Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/9782
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abreu, Daniel Paiva Barros de | |
dc.date.accessioned | 2023-12-21T18:44:13Z | - |
dc.date.available | 2023-12-21T18:44:13Z | - |
dc.date.issued | 2019-11-21 | |
dc.identifier.citation | ABREU, Daniel Paiva Barros de. Inovação frugal aplicada ao desenvolvimento de recursos moleculares para o estudo bioecológico de carrapatos ixodídeos e bactérias Rickettsia spp. associadas em território brasileiro. 2019. 162 f. Tese (Doutorado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9782 | - |
dc.description.abstract | Os estudos acerca da ecologia de carrapatos tradicionalmente enfocaram nos agravos a saúde humana e de animais de companhia e produção, objetivando o desenvolvimento de medidas de prevenção e controle para enfermidades associadas. Recentemente, contudo, houve uma ampliação na aplicabilidade de tais estudos, buscando contextualizar estes ectoparasitas com demais componentes do ecossistema de forma mais abrangente. O parasitismo de animais selvagens e o potencial indicador para fatores bióticos e abióticos associados a emergência e reemergência de enfermidades infecciosas, estão entre as considerações em destaque atualmente. As metodologias empregadas para tais estudos foram também modificadas, ressaltando o acréscimo de ferramentas moleculares às análises morfológicas classicamente empregadas. Em nosso país, os conhecimentos associados a carrapatos e enfermidades por eles transmitidas foram consideravelmente ampliados nas últimas duas décadas, em grande parte devido a utilização de abordagens moleculares. Contudo, o atual período de austeridade na ciência brasileira resultou na estagnação de diversas áreas de pesquisa e desenvolvimento tecnológico em nível nacional, incluindo a ixodologia. Neste contexto, a inovação frugal, onde soluções para a escassez de recursos financeiros, tecnológicos e materiais são desenvolvidas, resultando em alternativas satisfatórias e menos onerosas, pode ser a resposta para enfrentar tais entraves. Assim, o projeto de pesquisa apresentado na presente tese objetivou o desenvolvimento, avaliação, validação e promoção de abordagens moleculares economicamente acessíveis, baseada em inovação frugal. Pretende-se, desta forma, possibilitar a continuidade e expansão de investigações bioecológicas de carrapatos e enfermidades transmitidas por carrapatos no Brasil. O principal resultado de tais esforços consistiu no estabelecimento de ferramentas moleculares altamente eficientes e de custo reduzido para a identificação em nível de espécie de carrapatos ixodídeos e bactérias do gênero Rickettsia associadas. Estas técnicas foram baseadas em dois métodos moleculares amplamente explorados – a reação em cadeia da polimerase (PCR) e o polimorfismo no comprimento de fragmentos de restrição (RFLP) – representando uma alternativa robusta, reprodutível e altamente acessível para a identificação baseada no sequenciamento de nucleotídeos. O novo método pode ser aplicado para áreas chave de pesquisas em bioecologia, incluindo a distribuição de populações, determinação de hospedeiros acometidos e associações com potenciais patógenos, competência vetorial e determinação da influência da microbiota sobre a fisiologia e comportamento do ectoparasito. A fim de disseminar e promover a adoção destes recursos, uma plataforma on-line foi desenvolvida e será registrada sob a marca “TickCutter”. Com a disponibilização desta ferramenta, prevê-se melhor comunicação dentre os diferentes grupos atuantes em ixodologia e riquetsiologia no Brasil e países da América do Sul. Detalhes acerca do desenvolvimento e avaliação dos protocolos de identificação molecular são reportados no presente documento. Pretende-se, a partir da adoção das novas metodologias por outros grupos de pesquisa, estimular a expansão no estudo da bioecologia de ixodídeos no Brasil e assim, promover contribuições significativas para nossa compreensão nesta importante área de estudo. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Carrapato | por |
dc.subject | Amblyomma | por |
dc.subject | Rickettsia | por |
dc.subject | PCR-RFLP | por |
dc.subject | website | por |
dc.subject | Tick | eng |
dc.title | Inovação frugal aplicada ao desenvolvimento de recursos moleculares para o estudo bioecológico de carrapatos ixodídeos e bactérias Rickettsia spp. associadas em território brasileiro | por |
dc.title.alternative | Frugal innovation applied on the development of molecular tools for the bioecological study of ixodid ticks and associated Rickettsia spp. bacteria in brazilian territory | eng |
dc.type | Tese | por |
dc.description.abstractOther | The Studies on the ecology of ticks were traditionally conducted to generate information on health risks to humans and companion/production animals, with the principal objective of developing preventative and controlling measures. Recently, however, there has been an extension on the applicability of these ecological studies, with the contextualization of these ectoparasites with other ecosystem components. The role of ticks as parasites for wild animals and their potential to indicate biotic and abiotic drivers for the emergence and re-emergence of infectious diseases, are among the current considerations. The methodologies used for such studies were also modified, emphasizing the addition of molecular biology-based identifications of ticks and their associated microbes to the classical morphological characterization. In Brazil, the knowledge about ticks and tick-borne diseases was considerably expanded in the last two decades, primarily because of the molecular approaches applied. However, the budget cuts on scientific research currently existing in Brazil resulted in the stagnation of many areas of national research and technological development, including ixodology. In this context, “frugal innovation”, meaning a resource-scarce solution that is designed and implemented despite financial, technological, material or other resources constrains, could be the answer to overcome the barriers. Thus, the research presented in this thesis was elaborated with the objectives of developing, evaluating, validating and promoting the application of economically accessible molecular resources, based on frugal innovation. In this way, we aim to permit the continuation and expansion of bioecological investigations of Brazilian ticks and tick-borne pathogens. The principal outcome of this effort was the establishment of highly efficient and cost-effective molecular approaches for the species-level identification of ticks and bacteria of the genus Rickettsia associated with them. These techniques were based on two widely employed molecular methods, the polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis (RFLP), representing a robust, reproducible and highly accessible alternative to nucleotide sequencing-based specieslevel identification. The novel methods can be applied to key areas of bioecological research, including the distribution of ticks population, determination of host range, detection of associations with potential pathogens, vector competence, and determination of the influence of the microbiota upon tick physiology and behavior. In order to disseminate and promote the adoption of these resources, an internet-based platform was designed and will be registered under the trademark of “TickCutter”. The existence of this web-based tool is predicted to result in increased communication between the different stakeholders involved in tick research within Brazil and neighboring countries in South America. Details of the development and evaluation of the systems are reported herein. It is envisioned that the adoption of this technology by other research groups will stimulate an expansion in the study of the bioecology of hard ticks in Brazil, and as such will make significant contributions to our comprehension of this important area of scientific study | eng |
