZWEYGARTH, E.; AGUIAR, D. M. Ehrlichia minasensis, an old demon with a new name. Ticks and Tick-borne Diseases, v. 10, p. 828–829, 2019. CABEZAS-CRUZ, A.; ZWEYGARTH, E.; VANCOVÁ, M.; BRONISZEWKA M.;, GRUBHOFFER L.; PASSOS L. M. F.; RIBEIRO M. F. B.; ALBERDI P. Ehrlichia minasensis sp. nov., isolated from the tick Rhipicephalus microplus. International Journal of Systematic and Evolutionary Microbiology, v. 66, p. 1426–1430, 2016. CALLAHAN, B. J.; MCMURDIE, P. J.; ROSEN, M. J.; HAN A. W., JOHNSON A. J. A. HOLMES S. P DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, v. 13, p. 581–583, 2016. CAMARGO, M. G.; MARCIANO A. F.; SÁ, F.A.; PERINOTTO, W.M.S.; QUINELATO, S.; GÔLO, P.S.; ÂNGELO, I.C.; PRATA, M.C.A.; BITTENCOURT, V.R.E.P. Commercial formulation of Metarhizium anisopliae for the control of Rhipicephalus microplus in a pen study. Veterinary Parasitology, v. 205, p.271-276, 2014. CAMARGO, M.; NOGUEIRA, M.R.S.; MARCIANO, A.F.; PERINOO, W.M.S.; COUTINHO-RODRIGUES, C.J.B.; SCOTT, F.B.; ANGELO, I.C.; PRATA, M.C.A.; BITTENCOURT, V.R.E.P. Metarhizium anisopliae for controlling Rhipicephalus microplus ticks under field conditions. Veterinary Parasitology, v. 223, p. 38-42, 2016. CHAO, Y.; WANG, M.; DAI, W.; DONG F.; WANG X.; ZHANG F. Synergism between hydramethylnon and Metarhizium anisopliae and their influence on the gut microbiome of blattella germanica (L.). Insects, v. 11, p. 1–16, 2020. CHAZDON, R. L.; CHAO, A.; COLWELL, R. K; LIN, S. Y., NORDEN, N., LETCHER, S. G.; CLARK, D.B.; FINEGAN, B; ARROYO J. P. A novel statistical method for classifying habitat generalists and specialists. Ecology, v. 92, p. 1332–1343, 2011. CHOUVENC, T.; EFSTATHION, C. A.; ELLIOTT, M. L.; SU, N. Y. Extended disease resistance emerging from the faecal nest of a subterranean termite. Proceedings of the Royal Society B: Biological Sciences, v. 280, 2013. CORRÊA, T. A.; FIOROTTI, J.; MESQUITA, E.; MEIRELLES, L. N., CAMARGO, M. G., COUTINHO-RODRIGUES, C. J. B.; MARCIANO, A.F.; BITTERCOURT, V.R.E.P.; GOLO, P. S How dopamine influences survival and cellular immune response of Rhipicephalus microplus inoculated with Metarhizium anisopliae. Journal of Fungi, v. 7, 2021. COWDRY, E. V. A group of microorganisms transmitted hereditarily in ticks and apparently unassociated with disease. The Journal of experimental medicine, v. 41, p. 817, 1925. D’AMORE, R.; IJAZ, U. Z.; SCHIRMER, M.; KENNY, J. G., GREGORY, R., DARBY, A. C., SHAKYA, M.; PODAR, M.; QUINCE, C.; HALL, N. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genomics, v. 17, p. 1-20, 2016. DE LA FUENTE, J.; KOCAN, K. M.; ALMAZAN, C.; BLOUIN, E. F. Targeting the tick-pathogen interface for novel control strategies. Frontiers in Bioscience-Landmark, v. 13, p. 6947-6956, 2008. DIUK-WASSER, M. A.; VANNIER, E.; KRAUSE, P. J. Coinfection by Ixodes Tick-Borne Pathogens: Ecological, epidemiological, and clinical consequences. Trends in Parasitology, v. 32, p. 30-42, 2016. DONG, Y.; MORTON J. J. C.; RAMIREZ, J. L.; SOUZA-NETO, J. A.; DIMOPOULOS, G. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. Insect biochemistry and molecular biology, v. 42, p. 126-132, 2012. DURON, O.; MOREL, O.; NOËL, V.; BUYSSE, M., BINETRUY, F., LANCELOT, R., LOIRE, E.; MENARD, C.; BOUCHEZ, O.; VAVRE, F.; VIAL, L. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Current Biology, v. 28, p. 1896- 1902.e5, 2018. Cell Press. DURON, O.; NOËL, V.; MCCOY, K. D.; BONAZZI, M., SIDI-BOUMEDINE, K., MOREL, O., VAVRE F.; ZENNER L.; JOURDAN E.; DURAND P.; ARNATHAU C.; RENAUD F.; TRAPE J.; BIGUEZOTON A. S.; CREMACHI J.; DIETRICH M.; LEDGER E.; APPELGREN A.; DUPRAZ M.; GOMEZ-DIAZ E.; DIATTA G.; DAYO G.; ADAKAL H.; ZOUNGRANA S.; VIAL L.; CHEVILLON, C. The Recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q fever pathogen, Coxiella burnetii. PLoS Pathogens, v. 11, 2015. DZEMO, W. D.; THEKISOE, O.; VUDRIKO, P. Development of acaricide resistance in tick populations of cattle: A systematic review and meta-analysis. Heliyon, p. e08718, 2022. EISEN, R. J.; EISEN, L. The Blacklegged Tick, Ixodes scapularis: An increasing public health concern. Trends in Parasitology, v. 34, p. 295-309, 2018. EISEN, R. J.; EISEN, L.; BEARD, C. B. County-scale distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the continental United States. Journal of Medical Entomology, v. 53, p. 349–386, 2016. ESTEVES, E.; FOGAÇA, A. C.; MALDONADO, R.; Silva, F. D., MANSO, P. P. A., PELAJO-MACHADO, M., ... & Daffre, S Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: Cellular localization and temporal expression of microplusin during oogenesis and embryogenesis. Developmental and Comparative Immunology, v. 33, p. 913–919, 2009. ESTRADA-PEÑA, A.; CABEZAS-CRUZ, A.; OBREGÓN, D. Behind taxonomic variability: The functional redundancy in the tick microbiome. Microorganisms, v. 8, p. 1–16, 2020. FILSHIE, BK. Structure and deposition of the epicuticle of the adult female cattle tick (Boophilus microplus). In: Hepburn, HR eds, editor/s. The Insect Integument. Amsterdam: Elsevier;. 193-206 24 1976. FANG, W.; VEGA-RODRÍGUEZ, J.; GHOSH A. K., JACOBS-LORENA M.; KANG, A.; ST LEGER, R. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science, v. 331, p. 1074-1077, 2011. FIOROTTI, J. P., CAMARGO, M. G., COUTINHO-RODRIGUES, C. J. B., MARCIANO, A. F., FREITAS, M. C., SILVA, E. M., GÔLO, P.S., SPADACCI-MORENA, D.D., ÂNGELO, I.C. BITTENCOURT, V. R. E. P. Rhipicephalus microplus infected by Metarhizium: unveiling hemocyte quantification, GFP-fungi virulence, and ovary infection. Parasitology Research, v.117, p.1847-1856, 2018. FIOROTTI, J.; MENNA-BARRETO, R. F. S.; GÔLO, P. S.; COUTINHO-RODRIGUES, C. J. B., BITENCOURT, R. O. B., SPADACCI-MORENA, D. D., ANGELO, I.C.; BITTENCOURT, V. R. E. P. Ultrastructural and cytotoxic effects of Metarhizium robertsii infection on Rhipicephalus microplus hemocytes. Frontiers in Physiology, v. 10, p. 654, 2019. FIOROTTI, J.; URBANOVÁ, V.; GÔLO, P. S.; BITTENCOURT, V. R. E. P.; KOPÁČEK, P. The role of complement in the tick cellular immune defense against the entomopathogenic fungus Metarhizium robertsii. Developmental and Comparative Immunology, v. 126, p. 104234 2022. FLORES-VILLEGAS, A. L.; CABRERA-BRAVO, M.; De FUENTES-VICENTE, J. A.; JIMÉNEZ-CORTÉS, J. G.; SALAZAR-SCHETTINO, P. M.; BUCIO-TORRES, M. I.; CÓRDOBA-AGUILAR, A. Coinfection by Trypanosoma cruzi and a fungal pathogen increases survival of Chagasic bugs: advice against a fungal control strategy. Bulletin of entomological research, v. 110, p. 363-369, 2020. FOGAÇA, A. C.; SOUSA, G.; PAVANELO, D. B.; ESTEVES, E., MARTINS, L. A., URBANOVA, V., KOPACEK, P.; DAFFRE, S. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Frontiers in Immunology, v. 12, p. 628054, 2021. FULAR, A., SHARMA, A.K., KUMAR, S., NAGAR, G., CHIGUREe, G., RAY, D. D., GHOSH, S. Establishment of a multi-acaricide resistant reference tick strain (IVRI-V) of Rhipicephalus microplus. Ticks and tick-borne diseases, v.9, p.1184-1191, 2018. GRADA, A.; WEINBRECHT, K. Next-generation sequencing: Methodology and application. Journal of Investigative Dermatology, v. 133, 2013. GREAY, T. L.; GOFTON, A. W.; PAPARINI, A.; RYAN, U. M., OSKAM, C. L.; IRWIN, P. J. Recent insights into the tick microbiome gained through next-generation sequencing. Parasites and Vectors, v. 11, p. 1-14, 2018. GRISI, L.; LEITE, R.C.; MARTINS, J.R.S.; BARROS, A.T.M.; ANDREOTTI, R.; CANÇADO, P.H.D.; LEÓN, A.A.P.; PEREIRA, J.B.; VILLELA, H.S. Reassessment of the potential economic impact of cattle parasites in Brazil. Revista Brasileira de Parasitologia Veterinária, v. 23, p. 150-156, 2014. GRIZANOVA, E. V.; COATES, C. J.; DUBOVSKIY, I. M.; BUTT, T. M. Metarhizium brunneum infection dynamics differ at the cuticle interface of susceptible and tolerant morphs of Galleria mellonella. Virulence, v. 10, p. 999–1012, 2019. GULIA-NUSS, M. et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature communications, v. 7, p. 1-13, 2016. GUIZZO, M. G.; NEUPANE, S.; KUCERA, M.; PERNER, J., FRANTOVA, H., Vaz, I. S., OLIVEIRA, P. L.; KOPACEK, P.; ZUREK, L.Poor Unstable midgut microbiome of hard ticks contrasts with abundant and stable monospecific microbiome in ovaries. Frontiers in Cellular and Infection Microbiology, v. 10, p. 211, 2020. GUIZZO, M. G.; PARIZI, L. F.; NUNES, R. D.; SCHAMA, R., ALBANO, R. M., TIRLONI, L., Oliveira, P. L. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Scientific Reports, v. 7, p. 1–10, 2017. GUIZZO, M. G.; TIRLONI, L.; GONZALES, S. A.; FARBER, M. D.; BRAZ, G.; PARIZI, L. F.; SILVA, L. A. D.; VAZ Jr, I.S., Oliveira, P. L. Coxiella endosymbiont of Rhipicephalus microplus modulates tick physiology with a major impact in blood feeding capacity. Frontiers in Microbiology, v. 13, p. 868575, 2022. HAWLENA, H.; RYNKIEWICZ, E.; TOH, E.; ALFRED, A., DURDEN, L. A., HASTRITER M. W.; NELSON, D.E.; RONG, R.; MUNRO, D.; DONG, Q.; FUQUA, C.; Clay, K. The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks. ISME Journal, v. 7, p. 221–223, 2013. HEISE, S. R.; ELSHAHED, M. S.; LITTLE, S. E. Bacterial diversity in Amblyomma americanum (Acari: Ixodidae) with a focus on members of the genus rickettsia. Journal of Medical Entomology, v. 47, p. 258–268, 2010. HERLEMANN, D. P. R.; LABRENZ, M.; JÜRGENS, K.; BERTILSSON, S., WANIEK, J. J., ANDERSSON, A. F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME Journal, v. 5, p. 1571–1579, 2011. HYDE, J. A. Borrelia burgdorferi keeps moving and carries on: A review of borrelial dissemination and invasion. Frontiers in Immunology, v. 8, p. 114, 2017. JAIME, O.; HURTADO, B.; GIRALDO-RÍOS, C. Economic and health impact of the ticks in production animals. In: ABUBAKAR, M.; PERERA, P. K. edit. Ticks and tick-borne pathogens, IntechOpen, 2018. JANDA, J. M.; ABBOTT, S. L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. Journal of Clinical Microbiology, v. 45, p. 2761-2764, 2007. JONSSON, N. N. The productivity effects of cattle tick (Boophilus microplus) infestation on cattle, with particular reference to Bos indicus cattle and their crosses. Veterinary Parasitology, v. 137, p. 1-10, 2006. KARASUYAMA, H.; MIYAKE, K.; YOSHIKAWA, S. Immunobiology of acquired resistance to ticks. Frontiers in Immunology, v. 11, p. 601504, 2020. KAAYA, G.P.; SAMISH M.; HEDIMBI, M.; GINDIN, G.; GLAZER, I. Control of tick populations by spraying Metarhizium anisopliae conidia on cattle under field conditions. Experimental and Applied Acarology, v. 55, p. 273-281, 2011. KIRKLAND, B. H.; WESTWOOD, G. S.; KEYHANI, N. O. Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. Journal of medical entomology, v. 41p. 705-711, 2004. OPÁČEK, P.; HAJDUŠEK, O.; BUREŠOVÁ, V.; DAFFRE, S. Tick Innate Immunity. Invertebrate Immunity, p. 137-162, 2010. KUROKAWA, C.; LYNN, G. E.; PEDRA, J. H. F.; PAL, U., NARASIMHAN, S., FIKRIG, E. Interactions between Borrelia burgdorferi and ticks. Nature Reviews Microbiology, v. 18, p. 587-600, 2020. KURTZ, Z. D.; MÜLLER, C. L.; MIRALDI, E. R.; LITTMAN, D. R., BLASER, M. J., BONNEAU, R. A Sparse and compositionally robust inference of microbial ecological networks. PLoS Computational Biology, v. 11, p. 1–25, 2015. KWONG, Waldan K.; MANCENIDO, Amanda L.; MORAN, Nancy A. Immune system stimulation by the native gut microbiota of honeybees. Royal Society open science, v. 4, p. 170003, 2017. LEEMON, D. M.; JONSSON, N. N. Comparison of bioassay responses to the potential fungal biopesticide Metarhizium anisopliae in Rhipicephalus (Boophilus) microplus and Lucilia cuprina. Veterinary Parasitology, v. 185, p. 236–247, 2012. LEVY, M.; KOLODZIEJCZYK, A. A.; THAISS, C. A.; ELINAV, E. Dysbiosis and the immune system. Nature Reviews Immunology, . 17, p. 219-232, 2017. LITTLE, E. A. H.; WILLIAMS, S. C.; STAFFORD, K. C.; LINSKE, M. A.; MOLAEI, G. Evaluating the effectiveness of an integrated tick management approach on multiple pathogen infection in Ixodes scapularis questing nymphs and larvae parasitizing white-footed mice. Experimental and Applied Acarology, v. 80, p. 127–136, 2020. LOVETT, B.; ST. LEGER, R. J. Stress is the rule rather than the exception for Metarhizium. Current Genetics, v. 61, p. 253–261, 2015. MARCIANO, A. F., MASCARIN, G. M., FRANCO, R. F. F., GOLO, P. S., JARONSKI, S. T., FERNANDES, É. K. K., BITTENCOURT, V. R. E. P. Innovative granular formulation of Metarhizium robertsii microsclerotia and blastospores for cattle tick control. Scientific Reports, v. 11, p. 1-11, 2021 MASCARIN, G. M.; LOPES, R. B.; DELALIBERA, Í.; FERNANDES, É. K. K., LUZ, C., FARIA, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology v. 165, p. 46-53, 2019. MATHER, T.; TELFORD III, S. R.; MOORE, S. I.; SPIELMAN, A. Borrelia burgdorferi and Babesia microti: efficiency of transmission from reservoirs to vector ticks (Ixodes dammini). Experimental parasitology, v. 70, p. 55-61, 1990. MATTOSO, T. C.; MOREIRA, D. D. O.; SAMUELS, R. I. Symbiotic bacteria on the cuticle of the leaf-cutting ant Acromyrmex subterraneus subterraneus protect workers from attack by entomopathogenic fungi. Biology Letters, v. 8, p. 461–464, 2012. MANSFIELD, K. L.; COOK, C.; ELLIS, R. J.; BELL-SAKYI, L.; JOHNSON, N.; ALBERDI, P.; DE LA FUENTE, J.; FOOKS, A. R. Tick-borne pathogens induce differential expression of genes promoting cell survival and host resistance in Ixodes ricinus cells. Parasites & vectors, v. 10, p. 1-12, 2017. MENT, D.; CHURCHILL, A. C. L.; GINDIN, G.; BELAUSOV, E., GLAZER, I., REHNER, ROT, A.; DONZELLI, B.G.G; S. A., Samish, M. Resistant ticks inhibit Metarhizium infection prior to haemocoel invasion by reducing fungal viability on the cuticle surface. Environmental Microbiology, v. 14 p. 1570–1583, 2012. MENT, D.; GINDIN, G.; SAMISH, M.; GLAZER, I. Comparative response of Metarhizium brunneum to the cuticles of susceptible and resistant hosts. Archives of Insect Biochemistry and Physiology, v. 105, 2020. John Wiley and Sons Ltd. MENT, D.; GINDIN, G.; SOROKER, V.; GLAZER, I., ROT, A., Samish, M. Metarhizium