Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/9725
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Marques, Viviane Figueira | |
dc.date.accessioned | 2023-12-21T18:43:10Z | - |
dc.date.available | 2023-12-21T18:43:10Z | - |
dc.date.issued | 2016-03-02 | |
dc.identifier.citation | MARQUES, Viviane Figueira. Expressão gênica na formação do biofilme e resistência aos beta-lactâmicos em isolados de Staphylococcus aureus provenientes de leite mastítico bovino. 2016. 73 f. Tese (Doutorado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2016. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9725 | - |
dc.description.abstract | Staphylococcus spp. tem papel importante na etiologia da mastite bovina. Staphylococcus aureus é considerada a espécie mais relevante devido à produção de fatores de virulência, tais como “slime”, o que favorece a formação do biofilme. O presente trabalho teve por objetivo detectar a expressão fenotípica da formação de biofilme em 20 isolados de S. aureus oriundos de mastite bovina, detectar e quantificar a expressão dos genes envolvidos na sua produção e regulação, além de detectar a resistência fenogenotípica aos beta-lactâmicos para avaliação da possível relação da produção de biofilme com a resistência antimicrobiana. Os isolados foram caracterizados através de testes fenogenotípicos e MALDI-TOF, submetidos às provas fenotípicas de detecção da formação de biofilme e avaliação da suscetibilidade aos beta-lactâmicos. A Concentração Inibitória Mínima (CIM), Concentração Bactericida Mínima (CBM) e a Concentração Inibitória Mínima no Biofilme (CIMB) foram determinadas para três isolados selecionados com base na variação da intensidade da produção de biofilme. Posteriormente, todos os isolados foram submetidos à técnica de PCR para detecção dos genes de produção de “slime” (icaA e icaD), proteína Bap (bap), beta-lactamase (blaZ) e proteína ligante de penicilina alterada (mecA). Além de detecção do sistema regulador Agr (agr RNAIII) e da tipificação do sistema Agr (agr I, agr II, agr III e agr IV). Foi realizada Microscopia Eletrônica de Varredura (MEV) para determinar o intervalo de tempo mais adequado para a análise do biofilme. A PCR em tempo real (qPCR) foi realizada nos tempos selecionados para quantificar a expressão dos genes icaA, icaD e hld em três isolados com produção variada de biofilme. Todos os isolados foram produtores de biofilme e a maioria apresentou os genes icaA e icaD. Apenas um isolado apresentou o gene bap. O gene agr tipo II mostrou prevalência de 70%. A MEV mostrou mudanças graduais no arranjo bacteriano durante a formação de biofilme ao longo das fases da curva de crescimento que atingiu seu pico de formação na fase estacionária. A análise transcricional evidenciou maior expressão dos genes ica no tempo de 8 h de crescimento e hld em 24 h. Contudo, a cepa N-365 mostrou baixa produção dos genes ica. Para este estudo, a resistência à penicilina foi relacionada com a produção de beta-lactamase, enquanto a elevada CBM detectada para cefoxitina pode estar associada à proteção que o biofilme oferece, episódio evidenciado pelo fato dos isolados apresentarem valores de CIMB superiores aos CIMs testados para as células planctônicas. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Agr types | eng |
dc.subject | antimicrobial resistance | eng |
dc.subject | S. aureus | por |
dc.subject | icaA | por |
dc.subject | icaD | por |
dc.subject | hld | por |
dc.subject | tipos de Agr | por |
dc.subject | resistência antimicrobiana | por |
dc.title | Expressão gênica na formação do biofilme e resistência aos beta-lactâmicos em isolados de Staphylococcus aureus provenientes de leite mastítico bovino | por |
dc.title.alternative | Gene expression in biofilm formation and resistance to beta-lactam in Staphylococcus aureus isolates from bovine milk mastitic | eng |
dc.type | Tese | por |
dc.description.abstractOther | Staphylococcus spp. plays an important role in the etiology of bovine mastitis. Staphylococcus aureus is considered the most relevant specie due to the production of virulence factors such as “slime”, which is required for biofilm formation. This study aimed to detect the phenotypic expression of the biofilm formation in 20 S. aureus isolates from bovine mastitis, to detect and quantify the expression of genes involved in its production and regulation, as well as to detect the phenogenotypic resistance to beta-lactam in order to evaluate the possible relation between biofilm production and antimicrobial resistance. The isolates were characterized by MALDI-TOF and phenogenotypic identification assays. Also they were submitted to the phenotypic tests to evaluate biofilm production and the susceptibility to beta-lactams. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Minimum Inhibitory Concentration in the Biofilm (MICB) were determined to three isolates presenting distinct biofilm production. Futherly, a PCR for the detection of “slime” production genes (icaA and icaD), Bap protein (bap), beta-lactamase (blaZ) and protein altered penicillin-binding (mecA). Also, the Agr system was typified (agr I, agr II, agr III and agr IV) and its regulator (agr RNAIII) was detected. Scanning Electron Microscopy (SEM) was performed to determine the most suitable time interval for biofilm analysis. Real-time PCR (qPCR) was performed at the chosen times to quantify the expression of icaA, icaD and hld genes in the three studied isolates. All 20 isolates were biofilm producers and most presented icaA and icaD genes. Only one isolate presented the bap gene. The agr gene type II presented a prevalence of 70%. The SEM showed gradual changes in bacterial arrangement during the biofilm formation along the phases of the growth curve. The peak was reached at the stationary phase. Transcriptional analysis revealed increased expression of ica genes at 8 h of growth and of hld at 24 h. However, for the N-365 strain the ica expression was of low yield. For this study, the penicillin resistance was related to the production of beta-lactamase otherwise the high MBC detected for cefoxitin may be associated to biofilm protection, evidentiated by the fact that the isolates have MICB values higher than MICs tested for planktonic cells | eng |
dc.contributor.advisor1 | Souza, Miliane Moreira Soares de | |
dc.contributor.advisor1ID | 1076198732 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/0865211214618618 | por |
dc.contributor.advisor-co1 | Coelho, Shana de Mattos de Oliveira | |
dc.contributor.advisor-co1ID | 5466821705 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/3212438357088121 | por |
dc.contributor.referee1 | Santos, Huarrisson Azevedo | |
dc.contributor.referee2 | Senna, José Procópio Moreno | |
dc.contributor.referee3 | Merval, Marcia Giambiagi de | |
dc.contributor.referee4 | Pereira, Ingrid Annes | |
dc.creator.ID | 5788549701 | por |
dc.creator.Lattes | http://lattes.cnpq.br/9639085374954486 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Veterinária | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Veterinárias | por |
dc.relation.references | ALATOOM, A.A.; CUNNINGHAM, S.A.; IHDE, S.M.; MANDREKAR, J.; PATEL, R. Comparison of direct colony method versus extraction method for identification of gram-positive cocci by use of Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. Journal of Clinical Microbiology, v. 49, p. 2868–2873, 2011. ALMEIDA, L.M.; ALMEIDA, M.Z.P.R.B.; MENDONÇA, C.L.; MAMIZUKA E.M. Comparative analysis of agr groups and virulence genes among subclinical and clinical mastitis Staphylococcus aureus isolates from sheep flocks of the Northeast of Brazil. Brazilian Journal of Microbiology, v. 44, n. 2, p. 493-498, 2013. ALTSCHUL, S.F.; MADDEN, T.L.; SCHAFFER, A.A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, v.25, p.3389-3402, 1997. AMORENA, B.; GRACIA, E.; MONZÓN, M.; LEIVA, J.; OTEIZA, C.; PÉREZ, M.; ALABART, J.L.; HERNÁNDEZ-YAGO, J. Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. Journal of Antimicrobial Chemotherapy, v. 44, p. 43-55, 1999. APPLIED BIOSYSTEMS. Real-time PCR systems: Chemistry Guide. 138p, 2005. Disponível em: <www.appliedbiosystems.com>. Acesso em: 13 de julho de 2015. ARCIOLA, C.R.; BALDASSARRI, L.; MONTANARO, L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter associated infections. J Clin Microbiol, v. 39, n. 6, p. 2151-2156, 2001. ARCIOLA, C.R.; CAMPOCCIA, D.; GAMBERINI, S.; CERVELLATI, M.; DONATI, E.; MONTANARO, L. Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials, v. 23, p. 4233-4239, 2002. ARCIOLA, C.R.; CAMPOCCIA, D.; GAMBERINI S.; RIZZI, S.; DONATI, M.E.; BALDASSARRI, L.; et al. Search for the insertion element IS256 within the ica locus of Staphylococcus epidermidis clinical isolates collected from biomaterial-associated infections. Biomaterials, v. 25, p. 4117-4125, 2004. ARCIOLA, C.R.; GAMBERINI, S.; CAMPOCCIA, D.; VISAI, L.; SPEZIALE, P.; BALDASSARRI, L.; et al. A multiplex PCR method for the detection of all five individual genes of ica locus in Staphylococcus epidermidis. A survey on 400 clinical isolates from prosthesis-associated infections. J Biomed Mater Res A, v. 75, p. 408-413, 2005. ARCIOLA, C.R.; VISAI, L.; TESTONI, F.; ARCIOLA, S.; CAMPOCCIA, D.; SPEZIALE, P.; et