dc.contributor.advisor1 | McIntosh, Douglas | |
dc.contributor.advisor1ID | CPF: 054.046.627-19 | por |
dc.contributor.referee1 | Mclntosh, Douglas | |
dc.contributor.referee2 | Gazêta, Gilberto Salles | |
dc.contributor.referee3 | Santos, Huarrison Azevedo | |
dc.contributor.referee4 | Angelo, Isabele da Costa | |
dc.contributor.referee5 | Ogrzewalska, Maria Halina | |
dc.creator.ID | CPF: 116.083.757-06 | por |
dc.creator.ID | Orcid ID: https://orcid.org/0000-0002-3592-9106 | por |
dc.creator.Lattes | http://lattes.cnpq.br/7292090535824309 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Veterinária | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Veterinárias | por |
dc.relation.references | ABDAD, M.Y. et al. A Concise Review of the Epidemiology and Diagnostics of Rickettsioses: Rickettsia and Orientia spp. Journal of Clinical Microbiology, v. 56, n. 8, p. 1–10, 2018. ABRAHAM, N.M. et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proceedings of the National Academy of Sciences, v. 114, n. 5, p. E781–E790, 2017. ABREU, D.P.B. et al. Two for the price of one: Co-infection with Rickettsia bellii and spotted fever group Rickettsia in Amblyomma (Acari: Ixodidae) ticks recovered from wild birds in Brazil. Ticks and Tick-borne Diseases, v. 10, n. 6, p. 101266, 2019. ALHASSAN, A. et al. Rickettsia rickettsii Whole-Cell Antigens Offer Protection against Rocky Mountain Spotted Fever in the Canine Host. Infection and Immunity, v. 87, n. 2, p. 1–16, 2018. ALMEIDA, A.P. et al. A novel Rickettsia infecting Amblyomma dubitatum ticks in Brazil. Ticks and Tick-borne Diseases, v. 2, n. 4, p. 209–212, 2011. ALTSCHUL, S.F. et al. Basic local alignment search tool. Journal of Molecular Biology, v. 215, n. 3, p. 403–410, 1990. ANH, D.N. et al. Identification of Fasciola Species Isolates from Nghe An Province, Vietnam, Based on ITS1 Sequence of Ribosomal DNA Using a Simple PCR-RFLP Method. Journal of Parasitology Research, v. 2018, p. 1–6, 2018. APANASKEVICH, D.A.; BERMÚDEZ, S.E. Description of a new species of Ixodes Latreille, 1795 (Acari: Ixodidae) and redescription of I. lasallei Méndez & Ortiz, 1958, parasites of agoutis and pacas (Rodentia: Dasyproctidae, Cuniculidae) in Central and South America. Systematic Parasitology, v. 94, n. 4, p. 463–475, 2017. APPERSON, C.S. et al. Tick-Borne Diseases in North Carolina: Is “Rickettsia amblyommii” a Possible Cause of Rickettsiosis Reported as Rocky Mountain Spotted Fever? Vector-Borne and Zoonotic Diseases, v. 8, n. 5, p. 597–606, 2008. ARAGÃO, H. DE B. Ixodidas brasileiros e de alguns paizes limitrophes. Memórias do Instituto Oswaldo Cruz, v. 31, n. 4, p. 759–843, 1936. ARAGÃO, H.; FONSECA, F. DA. Notas de ixodologia: VIII. Lista e chave para os representantes da fauna ixodológica brasileira: notas de ixolodologia. Memórias do Instituto Oswaldo Cruz, v. 59, n. 2, p. 115–129, 1961. ARAYA-ANCHETTA, A. et al. Thirty years of tick population genetics: A comprehensive review. Infection, Genetics and Evolution, v. 29, p. 164–179, 2015. ASH, A. et al. Morphological and molecular description of Ixodes woyliei n. sp. (Ixodidae) with consideration for co-extinction with its critically endangered marsupial host. Parasites & Vectors, v. 10, n. 1, p. 70, 2017. AYALA, F.J. Darwin and the Scientific Method. PNAS, v. 106, suppl. 1, p. 10033-10039, 2009. BAGHERI, G.; LEHNER, J.D.; ZHONG, J. Enhanced detection of Rickettsia species in Ixodes pacificus using highly sensitive fluorescence in situ hybridization coupled with Tyramide Signal Amplification. Ticks and Tick-borne Diseases, v. 8, n. 6, p. 915–921, 2017. BARBIERI, A.R.M. et al. Species richness and seasonal dynamics of ticks with notes on rickettsial infection in a Natural Park of the Cerrado biome in Brazil. Ticks and Tick-borne Diseases, v. 10, n. 2, p. 442–453, 2019. BARBIERI, F.S. et al. Description of the larva of Amblyomma calcaratum Neumann, 1899 (Acari: Ixodidae) by light and scanning electron microscopy. Ticks and Tick-borne Diseases, v. 4, n. 6, p. 531–536, 2013. BARNISH, G.; CREWE, W.; THEAKSTON, R.D. Parasitologists lost? Trends in Parasitology, v. 22, n. 10, p. 454–455, 2006. BARRERO, R.A. et al. Gene-enriched draft genome of the cattle tick Rhipicephalus microplus: assembly by the hybrid Pacific Biosciences/Illumina approach enabled analysis of the highly repetitive genome. International Journal for Parasitology, v. 47, n. 9, p. 569–583, 2017. BARROS-BATTESTI, D.M. et al. Ixodes (Multidentatus) paranaensis n. sp. (Acari: Ixodidae) a parasite of Streptoprocne biscutata (Sclater 1865) (Apodiformes: Apodidae) birds in Brazil. Memórias do Instituto Oswaldo Cruz, v. 98, n. 1, p. 93–102, 2003. BARROS-BATTESTI, D.M. et al. Ornithodoros faccinii n. sp. (Acari: Ixodida: Argasidae) parasitizing the frog Thoropa miliaris (Amphibia: Anura: Cycloramphidae) in Brazil. Parasites & Vectors, v. 8, n. 1, p. 268, 2015. BEATI, L. et al. Phylogeography and Demographic History of Amblyomma variegatum (Fabricius) (Acari: Ixodidae), the Tropical Bont Tick. Vector-Borne and Zoonotic Diseases, v. 12, n. 6, p. 514–525, 2012. BEATI, L. et al. Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation. BMC Evolutionary Biology, v. 13, n. 1, p. 267, 2013. BEATI, L.; KEIRANS, J.E. Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters. The Journal of parasitology, v. 87, n. 1, p. 32– 48, 2001. BEATI, L.; KLOMPEN, H. Phylogeography of Ticks (Acari: Ixodida). Annual Review of Entomology, v. 64, n. 1, p. 379–397, 2019. BEELER, E. et al. A Focus of Dogs and Rickettsia massiliae–Infected Rhipicephalus sanguineus in California. The American Journal of Tropical Medicine and Hygiene, v. 84, n. 2, p. 244–249, 2011. BEIER-SEXTON, M. et al. The Family Rickettsiaceae. In: GOLDMAN, E.; GREEN, L. H. (Eds.). Practical Handbook of Microbiology. 