anisopliae conidial responses to lipids from tick cuticle and tick mammalian host surface. Journal of Invertebrate Pathology, v. 103, p. 132–139, 2010. MESQUITA, E.; MARCIANO, A. F.; CORVAL, A. R. C.; FIOROTTI, J., CORREA, T. A., QUINELATO, S., BITTENCOURT, V.R.E.P.; GOLO, P. S. Efficacy of a native isolate of the entomopathogenic fungus Metarhizium anisopliae against larval tick outbreaks under semifield conditions. BioControl, v. 65, p. 353–362, 2020. MORAES, A. P. R.; VIDEIRA, S. S.; BITTENCOURT, V. R. E. P.; BITTENCOURT, A. J. Atividade antifúngica de Stenotrophomonas maltophilia em larvas de Stomoxys calcitrans. Revista Brasileira de Parasitologia Veterinaria, v. 23, p. 194–199, 2014. MORENO, C. X.; MOY, F.; DANIELS, T. J.; GODFREY, H. P.; CABELLO, F. C. Molecular analysis of microbial communities identified in different developmental stages of Ixodes scapularis ticks from Westchester and Dutchess Counties, New York. Environmental Microbiology, v. 8, p. 761–772, 2006. MURALI, A.; BHARGAVA, A.; WRIGHT, E. S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome, v. 6, p. 1–14, 2018. NAKAO, R.; ABE, T.; NIJHOF, A. M.; YAMAMOTO, S., JONGEJAN F., IKEMURA, T., SUGIMOTO, C. A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks. ISME Journal, v. 7, p. 1003–1015, 2013. NARASIMHAN, S.; FIKRIG, E. Tick microbiome: The force within. Trends in Parasitology, v. 31, p. 315-323, 2015. NARASIMHAN, S.; RAJEEVAN, N.; LIU, L.; ZHAO, Y. O., HEISIG, J., PAN, J., EPPLER-EPSTEIN, R; DEPONTE, K.; FISH, D.; FIKRIG, E. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host and Microbe, v. 15, p. 58–71, 2014. NARASIMHAN, S.; SWEI, A.; ABOUNEAMEH, S.; PAL, U., PEDRA, J. H., FIKRIG, E. Grappling with the tick microbiome. Trends in Parasitology, v. 37, p. 722–733, 2021. NCHU, F.; MANIANIA, N.K.; HASSANALI, A.; ELOFF, J.N. Performance of a Metarhizium anisopliae-treated semiochemical-baited trap in reducing Amblyomma variegatum populations in the field. Veterinary parasitology, v. 169, p. 367-372, 2010. OJEDA-CHI, M. M.; RODRIGUEZ-VIVAS, R. I.; GALINDO-VELASCO, E.; LEZAMA-GUTIÉRRREZ, R. Laboratory and field evaluation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) for the control of Rhipicephalus microplus (Acari: Ixodidae) in the Mexican tropics. Veterinary Parasitology, v. 170, p. 348–354, 2010. OKSANEN, J., GUILLAUME BLANCHET, F., FRIENDLY, M., KINDT, R.LEGENDRE, MCGLINN, D.; MINCHIN, P.R., SIMPSON, G.L., SOLYMOS, P., STEVENS, M.H.H., SZOECS, E., WAGNER, H.; O’HARA, R. B. Vegan: Community Ecology Package. R package version 2.5-7, 2020. PFEFFER, M.; KRO´L, N.; OBIEGALA, A. Prevention and control of tick-borne anaplasmosis, cowdriosis and babesiosis in the cattle industry. Ecology and Control of Vector-Borne Diseases. v. 5, p.175–194, 2018. POWER, Mary E.; TILMAN D., ESTES, J. A.; MENGE, B.A.;BONDE, W. J.; MILLS, L. S.; DAILY, G.; CASTILLA, J. C.; LUBCHENCO, J.; PAINE, R. T. Challenges in the quest for keystones: identifying keystone species is difficult—but essential to understanding how loss of species will affect ecosystems. BioScience, v. 46, p. 609-620, 1996. QUAST, C.; PRUESSE, E.; YILMAZ, P.; GERKEN, J., SCHWEER, T., YARZA, P., PEPLIES, J.; Glöckner, F. O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, v. 41, p. 590–596, 2013. R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. RADOLF, J. D.; CAIMANO, M. J.; STEVENSON, B.; HU, L. T. Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nature Reviews Microbiology, v. 10, p. 87-99, 2012. RAMIREZ, J. L.; DUNLAP, C. A.; MUTURI, E. J.; BARLETTA, A. B. F.; ROONEY, A. P. Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system. PLoS Neglected Tropical Diseases, v. 12, p. 1–25, 2018. RECK, J.; KLAFKE, G. M.; WEBSTER, A.; DALL’AGNOLB.; SCHEFFER, R.; SOUZA, U. A.; CORASSINI, V. B.; VARGAS, R.; SANTOS, J.S; MARTINS J. R. S. First report of fluazuron resistance in Rhipicephalus microplus: A field tick population resistant to six classes of acaricides. Veterinary Parasitology, v. 201, p. 128–136, 2014. RECK, J.; MARKS, F. S.; RODRIGUES, R. O.; DALLl’AGNOL, B., SCHEFFER, R., SOUZA, U. A., CORASSINI, V.B.; VARGAS, R.; SANTOS, J.S.; SOUZA MARTINS, J. R. Does Rhipicephalus microplus tick infestation increase the risk for myiasis caused by Cochliomyia hominivorax in cattle? Preventive Veterinary Medicine, v. 113, p. 59–62, 2014. RIBEIRO, C. C. D. U.; DE AZEVEDO BAÊTA, B.; DE ALMEIDA VALIM, J. R.; TEIXEIRA, R. C., CEPEDA, P. B., DA SILVA, J. B., FONSECA, A. H.Use of plastic tips in artificial feeding of Dermacentor (Anocentor) nitens females Neumann, 1897 (Acari: Ixodidae). Ticks and Tick-borne Diseases, v. 5, p. 689–692, 2014. RIBEIRO-SILVA, C. S.; MUNIZ, E. R.; LIMA, V. H.; BERNARDO, C. C.; ARRUDA, W.; CASTRO, R. N.; GOLO, P.S.; ANGELO, I.S.; Fernandes, É. K. Cuticular Lipids as a First Barrier Defending Ixodid Ticks against Fungal Infection. Journal of Fungi, v. 8, p. 1177, 2022. RODRIGUEZ-VIVAS, R. I.; JONSSON, N. N.; BHUSHAN, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitology Research,. v. 117, p. 3-29, 2018. ROSA, R. D.; CAPELLI-PEIXOTO, J.; MESQUITA, R. D.; KALIL, S. P., POHL, P. C., BRAZ, G. R., FOGACA, A.C; DAFFRE, S. Exploring the immune signalling pathway-related genes of the cattle tick Rhipicephalus microplus: From molecular characterization to transcriptional profile upon microbial challenge. Developmental and Comparative Immunology, v. 59, p. 1–14, 2016. ROSENBERG, R.; LINDSEY, N. P.; FISCHER, M.; GREGORY, C. J., HINCKLEY, A. F., MEAD, P. S., PETERSEN, L. R. Vital Signs: Trends in Reported Vectorborne Disease Cases — United States and Territories, 2004–2016. Morbidity and Mortality Weekly Report, v. 67p. 496, 2018. ROT, A.; GINDIN, G.; MENT, D.; MISHOUTCHENKO, A.; GLAZER, I.; SAMISH, M. On-host control of the brown dog tick Rhipicephalus sanguineus Latreille (Acari: Ixodidae) by Metarhizium brunneum (Hypocreales: Clavicipitaceae). Veterinary parasitology, v. 193, p. 229-237, 2013. RUTH ELLIMAN, J.; OWENS, L. Confirmation that candidatus Coxiella cheraxi from redclaw crayfish (Cherax quadricarinatus) is a close relative of Coxiella burnetii, the agent of Q-fever. Letters in Applied Microbiology, v. 71, p. 320–326, 2020. SANTOS, L. R., GASPAR, E. B., BENAVIDES, M. V., TRENTIN, G.. Tristeza Parasitária Bovina-Medidas de controle atuais. In: ANDREOTTI, R.; GARCIA, M. V.; KOLLER, W. W. (Ed.). Carrapatos na cadeia produtiva de bovinos. Brasília, DF: Embrapa, p- 87-97, 2019. SAMISH, M.; ROT, A.; MENT, D.; BAREL, S.; GLAZER, I.; GINDIN, G. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions. Veterinary Parasitology v. 206, p.258-266, 2014. SEGURA, J. A.; ISAZA, J. P.; BOTERO, L. E.; ALZATE, J. F.; GUTIÉRREZ, L. A. Assessment of bacterial diversity of Rhipicephalus microplus ticks from two livestock agroecosystems in Antioquia, Colombia. PLoS One, v. 15, p. e0234005, 2020. SCOTT, J. J.; OH, D. C.; YUCEER, M. C.; KLEPZIG, K. D., CLARDY, J., CURRIE, C. R. Bacterial protection of beetle-fungus mutualism. Science, v. 322, p. 63, 2008. SILVA, F. D.; ROSSI, D. C. P.; MARTINEZ, L. R.; FRASES, S., FONSECA, F. L., CAMPOS, C. B. L., RODRIGUES, M.L; NOSANCHUK, J.D; DAFFRE, S. Effects of microplusin, a copper-chelating antimicrobial peptide, against Cryptococcus neoformans. FEMS Microbiology Letters, v. 324, p. 64–72, 2011. SONENSHINE, D. E.; HYNES, W. L. Molecular characterization and related aspects of the innate immune response in ticks. Frontiers in Bioscience, v. 13, 2008. SONENSHINE, DANIEL E.; ROE, R. MICHAEL. Ticks, people, and animals. In: SONENSHINE; ROE ed. Biology of Ticks Volume 1, v. 1, p. 1, 2013 SOUZA, E.J.; COSTA, G.L.; BITTENCOURT, V.R.E.P.; FAGUNDES, A.S. Ação do fungo Beauveria bassiana associado a gel polimerizado de celulose no controle do carrapato Anocentor nitens em teste de campo. Arquivo Brasileiro de Medicina Veterinária e Zootecnia v.61, p.163-169, 2009. SPIELMAN, A. Duration and Regulation of the Developmental Cycle of Ixodes dammini (Acari: Ixodidae). Journal of medical entomology, v. 27, p. 196-201, 1990. STAFFORD, K.C.; ALLAN, S.A. Field applications of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae F52 (Hypocreales: Clavicipitaceae) for the control of Ixodes scapularis (Acari: Ixodidae). Journal of medical entomology, v. 47, p. 1107-1115, 2014. STAFFORD, K. C.; WILLIAMS, S. C.; MOLAEI, G. Integrated pest management in controlling ticks and tick-associated diseases. Journal of Integrated Pest Management, v. 8, p. 28, 2017. TOLEDO, A. V; ALIPPI, A. M.; DE, A. M. M.; LENICOV, R. Growth inhibition of Beauveria bassiana by bacteria isolated from the cuticular surface of the corn leafhopper, Dalbulus maidis and the planthopper, Delphacodes kuscheli, two important vectors of maize pathogens. Journal of Insect Science, v. 11, 2011. TOMAZI, T.; DOS SANTOS, M. V. Antimicrobial use for treatment of clinical mastitis in dairy herds from Brazil and its association with herd-level descriptors. Preventive Veterinary Medicine, v. 176, 2020. VALIM, J. R. DE A.; RANGEL, C. P.; BAÊTA, B. DE A.; RIBEIRO, C. C. D. U., CORDEIRO, M. D., TEIXEIRA, R. C., CEPEDA, P.B.; FONSECA, A. H. D. Using plastic tips in artificial feeding of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) females. Revista Brasileira de Parasitologia Veterinária, v. 26, p. 110–114, 2017. VALSONI, L. M.; DE FREITAS, M. G.; BORGES, D. G. L.; BORGES, F. DE A. Status of Rhipicephalus microplus resistance to ivermectin, fipronil and fluazuron in Mato Grosso do Sul, Brazil. Revista Brasileira de Parasitologia Veterinaria, v. 30, p. 1–7, 2021. VILELA, V. L. R.; FEITOSA, T. F.; BEZERRA, R. A.; KLAFKE, G. M.; RIET-CORREA, F. Multiple acaricide-resistant Rhipicephalus microplus in the semi-arid region of Paraíba State, Brazil. Ticks and Tick-borne Diseases, v. 11, 2020. WAMITI, L. G.; KHAMIS, F. M.; ABD-ALLA, A. M. M.; OMBURA, F. L., AKUTSE, K. S., SUBRAMANIAN, ODIWUOR, S.O.; OCHIENG, S. J.; EKES, S.; MANIANIA, N. K Metarhizium anisopliae infection reduces Trypanosoma congolense reproduction in Glossina fuscipes fuscipes and its ability to acquire or transmit the parasite. BMC Microbiology, v. 18, p. 271-278, 2018. WANG, C.; ST LEGER, R. J. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proceedings of the National Academy of Sciences, v. 103, p. 6647-6652, 2006. WANG, X.; YANG, X.; ZHOU, F.; QIANG T. Z., CHENG, J., MICHAUD, J. P., LIU, X. Symbiotic bacteria on the cuticle protect the oriental fruit moth Grapholita molesta from fungal infection. Biological Control, v. 169, p. 104895, 2022. WASSERMANN, M.; SELZER, P.; STEIDLE, J. L.; MACKENSTEDT, U. Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores. Ticks and tick-borne diseases, v. 7, p. 768-771, 2016. WEI, G.; LAI, Y.; WANG, G.; CHEN, H., LI, F., WANG, S. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proceedings of the National Academy of Sciences of the United States of America, v. 114, p. 5994–5999, 2017. WEINSTEIN, M.M., PREM, A., JIN, M., TANG, S., BHASIN, J. M. FIGARO: An efficient and objective tool for optimizing microbiome rRNA gene trimming parameters. bioRxiv, p. 610394, 2019. WELLER, S. J.; BALDRIDGE, G. D.; MUNDERLOH, U. G.; NODA, H., SIMSER, J., KURTTI, T. J. Phylogenetic Placement of Rickettsiae from the Ticks Amblyomma americanum and Ixodes scapularis Journal of clinical microbiology, v. 36, p. 1305-1317, 1998. WICKHAM, H.. Data analysis. ggplot2: elegant graphics for data analysis, v. 35, p. 189-201, 2016. WILLIAMS, S.C., STAFFORD, K.C., MOLAEI, G., & LINKSE, M. A. Integrated control of nymphal Ixodes scapularis: Effectiveness of white-tailed deer reduction, the entomopathogenic fungus Metarhizium anisopliae, and fipronil-based rodent bait boxes. Vector-Borne and Zoonotic Diseases, v. 18, p. 55-64, 2018. WOESE, C. R.; FOX, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences, v. 74, p. 5088-5090, 1977. WRIGHT, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R Journal, v. 8, p. 352–359, 2016. XU, L.; DENG, J.; ZHOU, F.; CHENG, C., ZHANG, L., ZHANG, J., LU, M. Gut microbiota in an invasive bark beetle infected by a pathogenic fungus accelerates beetle mortality. Journal of Pest Science, v. 92, p. 343–351, 2019. YODER, J. A.; BENOIT, J.B.; DENLINGER, D.L.; TANK, J.L.; ZETTLER, L.W. An endosymbiotic conidial fungus, Scopulariopsis brevicaulis, protects the American dog tick, Dermacentor variabilis, from desiccation imposed by an entomopathogenic fungus.Journal of invertebrate pathology, v. 97, p. 119-127, 2008. ZHANG, R.; HUANG, Z.; YU, G.; ZHANG, Z. Characterization of microbiota diversity of field-collected Haemaphysalis longicornis (Acari: Ixodidae) with regard to sex and blood meals. Journal of Basic Microbiology, v. 59, p. 215–223, 2019. ZHONG, J.; JASINSKAS, A.; BARBOUR, A. G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE, v. 2, 2007. ZHOU, F.; GAO, Y.; LIU, M.; XU, L., WU, X., ZHAO, X., ZHANG, X Bacterial inhibition on Beauveria bassiana contributes to microbiota stability in Delia antiqua. Frontiers in Microbiology, v. 12, 2021. ZIMMERMANN, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, 2007. | por |
dc.subject.cnpq | Medicina Veterinária | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/74452/2023%20-%20Emily%20Mesquita%20da%20Silva.Pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6853 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-08-16T19:55:23Z No. of bitstreams: 1 2023 - Emily Mesquita da Silva.Pdf: 4689025 bytes, checksum: f3fb893f51145db38f79319063aa0468 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-08-16T19:55:23Z (GMT). No. of bitstreams: 1 2023 - Emily Mesquita da Silva.Pdf: 4689025 bytes, checksum: f3fb893f51145db38f79319063aa0468 (MD5) Previous issue date: 2023-02-27 | eng |
Appears in Collections: | Doutorado em Ciências Veterinárias |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2023 - Emily Mesquita da Silva.Pdf | 4.58 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.