al. Concise survey of Staphylococcus aureus virulence factors that promote adhesion and damage to peri-implant tissues. Int J Artif Organs, v. 34, n. 9, p.771-780, 2011. ARCIOLA, C.R.; CAMPOCCIA, D.; SPEZIALE, P.; MONTANARO, L.; COSTERTON, J.W. Biofilm formation in Staphylococcus implant infections. A review of molecular 57 mechanisms and implications for biofilm-resistant materials. Biomaterials, v. 33, p. 5967-5982, 2012. ATKIN, K.E.; MACDONALD, S.J.; BRENTNALL, A.S.; POTTS, J.R.; THOMAS, G.H. A different path: Revealing the function of staphylococcal proteins in biofilm formation. FEBS Letters, n. 588, p. 1869–1872, 2014. ATSHAN, S.S.; SHAMSUDIN, M.N.; KARUNANIDHI, A.; BELKUM, A.; LUNG, L.T.T.; SEKAWI, Z.; NATHAN, J.J.; LING, K.H.; SENG, J.S.C.; ALI, A.M.; ABDULJALEEL, S.A.; HAMAT, R.A. Quantitative PCR analysis of genes expressed during biofilm development of methicillin resistant Staphylococcus aureus (MRSA). Infection, Genetics and Evolution, v. 18, p. 106-112, 2013. BABRA, C.; TIWARI, J.G.; PIER, G.; THEIN, T.H.; SUNAGAR, R.; SUNDARESHAN, S.; ISLOOR, S.; HEGDE, N.R.; WET, S.; DEIGHTON, M.; GIBSON, J.; COSTANTINO, P.; WETHERALL, J.; MUKKUR, T. The persistence of biofilm-associated antibiotic resistance of Staphylococcus aureus isolated from clinical bovine mastitis cases in Australia. Folia Microbiol, DOI 10.1007/s12223-013-0232-z, 2013. BANNOEHR, J.; GUARDABASSI, L. Staphylococcus pseudintermedius in the dog: taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Veterinary Dermatology, v. 23, p, 253-e52, 2012. BARDIAU, M. YAMAZAKI, K.; DUPREZ, J.N.; TAMINIAU, B.; MAINIL, J.G.; OTE, I. Genotypic and phenotypic characterization of methicillin resistant Staphylococcus aureus (MRSA) isolated from milk of bovine mastitis. Lett Appl Microbiol, v. 57, p. 181-186, 2013. BASTOS, C.P. Detecção, prevalência e expressão de genes de enterotoxinas clássicas de Staphylococcus aureus isolados de alimentos e surtos (Tese) – Pelotas: UFPel, 91f., 2013. BEENKEN, K.E.; DUNMAN, P.M.; MCALEESE, F.; MACAPAGAL, D.; MURPHY, E.; PROJAN, S.J.; BLEVINS, J.S.; SMELTZER, M.S. Global Gene Expression in Staphylococcus aureus Biofilms. Journal of bacteriology, v. 186, n. 14, p. 4665–4684, 2004. BLAIOTTA, G.; FUSCO, V.; ERCOLINI, D.; PEPE, O.; COPPOLA, S. Diversity of Staphylococcus species strains based on partial kat (catalase) gene sequences and design of a PCR-Restriction Fragment Length Polymorphism assay for identification and differentiation of coagulase-positive species (S. aureus, S. delphini, S. hyicus, S. intermedius, S. pseudintermedius, and S. schleiferi subsp. coagulans). Journal of Clinical Microbiology, v. 48, n. 1, p. 192-201, 2010. BOISSET, M.; GEISSMANN, T.; HUNTZINGER, E.; FECHTER, P.; BENDRINI, N.; POSSEDKO, M.; CHEVALIER, C.; HELFER, A.C.; BENITO, Y.; JACQUIER, A.; GASPIN, C.; VANDENESCH, F.; ROMBY, P. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev, v. 21, p. 1353–1366, 2007. BÖHME, K.; MORANDI, S.; CREMONESI, P.; NO, I.C.F.; BARROS-VELÁZQUEZ, J.; CASTIGLIONI, B.; BRASCA, M.; CAÑAS, B.; CALO-MATA, P. Characterization of 58 Staphylococcus aureus strains isolated from Italian dairy products by MALDI-TOF mass fingerprinting. Electrophoresis, v. 33, p. 2355–2364, 2012. BOLES, B.R. & HORSWILL, A.R. agr-mediated dispersal of Staphylococcus aureus biofilms. PLOSPathogens, v. 4, n. 4, 2008. e1000052 doi:10.1371/journal.ppat.1000052. BOLES, B.R. & HORSWILL, A.R. Staphylococcal biofilm disassembly. Trends Microbiol, v. 19, n. 9, p. 449–455, 2012. BUCK, A.W.; FOWLER, V.G.; YONGSUNTHON, R.; LIU, J.; DIBARTOLA, A.C.; QUE, Y.A.; MOREILLON, P.; LOWER, S. Bonds between Fibronectin and Fibronectin-Binding Proteins. Langmuir, v.26, n.13, 2010. BUSTIN, S.A.; BENES, V.; GARSON, J.A.; HELLEMANS, J.; HUGGETT, J.; KUBISTA, M.; MUELLER, R.; NOLAN, T.; PFALL, M.W.; SHIPLEY, G.L.; VANDESOMPELE, J.; WITTWER, C.T. The MIQE guidelines minimum information for publication of quantitative real-time PCR experiments. Clin Chem, v. 55, p. 611-622, 2009. CARBONNELLE, E.; MESQUITA, C.; BILLE, E.; DAY, N.; DAUPHIN, B.; BERETTI, J. L.; FERRONI, A.; GUTMANN, L.; NASSIF, X. MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clinical Biochemistry, v. 44, p. 104–109, 2011. CALSA-JUNIOR, T.; BENEDITO, V.A.; FIGUEIRA, A.V.O. Análise serial da expressão gênica. Revista Biotecnologia Ciência e Desenvolvimento, v. 33, p. 88-100, 2004. CERCA, N.; JEFFERSON, K.K.; LITRÁN, T.M.; PIER, D.B.; QUINTOS, C.K., GOLDMAN, D.A.; AZEREDO, J.; PIER, G.B. Molecular Basis for Preferential Protective Efficacy of Antibodies Directed to the Poorly Acetylated Form of Staphylococcal