3rd. ed. Florida: CRC Press, 2015. p. 547–566. BELLI, A. et al. Ticks infected via co-feeding transmission can transmit Lyme borreliosis to vertebrate hosts. Scientific Reports, v. 7, n. 1, p. 5006, 2017. BENELLI, G. Managing mosquitoes and ticks in a rapidly changing world – Facts and trends. Saudi Journal of Biological Sciences, v. 26, n. 5, p. 921–929, 2019. BERG, H. Restriction Fragment Length Polymorphism Analysis of PCR-Amplified Fragments (PCR-RFLP) and Gel Electrophoresis - Valuable Tool for Genotyping and Genetic Fingerprinting. In: MAGDELDIN, S. (Ed.). Gel Electrophoresis - Principles and Basics. Rijeka: InTech, 2012. p. 315–334. BERRADA, Z.L. et al. Rickettsia rickettsii (Rickettsiales: Rickettsiaceae) in Amblyomma americanum (Acari: Ixodidae) From Kansas. Journal of Medical Entomology, v. 48, n. 2, p. 461–467, 2011. BEZERRA, M.C.F. et al. Seropositivity for Rickettsia spp. and Ehrlichia spp. in the human population of Mato Grosso, Central-Western Brazil. Revista da Sociedade Brasileira de Medicina Tropical, v. 50, n. 3, p. 399–403, 2017. BIGGS, H.M. et al. Diagnosis and Management of Tickborne Rickettsial Diseases: Rocky Mountain Spotted Fever and Other Spotted Fever Group Rickettsioses, Ehrlichioses, and Anaplasmosis — United States. MMWR. Recommendations and Reports, v. 65, n. 2, p. 1– 44, 2016. BILLETER, S.A. et al. Detection of “Rickettsia amblyommii” in Association with a Tick Bite Rash. Vector-Borne and Zoonotic Diseases, v. 7, n. 4, p. 607–610, 2007. BITENCOURTH, K. et al. Amblyomma sculptum: genetic diversity and rickettsias in the Brazilian Cerrado biome. Medical and Veterinary Entomology, v. 31, n. 4, p. 427–437, 2017. BITENCOURTH, K. et al. Genetic diversity, population structure and rickettsias in Amblyomma ovale in areas of epidemiological interest for spotted fever in Brazil. Medical and Veterinary Entomology, v. 33, n. 2, p. 256–268, 2019. BJÖRK, B.-C.; SOLOMON, D. The publishing delay in scholarly peer-reviewed journals. Journal of Informetrics, v. 7, n. 4, p. 914–923, 2013. BLAIR, P.J. et al. Characterization of Spotted Fever Group Rickettsiae in Flea and Tick Specimens from Northern Peru. Journal of Clinical Microbiology, v. 42, n. 11, p. 4961–4967, 2004. BLANTON, L.S. The Rickettsioses. Infectious Disease Clinics of North America, v. 33, n. 1, p. 213–229, 2019. BOINAS, F.S. et al. The Persistence of African Swine Fever Virus in Field-Infected Ornithodoros erraticus during the ASF Endemic Period in Portugal. PLoS ONE, v. 6, n. 5, p. e20383, 2011. BONNET, S.I. et al. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission. Frontiers in Cellular and Infection Microbiology, v. 7, n. June, p. 1–14, 2017. BOULANGER, N. et al. Ticks and tick-borne diseases. Médecine et Maladies Infectieuses, p. 1–11, 2019. BOUYER, D.H. et al. Rickettsia felis: molecular characterization of a new member of the spotted fever group. International Journal of Systematic and Evolutionary Microbiology, v. 51, n. 2, p. 339–347, 2001. BROWN, L.D.; MACALUSO, K.R. Rickettsia felis, an Emerging Flea-Borne Rickettsiosis. Current Tropical Medicine Reports, v. 3, n. 2, p. 27–39, 2016. BUDACHETRI, K. et al. The tick endosymbiont Candidatus Midichloria mitochondrii and selenoproteins are essential for the growth of Rickettsia parkeri in the Gulf Coast tick vector. Microbiome, v. 6, n. 1, p. 141, 2018. BURGDORFER, W. et al. Rhipicephalus sanguineus: Vector of a new spotted fever group rickettsia in the United States. Infection and Immunity, v. 12, n. 1, p. 205–10, 1975. BURGDORFER, W.; HAYES, S.F., MAVROS, A.J. Nonpathogenic rickettsiae in Dermacentor andersoni: a limiting factor for the distribution of Rickettsia rickettsii. In: BURGDORFER, W.; ANACKER, R. (Ed.). . Rickettsiae and Rickettsial Diseases. New York: Academic Press, 1981. p. 585–94. BURGER, T.D.; SHAO, R.; BARKER, S.C. Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Molecular Phylogenetics and Evolution, v. 76, n. 1, p. 241–253, 2014. CABEZAS-CRUZ, A. et al. Tick–Pathogen Interactions: The Metabolic Perspective. Trends in Parasitology, v. 35, n. 4, p. 316–328, 2019. CABEZAS-CRUZ, A.; VALDÉS, J.J. Are ticks venomous animals? Frontiers in Zoology, v. 11, n. 1, p. 47, 2014. CABEZAS-CRUZ, A.; VAYSSIER-TAUSSAT, M.; GREUB, G. Tick-borne pathogen detection: what’s new? Microbes and Infection, v. 20, n. 7–8, p. 441–444, 2018. CALDEIRA, R.L. et al. Characterization of South American Snails of the Genus Biomphalaria (Basommatophora : Planorbidae ) and Schistosoma mansoni ( Platyhelminthes : Trematoda ) in Molluscs by PCR-RFLP. v. 2016, p. 5–9, 2016. CARMICHAEL, J.R.; FUERST, P.A. Molecular Detection of Rickettsia bellii, Rickettsia montanensis, and Rickettsia rickettsii in a Dermacentor variabilis Tick from Nature. Vector- Borne and Zoonotic Diseases, v. 10, n. 2, p. 111–115, 2010. CASADEVALL, A. Cards of Virulence and the Global Virulome for Humans. Microbe, v. 1, n. 8, p. 359–364, 2006. CENTER FOR DISEASE CONTROL AND PREVENTION. Rocky Mountain Spotted Fever (RMSF). Disponível em: https://www.cdc.gov/rmsf/index.html. Acesso em: 19 out. 2019 CERUTTI, F. et al. The microbiota of hematophagous ectoparasites collected from migratory birds. PLOS ONE, v. 13, n. 8, p. e0202270, 2018. CHEN, L.F.; SEXTON, D.J. What’s New in Rocky Mountain Spotted Fever? Infectious Disease Clinics of North America, v. 22, n. 3, p. 415–432, 2008. CHITIMIA-DOBLER, L. et al. Amblyomma birmitum a new species of hard tick in Burmese amber. Parasitology, v. 144, n. 11, p. 1441–1448, 2017. CHOI, Y.-J. et al. Evaluation of PCR-Based Assay for Diagnosis of Spotted Fever Group Rickettsiosis in Human Serum Samples. Clinical and Vaccine Immunology, v. 12, n. 6, p. 759–763, 2005. CHUNG, M. et al. Using Core Genome Alignments To Assign Bacterial Species. mSystems, v. 3, n. 6, p. 328021, 2018. CICUTTIN, G.L. et al. Molecular characterization of Rickettsia massiliae and Anaplasma platys infecting Rhipicephalus sanguineus ticks and domestic dogs, Buenos Aires (Argentina). Ticks and Tick-borne Diseases, v. 5, n. 5, p. 484–488, 2014. CLARK, K. et al. GenBank. Nucleic Acids Research, v. 44, n. D1, p. D67–D72, 2016. COLWELL, D.D.; DANTAS-TORRES, F.; OTRANTO, D. Vector-borne parasitic zoonoses: Emerging scenarios and new perspectives. Veterinary Parasitology, v. 182, n. 1, p. 14–21, 2011. COSTA, A.P. DA et al. A serological and molecular survey of Babesia vogeli, Ehrlichia canis and Rickettsia spp. among dogs in the state of Maranhão, northeastern Brazil. Revista Brasileira de Parasitologia Veterinária, v. 24, n. 1, p. 28–35, 2015. COSTA, F.B. et al. New records of Rickettsia bellii-infected ticks in Brazil. Brazilian Journal of Veterinary Research and Animal Science, v. 54, n. 1, p. 92–95, 2017a. COSTA, F.B. et al. Rickettsia amblyommatis infecting ticks and exposure of domestic dogs to Rickettsia spp. in an Amazon-Cerrado transition region of northeastern Brazil. PLOS ONE, v. 12, n. 6, p. e0179163, 2017b. CRUICKSHANK, R.H. Molecular markers for the phylogenetics of mites and ticks. Systematic and Applied Acarology, v. 7, n. 1, p. 3–14, 2002. DA COSTA, P.S.G.; BRIGATTE, M.E.; GRECO, D.B. Antibodies to Rickettsia rickettsii, Rickettsia typhi, Coxiella burnetii, Bartonella henselae, Bartonella quintana and Ehrlichia chaffeensis among healthy population in Minas Gerais, Brazil. Memorias do Instituto Oswaldo Cruz, v. 100, n. 8, p. 853–859, 2005. DA CUNHA AMARAL, H.L. et al. Community of arthropod ectoparasites of two species of Turdus Linnaeus, 1758 (Passeriformes: Turdidae) in southern Rio Grande do Sul, Brazil. Parasitology Research, v. 112, n. 2, p. 621–628, 2013. DALL’AGNOL, B. et al. “Candidatus Rickettsia asemboensis” in Rhipicephalus sanguineus ticks, Brazil. Acta Tropica, v. 167, p. 18–20, 2017. DANTAS-TORRES, F. Ticks on domestic animals in Pernambuco, Northeastern Brazil. Revista Brasileira de Parasitologia Veterinária, v. 18, n. 03, p. 22–28, 2009. DANTAS-TORRES, F. et al. Exposure of small mammals to ticks and rickettsiae in Atlantic Forest patches in the metropolitan area of Recife, North-eastern Brazil. Parasitology, v. 139, n. 1, p. 83–91, 2012a. DANTAS-TORRES, F. et al. Description of a New Species of Bat-Associated Argasid Tick (Acari: Argasidae) from Brazil. Journal of Parasitology, v. 98, n. 1, p. 36–45, 2012b. DANTAS-TORRES, F. et al. Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: Updated species checklist and taxonomic keys. Ticks and Tick-borne Diseases, v. 10, n. 6, p. 101252, 2019. DANTAS-TORRES, F.; CASTILHO ONOFRIO, V.; BARROS-BATTESTI, D.M. The ticks (Acari: Ixodida: Argasidae, Ixodidae) of Brazil. Systematic and Applied Acarology, v. 14, n. 1, p. 30, 2009. DANTAS-TORRES, F.; CHOMEL, B.B.; OTRANTO, D. Ticks and tick-borne diseases: a One Health perspective. Trends in Parasitology, v. 28, n. 10, p. 437–446, 2012c. DE BONI, R.B. et al. Internet-based HIV self-testing program to increase HIV testing uptake for men who have sex with men in Brazil (Preprint). Journal of Medical Internet Research, v. 21, 2019. DE LA FUENTE, J. et al. Prevalence of tick-borne pathogens in ixodid ticks (Acari: Ixodidae) collected from European wild boar (Sus scrofa) and Iberian red deer (Cervus elaphus hispanicus) in central Spain. European Journal of Wildlife Research, v. 50, n. 4, p. 187–196, 2004. DE LA FUENTE, J. et al. Flying ticks: anciently evolved associations that constitute a risk of infectious disease spread. Parasites & Vectors, v. 8, n. 1, p. 538, 2015. DE LA FUENTE, J. et al. Tick Genome Assembled: New Opportunities for Research on Tick- Host-Pathogen Interactions. Frontiers in Cellular and Infection Microbiology, v. 6, n. September, p. 10–13, 2016. DE LA FUENTE, J. et al. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Frontiers in Cellular and Infection Microbiology, v. 7, n. 7–8, p. 401–409, 2017. DE LIMA, P.H.C. et al. Sequencing and comparative analysis of the Amblyomma sculptum mitogenome. Veterinary Parasitology, v. 247, p. 121–128, 2017. DE OLIVEIRA, S.V. et al. An update on the epidemiological situation of spotted fever in Brazil. Journal of Venomous Animals and Toxins including Tropical Diseases, v. 22, n. 1, p. 22, 2016. DE OLIVEIRA, S.V. et al. Human parasitism and toxicosis by Ornithodoros rietcorreai (Acari: Argasidae) in an urban area of Northeastern Brazil. Ticks and Tick-borne Diseases, v. 9, n. 6, p. 1494–1498, 2018. DELISLE, J. et al. Human Infections by Multiple Spotted Fever Group Rickettsiae in Tennessee. The American Journal of Tropical Medicine and Hygiene, v. 94, n. 6, p. 1212– 1217, 2016. DI LECCE, I. et al. Patterns of Midichloria infection in avian-borne African ticks and their trans-Saharan migratory hosts. Parasites & Vectors, v. 11, n. 1, p. 106, 2018. DIOP, A.; RAOULT, D.; FOURNIER, P.-E. Rickettsial genomics and the paradigm of genome reduction associated with increased virulence. Microbes and Infection, v. 20, n. 7–8, p. 401– 409, 2018. DO AMARAL, R.B. et al. Molecular detection of Bartonella spp. and Rickettsia spp. in bat ectoparasites in Brazil. PLOS ONE, v. 13, n. 6, p. e0198629, 2018. DOKIANAKIS, E. et al. DNA sequencing confirms PCR-RFLP identification of wild caught Larroussius sand flies from Crete and Cyprus. Acta Tropica, v. 164, p. 314–320, 2016. DORAJOO, S.R. et al. Optimizing Vancomycin Dosing in Chronic Kidney Disease by Deriving and Implementing a Web-Based Tool Using a Population Pharmacokinetics Analysis. Frontiers in Pharmacology, v. 10, p. 1–11, 2019. DOUGHERTY, E.R. et al. Paradigms for parasite conservation. Conservation Biology, v. 30, n. 4, p. 724–733, 2016. EBEL, G.D.; KRAMER, L.D. Short Report: Duration of Tick Attachment Required for Transmission of Powassan Virus by Deer Ticks. The American Journal of Tropical Medicine and Hygiene, v. 71, n. 3, p. 268–271, 2004. EL KARKOURI, K. et al. Multi-omics Analysis Sheds Light on the Evolution and the Intracellular Lifestyle Strategies of Spotted Fever Group Rickettsia spp. Frontiers in Microbiology, v. 8, n. JUL, p. 1–16, 2017. ELLIOTT, K.C. et al. Conceptions of Good Science in Our Data-Rich World. BioScience, v. 66, n. 10, p. 880–889, 2016. ELLISON, D.W. et al. Genomic Comparison of Virulent Rickettsia rickettsii Sheila Smith and Avirulent Rickettsia rickettsii Iowa. Infection and Immunity, v. 76, n. 2, p. 542–550, 2008. EREMEEVA, M.; YU, X.; RAOULT, D. Differentiation among spotted fever group rickettsiae species by analysis of restriction fragment length polymorphism of PCR-amplified DNA. Journal of Clinical Microbiology, v. 32, n. 3, p. 803–810, 1994. EREMEEVA, M.E. et al. Isolation and Identification of Rickettsia massiliae from Rhipicephalus sanguineus Ticks Collected in Arizona. Applied and Environmental Microbiology, v. 72, n. 8, p. 5569–5577, 2006. ESTEVE-GASSENT, M.D. et al. Translating ecology, physiology, biochemistry, and population genetics research to meet the challenge of tick and tick-borne diseases in North America. Archives of Insect Biochemistry and Physiology, v. 92, n. 1, p. 38–64, 2016. ESTRADA-PEÑA, A. et al. The Amblyomma maculatum Koch, 1844 (Acari: Ixodidae: Amblyomminae) tick group: diagnostic characters, description of the larva of A. parvitarsum Neumann, 1901, 16S rDNA sequences, distribution and hosts. Systematic Parasitology, v. 60, n. 2, p. 99–112, 2005. ESTRADA-PEÑA, A. et al. Research on the ecology of ticks and tick-borne pathogens— methodological principles and caveats. Frontiers in Cellular and Infection Microbiology, v. 3, n. August, p. 1–12, 2013. ESTRADA-PEÑA, A. et al. Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Scientific Reports, v. 5, n. 1, p. 10361, 2015. ESTRADA-PEÑA, A. et al. A comparative test of ixodid tick identification by a network of European researchers. Ticks and Tick-borne Diseases, v. 8, n. 4, p. 540–546, 2017a. ESTRADA-PEÑA, A.; DE LA FUENTE, J. The ecology of ticks and epidemiology of tickborne viral diseases. Antiviral Research, v. 108, n. 1, p. 104–128, 2014. ESTRADA-PEÑA, A.; DE LA FUENTE, J.; CABEZAS-CRUZ, A. Functional Redundancy and Ecological Innovation Shape the Circulation of Tick-Transmitted Pathogens. Frontiers in Cellular and Infection Microbiology, v. 7, n. May, p. 1–11, 2017b. FACCINI-MARTÍNEZ, Á.A. et al. Syndromic classification of rickettsioses: an approach for clinical practice. International Journal of Infectious Diseases, v. 28, p. 126–139, 2014. FERIA-ARROYO, T.P. et al. Implications of climate change on the distribution of the tick vector Ixodes scapularis and risk for Lyme disease in the Texas-Mexico transboundary region. Parasites & Vectors, v. 7, n. 1, p. 199, 2014. FERRARI, F.A.G. et al. Isolation of “Candidatus Rickettsia andeanae” (Rickettsiales: Rickettsiaceae) in Embryonic Cells of Naturally Infected Amblyomma maculatum (Ixodida: Ixodidae). Journal of Medical Entomology, v. 50, n. 5, p. 1118–1125, 2013. FONG, P. et al. In Silico and In Vitro Anti-Helicobacter pylori Effects of Combinations of Phytochemicals and Antibiotics. Molecules, v. 24, n. 19, p. 3608, 2019. FOURNIER, P.-E. et al. Gene Sequence-Based Criteria for Identification of New Rickettsia Isolates and Description of Rickettsia heilongjiangensis sp. nov. Journal of Clinical Microbiology, v. 41, n. 12, p. 5456–5465, 2003. FOURNIER, P.-E. et al. From culturomics to taxonomogenomics: A need to change the taxonomy of prokaryotes in clinical microbiology. Anaerobe, v. 36, p. 73–78, 2015. FUKUNAGA, M. et al. Characterization of spirochetes isolated from ticks (Ixodes tanuki, Ixodes turdus, and Ixodes columnae) and comparison of the sequences with those of Borrelia burgdorferi sensu lato strains. Applied and environmental microbiology, v. 62, n. 7, p. 2338– 44, 1996. GAGE, K.L. et al. DNA Typing of Rickettsiae in Naturally Infected Ticks Using a Polymerase Chain Reaction/Restriction Fragment Length Polymorphism System. The American Journal of Tropical Medicine and Hygiene, v. 50, n. 2, p. 247–260, 1994. GARCÍA-GARCÍA, J.C. et al. A Patient from Argentina Infected with Rickettsia massiliae. The American Journal of Tropical Medicine and Hygiene, v. 82, n. 4, p. 691–692, 2010. GARCIA, M.V. et al. Environmentally associated ticks (Acari: Ixodidae) in Campo Grande, Mato Grosso do Sul, Brazil. Revista Brasileira de Parasitologia Veterinária, v. 22, n. 1, p. 124–128, 2013. GELLER, J. et al. Tick-Borne Pathogens in Ticks Feeding on Migratory Passerines in Western Part of Estonia. Vector-Borne and Zoonotic Diseases, v. 13, n. 7, p. 443–448, 2013. GIANIZELLA, S.L. et al. Ticks (Acari: Ixodidae) of the state of Amazonas, Brazil. Experimental and Applied Acarology, v. 74, n. 2, p. 177–183, 2018. GIBNEY, E. Brazilian science paralysed by economic slump. Nature, v. 526, n. 7571, p. 16– 17, 2015. GILLESPIE, J.J. et al. Plasmids and Rickettsial Evolution: Insight from Rickettsia felis. PLoS ONE, v. 2, n. 3, p. e266, 2007. GOMEZ-BARROSO, D. et al. Mediterranean spotted fever rickettsiosis in Italy, 2001–2015: Spatio-temporal distribution based on hospitalization records. Ticks and Tick-borne Diseases, v. 10, n. 1, p. 43–50, 2019. GONÇALVES, L.R. et al. Study on coinfecting vector-borne pathogens in dogs and ticks in Rio Grande do Norte, Brazil. Revista Brasileira de Parasitologia Veterinária, v. 23, n. 3, p. 407–412, 2014. GOODRICH, J.K. et al. Conducting a Microbiome Study. Cell, v. 158, n. 2, p. 250–262, 2014. GRAY, J.S. et al. Effects of Climate Change on Ticks and Tick-Borne Diseases in Europe. Interdisciplinary Perspectives on Infectious Diseases, v. 2009, p. 1–12, 2009. GREAY, T.L. et al. Recent insights into the tick microbiome gained through next-generation sequencing. Parasites & Vectors, v. 11, n. 1, p. 12, 2018. GREER, A.; NG, V.; FISMAN, D. Climate change and infectious diseases in North America: the road ahead. CMAJ : Canadian Medical Association Journal, v. 178, n. 6, p. 715–22, 2008. GRISI, L. et al. Reassessment of the potential economic impact of cattle parasites in Brazil. Revista Brasileira de Parasitologia Veterinária, v. 23, n. 2, p. 150–156, 2014. GRUHN, K.D. et al. Evaluation of rickettsial infection in free-range capybaras (Hydrochoerus hydrochaeris Linnaeus, 1766) (Rodentia: Caviidae) and ticks (Acari: Ixodidae) in the Western Amazon, Brazil. Ticks and Tick-borne Diseases, v. 10, n. 5, p. 981–986, 2019. GUGLIELMONE, A.A. et al. Ticks (Ixodidae) on humans in South America. Experimental and Applied Acarology, v. 40, n. 2, p. 83–100, 2006. GUGLIELMONE, A.A.; NAVA, S. Hosts of Amblyomma dissimile Koch, 1844 and Amblyomma rotundatum Koch, 1844 (Acari: Ixodidae). Zootaxa, v. 2541, n. 1, p. 27, 2010. GUGLIELMONE, A.A.; ROBBINS, R.G. Hard Ticks (Acari: Ixodida: Ixodidae) Parasitizing Humans. Cham: Springer International Publishing, 2018. 314 p. GULIA-NUSS, M. et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications, v. 7, n. 1, p. 10507, 2016. GUO, T. et al. Ixodes kangdingensis (Acari: Ixodidae), a new species from the Siberian weasel, Mustela sibirica (Carnivora: Mustelidae) in China. Parasitology Open, v. 3, p. e7, 2017. GURFIELD, N. et al. Endosymbiont interference and microbial diversity of the Pacific coast tick, Dermacentor occidentalis , in San Diego County, California. PeerJ, v. 5, p. e3202, 2017. HALAJIAN, A. et al. Detection of zoonotic agents and a new Rickettsia strain in ticks from donkeys from South Africa: Implications for travel medicine. Travel Medicine and Infectious Disease, v. 26, n. May, p. 43–50, 2018. HAMER, S.A.; CURTIS-ROBLES, R.; HAMER, G.L. Contributions of citizen scientists to arthropod vector data in the age of digital epidemiology. Current Opinion in Insect Science, v. 28, p. 98–104, 2018. HASLE, G. Transport of ixodid ticks and tick-borne pathogens by migratory birds. Frontiers in Cellular and Infection Microbiology, v. 3, n. September, p. 1–6, 2013. HAWLENA, H. et al. The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks. The ISME Journal, v. 7, n. 1, p. 221–223, 2013. HEBERT, P.D.N. et al. Identification of Birds through DNA Barcodes. PLoS Biology, v. 2, n. 10, p. e312, 2004. HECHT, J.A. et al. Development of a Rickettsia bellii- Specific TaqMan Assay Targeting the Citrate Synthase Gene. Journal of Medical Entomology, v. 53, n. 6, p. 1492–1495, 2016. HELMY, M.; AWAD, M.; MOSA, K.A. Limited resources of genome sequencing in developing countries: Challenges and solutions. Applied & Translational Genomics, v. 9, p. 15–19, 2016. HEYLEN, D.J.A.; MATTHYSEN, E. Contrasting detachment strategies in two congeneric ticks (Ixodidae) parasitizing the same songbird. Parasitology, v. 137, n. 4, p. 661–667, 2010. HIRUNKANOKPUN, S. et al. Horizontal transmission of Rickettsia felis between cat fleas, Ctenocephalides felis. Molecular Ecology, v. 20, n. 21, p. 4577–4586, 2011. HOOSHYAR, H. et al. Molecular identification of Sarcocystis species in raw hamburgers using PCR–RFLP method in Kashan, central Iran. Journal of Parasitic Diseases, v. 41, n. 4, p. 1001– 1005, 2017. HORAK, I.G.; CAMICAS, J.-L.; KEIRANS, J.E. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida): A World List of Valid Tick Names. Experimental and Applied Acarology, v. 28, n. 1–4, p. 27–54, 2002. HORTA, M.C. et al. Prevalence of Rickettsia felis in the Fleas Ctenocephalides felis felis and Ctenocephalides canis from Two Indian Villages in Sao Paulo Municipality, Brazil. Annals of the New York Academy of Sciences, v. 1078, n. 1, p. 361–363, 2006a. HORTA, M.C. et al. Natural Infection, Transovarial Transmission, and Transstadial Survival of Rickettsia bellii in the Tick Ixodes loricatus (Acari: Ixodidae) from Brazil. Annals of the New York Academy of Sciences, v. 1078, n. 1, p. 285–290, 2006b. HORTA, M.C. et al. Rickettsia bellii in Amblyomma rotundatum ticks parasitizing Rhinella jimi from northeastern Brazil. Microbes and Infection, v. 17, n. 11–12, p. 856–858, 2015. HOSSAIN, M. Frugal innovation: A review and research agenda. Journal of Cleaner Production, v. 182, p. 926-936, 2018. HOSSAIN, M.; SIMULA, H.; HALME, M. Can frugal go global? Diffusion patterns of frugal innovation. Technology in Society, v. 46, p. 132-139, 2016. HU, S.Y. et al. Knowledge and prevention of tickborne diseases among Hispanic and non‐ Hispanic residents of Maryland and Virginia. Zoonoses and Public Health, v. 66, n. 7, p. 805– 812, 2019. IBAÑEZ-JUSTICIA, A. et al. The first detected airline introductions of yellow fever mosquitoes (Aedes aegypti) to Europe, at Schiphol International airport, the Netherlands. Parasites & Vectors, v. 10, n. 1, p. 603, 2017. IMAOKA, K. et al. The First Human Case of Rickettsia tamurae Infection in Japan. Case Reports in Dermatology, v. 3, n. 1, p. 68–73, 2011. JADO, I. et al. Rickettsia monacensis and Human Disease, Spain. Emerging Infectious Diseases, v. 13, n. 9, p. 1405–1407, 2007. JIANG, J. et al. Molecular detection of Rickettsia felis and Candidatus Rickettsia asemboensis in Fleas from Human Habitats, Asembo, Kenya. Vector-Borne and Zoonotic Diseases, v. 13, n. 8, p. 550–558, 2013. JIANG, J.; STROMDAHL, E.Y.; RICHARDS, A.L. Detection of Rickettsia parkeri and Candidatus Rickettsia andeanae in Amblyomma maculatum Gulf Coast Ticks Collected from Humans in the United States. Vector-Borne and Zoonotic Diseases, v. 12, n. 3, p. 175–182, 2012. JIANG, J.U.; TEMENAK, J.J.; RICHARDS, A.L. Real-Time PCR Duplex Assay for Rickettsia prowazekii and Borrelia recurrentis. Annals of the New York Academy of Sciences, v. 990, n. 1, p. 302–310, 2003. JOHNSON, P.T.J.; DE ROODE, J.C.; FENTON, A. Why infectious disease research needs community ecology. Science, v. 349, n. 6252, p. 1259504–1259504, 2015. JONES, K.E. et al. Global trends in emerging infectious diseases. Nature, v. 451, n. 7181, p. 990–993, 2008. JONGEJAN, F.; UILENBERG, G. The global importance of ticks. Parasitology, v. 129, n. S1, p. S3–S14, 2004. JOSEK, T. et al. Fatal attraction: lone star ticks (Amblyomma americanum) exhibit preference for human female breath over male breath. Experimental and Applied Acarology, v. 77, n. 1, p. 59–64, 2019. KADING, R.C. et al. Advanced surveillance and preparedness to meet a new era of invasive vectors and emerging vector-borne diseases. PLOS Neglected Tropical Diseases, v. 12, n. 10, p. e0006761, 2018. KAHL, O. Hard ticks as vectors—some basic issues. Wiener klinische Wochenschrift, v. 130, n. 15–16, p. 479–483, 2018. KANG, J.-M. et al. PCR-RFLP for Rapid Subtyping of Plasmodium vivax Korean Isolates. The Korean Journal of Parasitology, v. 55, n. 2, p. 159–165, 2017. KARATZAS, E. et al. A Web Tool for Ranking Candidate Drugs Against a Selected Disease Based on a Combination of Functional and Structural Criteria. Computational and Structural Biotechnology Journal, v. 17, p. 939–945, 2019. KARPATHY, S.E. et al. Rickettsia amblyommatis sp. nov., a spotted fever group Rickettsia associated with multiple species of Amblyomma ticks in North, Central and South America. International Journal of Systematic and Evolutionary Microbiology, v. 66, n. 12, p. 5236– 5243, 2016. KATO, C.Y. et al. Assessment of Real-Time PCR Assay for Detection of Rickettsia spp. and Rickettsia rickettsii in Banked Clinical Samples. Journal of Clinical Microbiology, v. 51, n. 1, p. 314–317, 2013. KOFFI, J.K. et al. Evaluating the submission of digital images as a method of surveillance for Ixodes scapularis ticks. Parasitology, v. 144, n. 7, p. 877–883, 2017. KORDALEWSKA, M. et al. PCR-RFLP assays for species-specific identification of fungi belonging to Scopulariopsis and related genera. Medical Mycology, v. 57, n. 5, p. 643–648, 2019. KRAWCZAK, F.S. et al. Amblyomma yucumense n. sp. (Acari: Ixodidae), a Parasite of Wild Mammals in Southern Brazil. Journal of Medical Entomology, v. 52, n. 1, p. 28–37, 2015. KRAWCZAK, F.S. et al. Rickettsia sp. Strain Atlantic Rainforest Infection in a Patient from a Spotted Fever-Endemic Area in Southern Brazil. The American Journal of Tropical Medicine and Hygiene, v. 95, n. 3, p. 551–553, 2016. KRAWCZAK, F.S. et al. Genotypic Characterization of Rickettsia bellii Reveals Distinct Lineages in the United States and South America. BioMed Research International, v. 2018, p. 1–8, 2018. KUMAR, S.; STECHER, G.; TAMURA, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, v. 33, n. 7, p. 1870–1874, 2016. LABRUNA, M.; VENZAL, J. Carios fonsecai sp. nov. (Acari, Argasidae), a bat tick from the central-western region of Brazil. Acta Parasitologica, v. 54, n. 4, p. 355–363, 2009. LABRUNA, M.B. et al. Rickettsia Species Infecting Amblyomma cooperi Ticks from an Area in the State of Sao Paulo, Brazil, Where Brazilian Spotted Fever Is Endemic. Journal of Clinical Microbiology, v. 42, n. 1, p. 90–98, 2004a. LABRUNA, M.B. et al. Ticks (Acari: Ixodidae) from the state of Rondonia, western Amazon, Brazil. Systematic and Applied Acarology, v. 10, n. 1, p. 17, 2004b. LABRUNA, M.B. et al. Rickettsia bellii and Rickettsia amblyommii in Amblyomma Ticks from the State of Rondônia, Western Amazon, Brazil. Journal of Medical Entomology, v. 41, n. 6, p. 1073–1081, 2004c. LABRUNA, M.B. et al. Detection of a spotted fever group Rickettsia in the tick Haemaphysalis juxtakochi in Rondonia, Brazil. Veterinary Parasitology, v. 127, n. 2, p. 169–174, 2005a. LABRUNA, M.B. et al. Human parasitism by the capybara tick, Amblyomma dubitatum (Acari: Ixodidae). Entomological News, v. 118, n. 1, p. 77–81, 2007a. LABRUNA, M.B. et al. Isolation of Rickettsia rhipicephali and Rickettsia bellii from Haemaphysalis juxtakochi Ticks in the State of Sao Paulo, Brazil. Applied and Environmental Microbiology, v. 73, n. 3, p. 869–873, 2007b. LABRUNA, M.B. et al. Ticks collected on birds in the state of São Paulo, Brazil. Experimental and Applied Acarology, v. 43, n. 2, p. 147–160, 2007c. LABRUNA, M.B. et al. New Reports of Antricola guglielmonei and Antricola delacruzi in Brazil, and a Description of a New Argasid Species (Acari). Journal of Parasitology, v. 94, n. 4, p. 788–792, 2008. LABRUNA, M.B. Ecology of Rickettsia in South America. Annals of the New York Academy of Sciences, v. 1166, n. 1, p. 156–166, 2009. LABRUNA, M.B. et al. Redescription of the female, description of the male, and several new records of Amblyomma parkeri (Acari: Ixodidae), a South American tick species. Experimental and Applied Acarology, v. 49, n. 3, p. 243–260, 2009. LABRUNA, M.B. et al. Ticks of the genus Amblyomma (Acari: Ixodidae) infesting tapirs (Tapirus terrestris) and peccaries (Tayassu pecari) in Peru. Systematic and Applied Acarology, v. 15, n. 2, p. 109–112, 2010. LABRUNA, M.B. et al. Experimental Infection of Amblyomma aureolatum Ticks with Rickettsia rickettsii. Emerging Infectious Diseases, v. 17, n. 5, p. 829–834, 2011a. LABRUNA, M.B. et al. Rickettsioses in Latin America, Caribbean, Spain and Portugal. Revista MVZ Córdoba, v. 