Poly-N-Acetyl-_-(1-6)-Glucosamine. Infection and Immunity, v. 75, n. 7, p. 3406–3413, 2007. CHAGAS, L.G.S.; MELO, P.C.; BARBOSA, N.G.; GUIMARÃES, E.C.; BRITO, D.D. Occurrence of bovine mastitis caused by Staphylococcus sp. Streptococcus sp. and Candida sp. in a rural area of Indianópolis – Minas Gerais, Brazil. Biosci J, v. 28, p. 1007–1014, 2012. CHRISTENSEN, G.D.; SIMPSON, W.A.; YOUNGER, J. J.; BADDOUR, M. L.; BARRET, F. F.; MELTON, D. M.; BEACHEY, E. H. Adherence of coagulase-ative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. Journal of Clinical Microbiology, v. 22 n. 6 p.996-1006, 1985. CIFTCI, A.; FINDIK, A.; ONUK, E.E.; SAVASAN, S. Detection of methicillin resistance and slime factor production of Staphylococcus aureus in bovine mastitis. Braz J Microbiol, v. 40, p. 254-261, 2009. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Diluition Susceptibility Tests for Bacteria Isolated From Animals; Approved Standards - 4 Ed, VET01-A4. Clinical and Laboratory Standards Institute, 950 Wast Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA 2013. 59 Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Diluition Susceptibility Tests for Bacteria Isolated From Animals; Approved Standards; Second Informational Supplement, VET01-S2. Clinical and Laboratory Standards Institute, 950 Wast Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA 2013. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Approved Standards; Twenty-fourth Informational Supplement, M100-S24. Clinical and Laboratory Standards Institute, 950 Wast Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA 2014. COELHO, S.M.O.; PEREIRA, I.A.; SOARES, L.C.; PRIBUL, B.R.; SOUZA, M.M.S. Profile of virulence factors of Staphylococcus aureus isolated from subclinical bovine mastitis in the state of Rio de Janeiro, Brazil. J. Dairy Sci, v. 94, n. 7, p. 3305-3310, 2011. COSTERTON, J.W.; STEWART P.; GREENBERG P. Bacterial Biofilms: a commom cause of persistent infections. Science, v.284, p.1318-1322, 1999. CRAMTON, S.E.; GERKE, C.; SCHNELL, N.F.; NICHOLS, W.W.; GÖTZ, F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun, v. 67, p. 5427-5433, 1999. CUCARELLA, C.; SOLANO, C.; VALLE, J.; AMORENA, B.; LASA, I.N.I.; PENADÉS, J.R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol, v. 183, n. 9, p. 2888–2896, 2001. CUCARELLA, C.; TORMO, M.A.; ÚBEDA, C.; TROTONDA, M.P.; MONZÓN, M.; PERIS, C.; AMORENA, B.; LASA, I.; PENADÉS, J.R. Role of biofilm-associated protein Bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun, v. 72, n. 4, p. 2177-2185, 2004. DEGO K. O., VAN DIJK J. E., NEDERBRAGT H. Factors involved in the early pathogenesis of bovine Staphylococcus aureus mastitis with emphasis on bacterial adhesion and invasion-A review. Vet Microbiol, v. 24, p. 181–198, 2002. EL-SAYED, A.; ALBER, J.; LAMMER, C.; JAGER, S.; WOLTER, W.; VÁZQUEZ, H.C. Comparative study on genotypic properties of Staphylococcus aureus isolated from clinical and subclinical mastitis in Mexico. Vet. Méx., v.37, n.2, p.165-179, 2006. FABRES-KLEIN, M.H.; SANTOS, M.J.C.; KLEIN, R.C.; SOUZA, G.N.; RIBON, A.O.B. An association between milk and slime increases biofilm production by bovine Staphylococcus aureus. BMC Vet Res, v. 11, n. 3, 2015. DOI 10.1186/s12917-015-0319-7. FLEMMING, K.; KLINGENBERG, C.; CAVANAGH, J.P.; SLETTENG, M.; STENSEN, W.; SVENDSEN, J.S.; FLÆGSTAD, T. High in vitro antimicrobial activity of synthetic antimicrobial peptidomimetics against staphylococcal biofilms. Journal of Antimicrobial Chemotherapy, v. 63, p. 136–145, 2009. 60 FORMOSA-DAGUEA, C.; SPEZIALEB, P.; FOSTERC, T.J.; GEOGHEGANC, J.A.; DUFRÊNEA, Y.F. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. PNAS, v. 113, n. 2, p. 2410–2415, 2016. FREEMAN, D.J.; FALKINER, F.R.; KEANE, C.T. New method for detecting slime production by coagulase-negative staphylococci. J Clin Pathol, v. 42, p. 872-874, 1989. FREITAS, M.F.L.; PINHEIRO JÚNIOR, J.W.; STAMFORD, T.L.M.; RABELO, S.S. de A.; SILVA, D.R. da; SILVEIRA FILHO, V.M. da; SANTOS, F.G.B.; SENA, M.J. da; MOTA, R.A. Perfil de sensibilidade antimicrobiana in vitro de Staphylococcus coagulase positivos isolados de leite de vacas com mastite no agreste do estado de Pernambuco. Arq. Inst. Biol., São Paulo, v.72, n.2, p.171-177, 2005. GAD, G.F.M.; EL-FEKY, M.A.; EL-REHEWY, M.S.; HASSAN, M.A.; ABOLELLA, H.; EL-BAKY, R.M. Detection of icaA, icaD genes and biofilm production by Staphylococcus aureus and Staphylococcus epidermidis isolated from urinary tract catheterized patients. J Infect Dev Ctries, v.3, n.5, p.342-351, 2009. GEISINGER, E.; CHEN, J.; NOVICK, R.P. Allele-dependent differences