16, n. 2, p. 2435–2457, 2011b. LABRUNA, M.B. et al. A new argasid tick species (Acari: Argasidae) associated with the rock cavy, Kerodon rupestris Wied-Neuwied (Rodentia: Caviidae), in a semiarid region of Brazil. Parasites & Vectors, v. 9, n. 1, p. 511, 2016. LABRUNA, M.B.; TERRASSINI, F. A; CAMARGO, L.M. A. First Report of the Male of Amblyomma rotundatum (Acari: Ixodidae) from a Field-Collected Host. Journal of Medical Entomology, v. 42, n. 6, p. 945–947, 2005b. LACHISH, S. et al. Epidemiology of the Emergent Disease Paridae pox in an Intensively Studied Wild Bird Population. PLoS ONE, v. 7, n. 11, p. e38316, 2012. LADO, P. et al. Amblyomma parvum Aragão, 1908 (Acari: Ixodidae): Phylogeography and systematic considerations. Ticks and Tick-borne Diseases, v. 7, n. 5, p. 817–827, 2016. LADO, P. et al. The Amblyomma maculatum Koch, 1844 (Acari: Ixodidae) group of ticks: phenotypic plasticity or incipient speciation? Parasites & Vectors, v. 11, n. 1, p. 610, 2018. LAFFERTY, K.D. et al. Parasites in food webs: the ultimate missing links. Ecology Letters, v. 11, n. 6, p. 533–546, 2008. LAFFERTY, K.D.; KURIS, A.M. Ecological consequences of manipulative parasites. In: HUGHES, D.P.; BRODEUR, J.; THOMAS, F. (Eds.). Host Manipulation by Parasites. [s.l.] Oxford: Oxford University Press, 2012. p. 158–168. LAGIER, J.-C. et al. Koch Postulate: Why Should we Grow Bacteria? Archives of Medical Research, v. 48, n. 8, p. 774–779, 2017. LANE, R.S.; STEINLEIN, D.B.; MUN, J. Human Behaviors Elevating Exposure to Ixodes pacificus (Acari: Ixodidae) Nymphs and Their Associated Bacterial Zoonotic Agents in a Hardwood Forest. Journal of Medical Entomology, v. 41, n. 2, p. 239–248, 2004. LECLÈRE, B.; BUCKERIDGE, D.L.; LEPELLETIER, D. Evaluation of a web-based tool for labelling potential hospital outbreaks: a mixed methods study. Journal of Hospital Infection, v. 103, n. 2, p. 210–216, 2019. LEE, J.K. et al. Rickettsia parkeri and “ Candidatus Rickettsia andeanae” in Questing Amblyomma maculatum (Acari: Ixodidae) From Mississippi. Journal of Medical Entomology, v. 54, n. 2, p. 476–480, 2017. LEHANE, M.J. Digestive enzymes, haemolysins and symbionts in the search for vaccines against blood-sucking insects. International Journal for Parasitology, v. 24, n. 1, p. 27–32, 1994. LEVI, T. et al. Deer, predators, and the emergence of Lyme disease. Proceedings of the National Academy of Sciences, v. 109, n. 27, p. 10942–10947, 2012. LITERAK, I. et al. Ticks on passerines from the Archipelago of the Azores as hosts of borreliae and rickettsiae. Ticks and Tick-borne Diseases, v. 6, n. 5, p. 607–610, 2015. LIU, G.-H. et al. Complete Mitochondrial Genome Sequence Data Provides Genetic Evidence That the Brown Dog Tick Rhipicephalus sanguineus (Acari: Ixodidae) Represents a Species Complex. International Journal of Biological Sciences, v. 9, n. 4, p. 361–369, 2013. LOBATO-MÁRQUEZ, D.; DÍAZ-OREJAS, R.; GARCÍA-DEL PORTILLO, F. Toxinantitoxins and bacterial virulence. FEMS Microbiology Reviews, v. 40, n. 5, p. 592–609, 2016. LOGIUDICE, K. et al. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proceedings of the National Academy of Sciences, v. 100, n. 2, p. 567–571, 2003. LUCE-FEDROW, A. et al. Strategies for detecting rickettsiae and diagnosing rickettsial diseases. Future Microbiology, v. 10, n. 4, p. 537–564, 2015. LUGARINI, C. et al. Rickettsial agents in avian ixodid ticks in northeast Brazil. Ticks and Tick-borne Diseases, v. 6, n. 3, p. 364–375, 2015. LUZ, H.R. et al. Bird ticks in an area of the Cerrado of Minas Gerais State, southeast Brazil. Experimental and Applied Acarology, v. 58, n. 1, p. 89–99, 2012. LUZ, H.R. et al. Additional information on ticks (Ixodidae) infesting birds in Atlantic Forest fragments in State of Paraná, South Brazil. Systematic and Applied Acarology, v. 22, n. 11, p. 1813, 2017a. LUZ, H.R. et al. Ticks parasitizing wild mammals in Atlantic Forest areas in the state of Rio de Janeiro, Brazil. Revista Brasileira de Parasitologia Veterinária, v. 2961, p. 2014–2019, 2018a. LUZ, H.R. et al. A proposed description of the natural life cycle of Amblyomma brasiliense (Acari: Ixodidae) in a primary Atlantic rainforest environment in Brazil. Systematic and Applied Acarology, v. 23, n. 6, p. 1138, 2018b. LUZ, H.R. et al. Detection of Rickettsia spp. in ticks parasitizing toads (Rhinella marina) in the northern Brazilian Amazon. Experimental and Applied Acarology, v. 75, n. 3, p. 309–318, 2018c. LUZ, H.R. et al. Some biological and behavioral aspects of Amblyomma longirostre (Acari: Ixodidae) under laboratory and natural conditions. Systematic and Applied Acarology, v. 23, n. 10, p. 1965–1971, 2018d. LUZ, H.R. et al. Detection of “Candidatus Rickettsia wissemanii” in ticks parasitizing bats (Mammalia: Chiroptera) in the northern Brazilian Amazon. Parasitology Research, v. 118, n. 11, p. 3185–3189, 2019. LUZ, H.R.; FACCINI, J.L.H.; MCINTOSH, D. Molecular analyses reveal an abundant diversity of ticks and rickettsial agents associated with wild birds in two regions of primary Brazilian Atlantic Rainforest. Ticks and Tick-borne Diseases, v. 8, n. 4, p. 657–665, 2017b. LV, J. et al. Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida). Parasites & Vectors, v. 7, n. 1, p. 93, 2014. MACALUSO, K.R. et al. Rickettsial Infection in Dermacentor variabilis (Acari: Ixodidae) Inhibits Transovarial Transmission of a Second Rickettsia. Journal of Medical Entomology, v. 39, n. 6, p. 809–813, 2002. MACHADO, I.B. et al. Diversity of rickettsiae and potential vectors of spotted fever in an area of epidemiological interest in the Cerrado biome, midwestern Brazil. Medical and Veterinary Entomology, v. 32, n. 4, p. 481–489, 2018. MANGOLD, A.J.; BARGUES, M.D.; MAS-COMA, S. Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitology Research, v. 84, n. 6, p. 478–484, 1998. MANSUETO, P. et al. New Insight into Immunity and Immunopathology of Rickettsial Diseases. Clinical and Developmental Immunology, v. 2012, p. 1–26, 2012. MARINI, M.Â. et al. Ecological correlates of ectoparasitism on Atlantic Forest, Brazil. Revista Brasileira de Ornitologia, v. 4, n. 2, p. 93–102, 1996. MARTINS, T.F. et al. Nymphs of the genus Amblyomma (Acari: Ixodidae) of Brazil: descriptions, redescriptions, and identification key. Ticks and Tick-borne Diseases, v. 1, n. 2, p. 75–99, 2010. MARTINS, T.F. et al. Morphological description of the nymphal stage of Amblyomma geayi and new nymphal records of Amblyomma parkeri. Ticks and Tick-borne Diseases, v. 4, n. 3, p. 181–184, 2013. MARTINS, T.F. et al. Geographical distribution of Amblyomma cajennense (sensu lato) ticks (Parasitiformes: Ixodidae) in Brazil, with description of the nymph of A. cajennense (sensu stricto). Parasites & Vectors, v. 9, n. 1, p. 186, 2016. MARTINS, T.F. et al. A new species of Amblyomma (Acari: Ixodidae) associated with monkeys and passerines of the Atlantic rainforest biome, Southeastern Brazil. Ticks and Tickborne Diseases, v. 10, n. 6, p. 101259, 2019. MARTINS, T.F.; FECCHIO, A.; LABRUNA, M.B. Ticks of the genus Amblyomma (Acari: Ixodidae) on