in Quorum-Sensing dynamics result in variant expression of virulence genes in Staphylococcus aureus. J Bacteriol, v. 194, n. 11, p. 2854–2864, 2012. GÓMEZ, P.; GONZÁLEZ-BARRIO, D.; BENITO, D.; GARCÍA, J.T.; VINUELA, J.; ZARAZAGA, M.; RUIZ-FONS, F.; TORRES, C. Detection of methicillin-resistant Staphylococcus aureus (MRSA) carrying the mecC gene in wild small mammals in Spain. J Antimicrob Chemother, doi:10.1093/jac/dku100, 2014. GOMES, A.L.V. Expressão de genes relacionados com a indução da resposta immune inata da dengue: implicações no prognóstico (Tese) – Recife: Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 130f., 2011. GRUSZKA, D.T.; WOJDYLA, J.A.; BINGHAM, R.J.; TURKENBURG, J.P.; MANFIELD, I.W.; STEWARD, A.; LEECH, A.P.; GEOGHEGAN, J.A.; FOSTER, T.J.; CLARKE, J.; POTTS, J.R. Staphylococcal biofilm-forming protein has a contiguous rod-like structure. PNAS, doi/10.1073/pnas.1119456109, p. E1011–E1018, 2012. HALL, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser, v.41, p.95-98, 1999. HAVERI, M.; HOVINEN, M.; ROSLOF, A.; PYORALA, S. Molecular Types and Genetic Profiles of Staphylococcus aureus Strains Isolated from Bovine Intramammary Infections and Extramammary Sites. Journal of clinical microbiology, v.46, n.11, p. 3728–3735, 2008. HEILMANN, C.; SCHWEITZER, O.; GERKE, C.; VANITTANAKOM, N.; MACK, D.; GÖTZ, F. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol, v. 20, p. 1083-1091, 1996. HIGUCHI, R.; FOCKLER, C.; DOLLINGER, G.; WATSON, R. Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Bio/Technology, v. 11, p. 1026-1030, 1993. 61 HOIBY, N.; CIOFU, O.; BJARNSHOLT, T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol, v. 5, p. 1663–1674, 2010. HOIBY, N.; CIOFU, O.; JOHANSEN, H.K.; SONG, Z.; MOSER, C.; JENSEN, P.O.; MOLIN, S.; GIVSKOV, M.; TOLKER-NIELSEN, T.; BJARNSHOLT, T. The clinical impact of bacterial biofilms. International Journal of Oral Science, v. 3, n. 2, 2011. HOOKEY, J.V.; RICHARDSON, J.F.; COOKSON, B.D. Molecular typing of Staphylococcus aureus based on PCR restriction fragment length polymorphism and DNA sequence analysis of the coagulase gene. J Clin Microbiol, v. 36, n. 4, p. 1083–1089, 1998. HOUSTON, P.; ROWE, S.E.; POZZI, C.; WATERS, E.M.; O’GARA, J.P. Essential role for the major autolysin in the fibronectin-binding protein-mediated Staphylococcus aureus biofilm phenotype. Infect Immun., v. 79, p. 1153-1165, 2011. JAYARAMAN, A.; WOOD, T.K. Bacterial Quorum Sensing: Signals, Circuits, and Implications for Biofilms and Disease. Annu. Rev. Biomed. Eng., v.10, p.145–167, 2008. KEAYS, T.; FERRIS, W.; VANDEMHEEN, K.L.; CHAN, F.; YEUNG, S.W.; MAH, T.F; RAMOTAR, K.; SAGINUR, R.; AARON, S.D. A retrospective analysis of biofilm antibiotic susceptibility testing: A better predictor of clinical response in cystic fibrosis exacerbations. Journal of Cystic Fibrosis, v. 8, p. 122–127, 2009. KHAN, F.; SHUKLA, I.; RIZVI, M.; MANSOOR, T.; SHARMA, S.C. Detection of biofilm formation in Staphylococcus aureus. Does it have a role in treatment of MRSA infections? Trends Med Res, v. 6, p. 116–123, 2011. KIRBY, A.E.; GARNER, K.; LEVIN, B.R. The relative contributions of physical structure and cell density to the antibiotic susceptibility of bacteria in biofilms. Antimicrobial Agents and Chemotherapy, v. 56, n. 6, p. 2967–2975, 2012. KONEMAN, E.W.; ALLEN, S.D.; JANDA, W.M; SCHRECKENBERGER, P.C. ; WINN JR. Diagnóstico Microbiológico. 6.ed. Rio de Janeiro: Editora MEDS, 2012. KREWER, C.C.; LACERDA, I.P. de; AMANSO, E.S.; CAVALCANTE, N.B.; PEIXOTO, R. de; PINHEIRO JÚNIOR, J.W.; COSTA, M.M. da; MOTA, R.A. Etiology, antimicrobial susceptibility profile of Staphylococcus spp. and risk factors associated with bovine mastitis in the states of Bahia and Pernambuco. Pesq Vet Bras, v. 33, n. 5, p. 601-606, 2013. KUBISTA, M.; ANDRADE, J.M.; BENGTSSON, M.; FOROOTAN, A.; JONÁK, J.; LIND, K.; SINDELKA, R.; SJÖBACK, R.; SJÖGREEN, B.; STRÖMBOM, L.; STÅHLBERG, A.; ZORIC, N. The real time polymerase chain reaction. Molecular Aspects of Medicine, v. 27(2-3), p. 95–125, 2006. KUMAR, S., TAMURA, K., & NEI, M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in bioinformatics, v. 5, n. 2, p. 150-163, 2004. 62 KUMAR, R.; YADAV, B.R.; SINGH, R.S. Genetic Determinants of Antibiotic Resistance in Staphylococcus aureus isolates from milk of mastitic crossbred cattle. Curr Microbiol, v. 60, p. 379–386, 2010. LANGE, C.C.; BRITO, M.A.V.P; BRITO, J.R.F.; ARCURI, E.F.; SOUZA, G.N.; MACHADO, M.A.; DOMINGUES, R.; SALIMENA, A.P.S. Uso de PCR e sequenciamento do rDNA 16S para identificação de bactérias do gênero Staphylococcus isoladas de mastite bovina. Pesquisa Veterinária Brasileira, v. 31, n. 1, p. 36-40, 2011. LATASA, C.; SOLANO, C.; PENADÉS, J.R.; LASA, I. Biofilm-associated proteins. C R Biol, v. 329, p. 849-857, 2006. LEAL, C.A.G. Desenvolvimento e otimização de protocolos de PCR em tempo real para o diagnóstico de patógenos emergentes para aquicultura nacional (Tese) – Lavras: UFLA, 92p., 2012. LEITE, B.A. Estudo da susceptibilidade e resposta dos biofilmes de estafilococos aos agentes antimicrobianos (Tese) – São Carlos: UFSCar, 151f., 2013. LIU, H.; ZHAO, D.; CHANG, J.; YAN, L.; ZHAO, F.; WU, Y.; XU, T.; GONG, T.; CHEN, L.; HE, N.; WU, Y.; HAN, S.; QU, D.Efficacy of novel antibacterial compounds targeting histidine kinase YycG protein. Appl Microbiol Biotechnol, v. 98, p. 6003–6013, 2014. LIVAK, K.J., SCHMITTGEN, T.D. Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCt method. Methods, v. 25, p. 402-408, 2001. MACK, D.; ROHDE, H.; HARRIS, L.G.; DAVIES, A.P.; HORSTKOTTE, M.A,; KNOBLOCH, J.K. Biofilm formation in medical device-related infection. Int J Artif Organs, v. 29, n. 4, p. 343-359, 2006. MADIGAN, M.T.; MARTINKO, J.M.; DUNLAP, P.V.; CLARK, D.P. Microbiologia de Brock. Porto Alegre: Artmed, 12ª ed., 1160p., 2010. MANN, C.M.; MARKHAM, J.L. A New method for determining the minimum inhibitory concentration of essential oils. Journal of Applied Microbiology, v.84, p. 538-544, 1998. MARQUES VF, SOUZA MMS, MENDONÇA ECL, ALENCAR TA, PRIBUL BR, COELHO SMO, LASAGNO M, REINOSO EB. Análise fenotípica e genotípica da virulência em Staphylococcus spp. e de sua dispersão clonal como contribuição ao estudo da mastite bovina em regiões do Estado do Rio de Janeiro. Pesq Vet Bras, v. 33, n. 2, p. 161-170, 2013. MARTÍ, M.; TROTONDA, M.P.; TORMO-MÁS, M.A.; VERGARA-IRIGARAY, M.; CHEUNG, A.L.; LASA, I.L; PENADÉS, J.R. Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes and Infection, v. 12, p. 55-64, 2010. MELCHIOR, M.B.; VAARKAMP, H.; FINK-GREMMELS, J. Biofilms: A role in recurrent mastitis infections? Vet J, v. 171, p. 398-407, 2006. 63 MELCHIOR, M.B.; FINK-GREMMELS, J.; GAASTRA, W. Extended antimicrobial susceptibility assay for Staphylococcus aureus isolates from bovine mastitis growing in biofilms. Vet Microbiol, v. 125, p. 141–149, 2007. MELCHIOR, M.B.; VAN OSCH, M.H.J.; GRAAT, R.M.; VAN DUIJKEREN, E.; MEVIUS, D.J.; NIELEN, M.; GAASTRA, W.; FINK-GREMMELS, J. Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: evidence for lack of penicillin-resistance in Agr-type II strains. Vet Microbiol, v. 137, p. 83–89, 2009. MELO, D.A.; COELHO, I. S.; MOTTA, C.C.; ROJAS, A.C.C.M.; DUBENCZUK, F.C.; COELHO, S.M.O.; SOUZA, M.M.S. Impairments of mecA gene detection in bovine Staphylococcus spp. Braz J Microbiol, v. 45, n. 3, p. 1075-1082, 2014. MENDONÇA, E.C.L.; MARQUES, V.F.; MELO, A.D.; ALENCAR, T.A.; COELHO, I.S.; COELHO, S.M.O.; SOUZA, M.M.S. Caracterização fenogenotípica da resistência antimicrobiana em Staphylococcus spp. isolados de mastite bovina. Pesq Vet Bras,v. 31, n. 9, p. 859-864, 2012. MERINO, N.; TOLEDO-ARANA, A.; VERGARA-IRIGARAY, M.; VALLE, J.; SOLANO, C.; CALVO,E.; LOPEZ, J.A.; FOSTER, T.J.; PENADES, J.R.; LASA, I. Protein A-Mediated Multicellular Behavior in Staphylococcus aureus. Journal of Bacteriology, v. 191, n. 3, p. 832–843, 2009. MONTANARO, L.; SPEZIALE, P.; CAMPOCCIA, D.; PIRINI, V.; RAVAIOLI, S.; CANGINI, I.; et al. Polymorphisms of agr locus correspond to distinct genetic patterns of virulence in Staphylococcus aureus clinical isolates from orthopedic implant infections. J Biomed Mater Res A, v. 94, p. 825-832, 2011. MORK, T.; TOLLERSRUD, T.; JORGENSEN, H.J.; KVITLE, B.; WAAGE, S. Genetic diversity of Staphylococcus aureus isolated from bovine intramammary infections in norway. Vet Microbiol, v. 106, p. 65-73, 2005. MOTTA, C.C.; ROJAS, A.C.M.; DUBENCZUK, F.C.; BOTELHO, L.A.B.; MOREIRA, B.M.; COELHO, S.M.O.; COELHO, I.S.; SOUZA, M.M.S. Verification of molecular characterization of coagulase positive Staphylococcus from bovine mastitis with matrix-assisted laser desorption ionization, time-offlight mass spectrometry (MALDI-TOF MS) mass spectrometry. Af. Journ. Microbiol. Res., v. 8, n. 48, p. 3861-3866, 2014. MURAKAMI, K.W.; MINAMIDE, K.; WADA, W.; NAKAMURA, E.; TERAOKA, H.; WATANBE, S. Identification of methicillin resistant strains of staphylococci by polymerase chain reaction. Journal of Clinical Microbiology, v. 29, p. 2240-2244, 1991. NADER FILHO, A.; FERREIRA, L. M.; AMARAL, L. A.; ROSSI JUNIOR, O. D; OLIVEIRA, R. P. Sensibilidade antimicrobiana dos Staphylococcus aureus isolados no leite de vacas com mastite. Arquivos do Instituto Biológico, São Paulo, v. 74, p. 1-4, 2007. O’GARA, J.P. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett, v. 270, p. 179-188, 2007. 64 OLIVEIRA, M.; BEXIGA, R.; NUNES, S.F.; CARNEIRO, C.; CAVACO, L.M.; BERNARDO, F.; VILELA, C.L. Biofilm-forming ability profiling of Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Veterinary Microbiology, v. 118, p. 133–140, 2006. OLIVEIRA, T.M.S. PCR em tempo real: métodos e aplicações (Dissertação) – Aveiro (Portugal): Universidade de Aveiro, 111f., 2010. PIERCE, C.G.; UPPULURI1, P.; TRISTAN1, A.R.; WORMLEY JR., F.L.; MOWAT, E.; RAMAGE, G.; LOPEZ-RIBOT, J.L. A simple and reproducible 96 well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc., v. 3, n. 9, p. 1494–1500, 2008. POTTER, A.; CEOTTO, H.; GIAMBIAGI-DEMARVAL, M.; dos SANTOS, K.R.; NES, I.F.; BASTOS M.C. The gene bap, involved in biofilm production, is present in Staphylococcus spp. strains from nosocomial infections. J Microbiol, v. 47, p. 319-326, 2009. RAZA, A.; MUHAMMAD, G.; SHARIF, S.; ATTA, A. Biofilm producing Staphylococcus aureus and bovine mastitis: a review. Mol Microbiol Res, v. 3, p. 1–8, 2013. REINOSO, E.B. Análisis epidemiológico y molecular de cepas de Staphylococcus aureus de distintos orígenes (Tese) Rio Cuarto, Argentina - UNRC, 199p., 2004. RESCH, A.; ROSENSTEIN, R.; NERZ, C.; GOTZ, F. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Applied and Environmental Microbiology, v. 71, n. 5, p. 2663–2676, 2005. RYDER, V.J.; CHOPRA, I.; O’NEILL, A.J. Increased Mutability of Staphylococci in Biofilms as a Consequence of Oxidative Stress. PLOS ONE, v. 7, e47695, 2012. ROHDE, H.; BURANDT, E.C.; SIEMSSEN, N.; FROMMELT, L.; BURDELSKI, C.; WURSTER, S.; et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials, v. 28, p. 1711-1720, 2007. ROSATO, A.E; KREISWIRTH, B.N; GRAIG, W.A.; EISNER, W.; CLIMO, M.W.; AECHER, G.L. mecA-BlaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrobial Agents Chemotherapy, v.47, p. 1463-1466, 2003. SAEI, H.D. coa types and antimicrobial resistance profile of Staphylococcus aureus isolates from cases of bovine mastitis. Comparative Clinical Pathology, v.21, p. 301-307, 2012. SAMBROOK, J.; FRITSCH, E. F.; MANIATIS, T. Molecular Cloning: a laboratory manual. New York: Cold Spring Harbor Lab. Press, 2002. SAVAGE, V.J.; CHOPRA, I.; O´NEILL, A.J. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Journ. Antimicrob. and Antichem. Agents., v. 57, n. 4, p. 1968-1970, 2013. 65 SCHMITTGEN, T. & LIVAK, K. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, v. 3, n. 6, p. 1101-1108, 2008. SCHMITTGEN, T. & ZAKRAJSEK, B. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. Journal of biochemical and biophysical methods, v. 46, p. 69-81, 2000. SHOPSIN, B.; MATHEMA, B.; ALCABES, P.; SAID-SALIM, B.; LINA, G.; MATSUKA, A.; MARTINEZ, J.; KREISWIRTH, B.N. Prevalence of agr Specificity Groups among Staphylococcus aureus strains colonizing children and their guardians. J Clin Microbiol, v. 41, n. 1, p. 456–459, 2003. SIHTO, H.M.; TASARA, T.; STEPHAN, R.; JOHLER, S. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation. FEMS Microbiol Lett, v. 356, p. 134–140, 2014. SINGH, A.; WALKER, M.; ROUSSEAU, J.; WEESE, J.S. Characterization of the biofilm forming ability of Staphylococcus pseudintermedius from dogs. BMC Veterinary Research, v. 9, n. 93, 2013. STRAUB, J,A,; HERTEL, C.; HAMMES, W.P. A 23S rDNA-targeted polymerase chain reaction-based system for detection of Staphylococcus aureus in meat started cultures and dairy products. J Food Prot, v. 62, p. 1150-1156, 1999. SUDGEN, D. & WINTER, P. Molecular Biomethods Handbook. Humana Press: Springer, 2008. TAN, X.; QIN, N.; WU, C.; SHENG, J.; YANG, R.; ZHENG, B.; MA, J.; LIU, L.; PENG, X.; JIA, A. Transcriptome analysis of the biofilm formed by methicillin susceptible Staphylococcus aureus. Scientific Reports, 5:11997, DOI: 10.1038/srep11997, 2015. TARASZKIEWICZ, A.; FILA, G.; GRINHOLC, M.; NAKONIECZNA, J. Innovative strategies to overcome biofilm resistance. BioMed Research International, Article ID 150653, 13 pages, 2013. THOENDEL, M.; KAVANAUGH, J.S.; FLACK, C.E.; HORSWILL, A.R. Peptide signaling in the Staphylococci. Chem Rev, v. 111, n. 1, p. 117–151, 2012. TITO, T.M.; RODRIGUES, N.M.B.; COELHO, S.M.O.; SOUZA, M.M.S.; ZONTA, E.; COELHO, I.S. Choice of DNA extraction protocols from Gram negative and positive bacteria and directly from the soil. African Journal of Microbiology Research, v. 9, n. 12, p. 863-871, 2015. TOLEDO-ARANA, A.; MERINO, N.; VERGARA-IRIGARAY, M.; DÉBARBOUILLÉ, M.; PENADÉS, J.R.; LASA, I. Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system. J Bacteriol. v. 187, n. 15, p. 5318–5329, 2005. 66 TOLEDO-SILVA, G. Análise da expressão gênica diferencial em ostras-do-pacífico Crassostrea gigas expostas a esgoto doméstico in situ (Dissertação) - Florianópolis: UFSC 94p., 2009. TORMO, M.A.; KNECHT, E.; GÖTZ, F.; LASA, I.; PENADÉS, J.R. Bap dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology, v. 151, p. 2465-2475, 2005. TURKYILMAR, S. & ESKLIZMITLILER, S. Detection of slime factor production and antibiotic resistance in Staphylococcus strains isolated from various animal clinical samples. Turk J Vet Anim Sci., v.30, p.201-206, 2006. VANDECASTEELE, S.J.; PEETERMANS, W.E.; MERCKX, R.R.; RIJNDERS, B.J.A.; ELDERE, J. VAN. Reliability of the ica, aap and atlE genes in the discrimination between invasive, colonizing and contaminant Staphylococcus epidermidis isolates in the diagnosis of catheter-related infections. Clin Microbiol Infect, v. 9, p. 114–119, 2003. VASUDEVAN, P.; NAIR, M.K.M.; ANNAMALAI, T.; VENKITANARAYANA, K.S. Phenotypic and Genotipic characterization of bovine mastitis isolates os Staphylococcus aureus for biofilm formation. Veterinary Microbiology, v.92, p.179-185, 2003. VAUTOR, E.; MAGNONE, V.; RIOS, G.; LE BRIGAND, K.; BERGONIER, D.; LINA, G.; MEUGNIER, H.; BARBRY, P.; THIÉRY, R.; PÉPIN, M. Genetic differences among Staphylococcus aureus isolates from dairy ruminant species: A single-dye DNA microarray approach. Vet Microbiol, v. 133, p. 105-114, 2008. VEENSTRAS G, CREMERS F, DIJK H, FLEER, A. Ultrastructural organization and regulation of a biomaterial adhesion of Staphylococcus epidermidis. J Bacteriol, v.178, p.537-541, 1996. VOJTOV, N.; ROSS, H. F.; NOVICK, R. P. Global repression of exotoxin synthesis by staphylococcal superantigens. Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 99, n. 15, p. 10102-10107, 2002. WATERS, C.M. & BASSLER, B.L. Quorum-Sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol., v.21, p. 319-46, 2005. WELLS, C.L.; HENRY-STANLEY, M.J.; BARNES, A.M.T.; DUNNY, G.M.; HESS, D.J. Relation between antibiotic susceptibility and ultrastructure of Staphylococcus aureus biofilms on surgical suture. Surgical infections, v. 12, n. 4, p. 297-305, 2011. WU, H.; MOSER, C.; WANG, H.Z.; HOIBY, N.; SONG, Z.J. Strategies for combating bacterial biofilm infections. International Journal of Oral Science, v. 7, p. 1–7, 2015. YARWOOD, J.M.; BARTELS, D.J.; VOLPER, E.M.; GREENBERG, E.P. Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol, v. 186, p. 1838–1850, 2004. YIBAO MA; YUANXI XU; YESTREPSKY, B.D.; SORENSON, R.J.; CHEN, M.; LARSEN, S.D.; SUN, H. Novel Inhibitors of Staphylococcus aureus Virulence Gene Expression and Biofilm Formation. PLOS ONE, v. 7, e47255, 2012. 67 ZIEBUHR, W.; KRIMMER, V.; RACHID, S.; LÖSSNER, I.; GÖTZ, F.; HACKER, J. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol, v. 32, p. 345-356, 1999. ZHANG, K.; SPARLING, J.; CHOW, B.L.; ELSAYED, S.; HUSSAIN, Z.; CHURCH, D.L.; GREGSON, D.B.; LOUIE, T.; CONLY, J.M. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. Journal of Clinical Microbiology, v. 42, n 11, p. 4947–4955, 2004. | por |
dc.subject.cnpq | Microbiologia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/6172/2016%20-%20Viviane%20Figueira%20Marques.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/21096/2016%20-%20Viviane%20Figueira%20Marques.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/27413/2016%20-%20Viviane%20Figueira%20Marques.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/33860/2016%20-%20Viviane%20Figueira%20Marques.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/40206/2016%20-%20Viviane%20Figueira%20Marques.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/46622/2016%20-%20Viviane%20Figueira%20Marques.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/53004/2016%20-%20Viviane%20Figueira%20Marques.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/59448/2016%20-%20Viviane%20Figueira%20Marques.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/2065 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-10-03T16:25:38Z No. of bitstreams: 1 2016 - Viviane Figueira Marques.pdf: 1883187 bytes, checksum: 9996d5ea41ecd4f93424c808c4d82ba6 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2017-10-03T16:25:38Z (GMT). No. of bitstreams: 1 2016 - Viviane Figueira Marques.pdf: 1883187 bytes, checksum: 9996d5ea41ecd4f93424c808c4d82ba6 (MD5) Previous issue date: 2016-03-02 | eng |
Appears in Collections: | Doutorado em Ciências Veterinárias |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2016 - Viviane Figueira Marques.pdf | Viviane Figueira Marques | 1.84 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.