wild birds in the Brazilian Amazon. Systematic and Applied Acarology, v. 19, n. 4, p. 385–392, 2014. MATSUMOTO, K.; INOKUMA, H. Identification of spotted fever group rickettsia species by polymerase chain reaction-restriction fragment length polymorphism analysis of the Sca4 gene. Vector-Borne and Zoonotic Diseases, v. 9, n. 6, p. 747–749, 2009. MATURANO, R. et al. Additional information about tick parasitism in Passeriformes birds in an Atlantic Forest in southeastern Brazil. Parasitology Research, v. 114, n. 11, p. 4181–4193, 2015. MCINTOSH, D. et al. Detection of Rickettsia bellii and Rickettsia amblyommii in Amblyomma longirostre (Acari: Ixodidae) from Bahia state, Northeast Brazil. Brazilian Journal of Microbiology, v. 46, n. 3, p. 879–883, 2015. MCLAIN, D.K. et al. Variation in ribosomal DNA internal transcribed spacers 1 among eastern populations of Ixodes scapularis (Acari: Ixodidae). Journal of medical entomology, v. 32, n. 3, p. 353–60,1995. MEDIANNIKOV, O.Y. et al. Acute Tick-borne Rickettsiosis Caused by Rickettsia sibirica in the Russian Far East. Emerging Infectious Diseases, v. 10, n. 5, p. 810–817, 2004. MENCKE, N. Future challenges for parasitology: Vector control and ‘One health’ in Europe. Veterinary Parasitology, v. 195, n. 3–4, p. 256–271, 2013. MERHEJ, V.; RAOULT, D. Rickettsial evolution in the light of comparative genomics. Biological Reviews, v. 86, n. 2, p. 379–405, 2011. MEYER, W. et al. Molecular Typing of IberoAmerican Cryptococcus neoformans Isolates. Emerging Infectious Diseases, v. 9, n. 2, p. 189–195, 2003. MICHEL, T. et al. Ixodes spp. (Acari: Ixodidae) ticks in Rio Grande do Sul state, Brazil. Systematic and Applied Acarology, v. 22, n. 12, p. 2057–2067, 2017. MILLER, M.J. et al. Molecular Ecological Insights into Neotropical Bird–Tick Interactions. PLOS ONE, v. 11, n. 5, p. e0155989, 2016. MIRANDA, J. et al. Rickettsia sp. strain colombianensi (Rickettsiales: Rickettsiaceae ): A New Proposed Rickettsia Detected in Amblyomma dissimile (Acari: Ixodidae) From Iguanas and Free-Living Larvae Ticks From Vegetation. Journal of Medical Entomology, v. 49, n. 4, p. 960–965, 2012. MOERBECK, L. et al. Rickettsia sp. strain NOD Infecting Ticks ( Amblyomma nodosum ) in an Endemic Area of Spotted Fever in Brazil. Journal of Wildlife Diseases, v. 54, n. 2, p. 406– 409, 2018. MONTEIRO, S.G. Parasitologia na Medicina Veterinária. 2ed. ed. Rio de Janeiro: Roca, 2017. 370 p. MORADIPOODEH, B. et al. In vitro and in silico anticancer activity of amygdalin on the SKBR- 3 human breast cancer cell line. Molecular Biology Reports, 2019. MORAES-FILHO, J. et al. Genetic analysis of ticks belonging to the Rhipicephalus sanguineus group in Latin America. Acta Tropica, v. 117, n. 1, p. 51–55, 2011. MOREIRA-SOTO, R.D. et al. ‘Candidatus Rickettsia nicoyana’: A novel Rickettsia species isolated from Ornithodoros knoxjonesi in Costa Rica. Ticks and Tick-borne Diseases, v. 8, n. 4, p. 532–536, 2017. MOURA, E.G. DE; CAMARGO JUNIOR, K.R. DE. A crise no financiamento da pesquisa e pós-graduação no Brasil. Cadernos de Saúde Pública, v. 33, n. 4, p. 4–6, 2017. MOUTAILLER, S. et al. Co-infection of Ticks: The Rule Rather Than the Exception. PLOS Neglected Tropical Diseases, v. 10, n. 3, p. e0004539, 2016. MUKUNDARAJAN, H. et al. Using mobile phones as acoustic sensors for high-throughput mosquito surveillance. eLife, v. 6, p. 1–26, 2017. MULLIS, K.B. The Unusual Origin of the Polymerase Chain Reaction. Scientific American, v. 262, n. 4, p. 56–65, 1990. MUÑOZ-LEAL, S. et al. Description of a new soft tick species (Acari: Argasidae: Ornithodoros ) associated with stream-breeding frogs (Anura: Cycloramphidae: Cycloramphus ) in Brazil. Ticks and Tick-borne Diseases, v. 8, n. 5, p. 682–692, 2017. MUÑOZ-LEAL, S. et al. Isolation and molecular characterization of a relapsing fever Borrelia recovered from Ornithodoros rudis in Brazil. Ticks and Tick-borne Diseases, v. 9, n. 4, p. 864–871, 2018. MURREL, A.; BARKER, S.C. Synonymy of Boophilus Curtice, 1891 with Rhipicephalus Koch, 1844 (Acari: Ixodidae). Systematic Parasitology, v. 56, n. 3, p. 169-172, 2003. NARASIMHAN, S. et al. Gut Microbiota of the Tick Vector Ixodes scapularis Modulate Colonization of the Lyme Disease Spirochete. Cell Host & Microbe, v. 15, n. 1, p. 58–71, 2014. NARAYANAN, S. Applications of restriction fragment length polymorphism. Annals of Clinical and Laboratory Science, v. 21, n. 4, p. 291–6, 1991. NAVA, S. et al. Distribution, hosts, 16S rDNA sequences and phylogenetic position of the Neotropical tick Amblyomma parvum (Acari: Ixodidae). Annals of Tropical Medicine & Parasitology, v. 102, n. 5, p. 409–425, 2008. NAVA, S. et al. Description of a New Argasid Tick (Acari: Ixodida) from Bat Caves in Brazilian Amazon. Journal of Parasitology, v. 96, n. 6, p. 1089–1101, 2010a. NAVA, S. et al. Reassessment of the taxonomic status of Amblyomma cajennense (Fabricius, 1787) with the description of three new species, Amblyomma tonelliae n. sp., Amblyomma interandinum n. sp. and Amblyomma patinoi n. sp., and reinstatement of Amblyomma mixtum Koch, 1. Ticks and Tick-borne Diseases, v. 5, n. 3, p. 252–276, 2014. NAVA, S. et al. Rhipicephalus sanguineus (Latreille, 1806): Neotype designation, morphological re-description of all parasitic stages and molecular characterization. Ticks and Tick-borne Diseases, v. 9, n. 6, p. 1573–1585, 2018. NAVA, S.; GUGLIELMONE, A.A.; MANGOLD, A.J. An overview of systematics and evolution of ticks. Frontiers in bioscience (Landmark edition), v. 14, n. FEBRUARY 2009, p. 2857–77, 2009. NAVA, S.; VELAZCO, P.M.; GUGLIELMONE, A.A. First record of Amblyomma longirostre (Koch, 1844) (Acari: Ixodidae) from Peru, with a review of this tick’s host relationships. Systematic and Applied Acarology, v. 15, n. 1, p. 21–30, 2010b. NDEKEZI, C. et al. Identification of Ixodid Tick-Specific Aquaporin-1 Potential Anti-tick Vaccine Epitopes: An in-silico Analysis. Frontiers in Bioengineering and Biotechnology, v. 7, p. 1–16, 2019. NEIMARK, H.; KOCAN, K.M. The cell wall-less rickettsia Eperythrozoon wenyonii is a Mycoplasma. FEMS Microbiology Letters, v. 156, n. 2, p. 287–291, 2006. NIERI-BASTOS, F.A. et al. Comparative Evaluation of Infected and Noninfected Amblyomma triste Ticks with Rickettsia parkeri , the Agent of an Emerging Rickettsiosis in the New World. BioMed Research International, v. 2013, p. 1–6, 2013. NIERI-BASTOS, F.A. et al. Candidatus Rickettsia andeanae, a spotted fever group agent infecting Amblyomma parvum ticks in two Brazilian biomes. Memórias do Instituto Oswaldo Cruz, v. 109, n. 2, p. 259–261, 2014. NIERI-BASTOS, F.A. et al. Phylogenetic Evidence for the Existence of Multiple Strains of Rickettsia parkeri in the New World. Applied and Environmental Microbiology, v. 84, n. 8, p. e02872-17, 2018. NODEN, B.H.; ARNOLD, D.; GRANTHAM, R. First report of adult Amblyomma longirostre (Acari: Ixodidae) in Oklahoma. Systematic and Applied Acarology, v. 20, n. 5, p. 468–470, 2015. NOVAKOVA, M. et al. Rickettsial infections in ticks from reptiles, birds and humans in Honduras. Ticks and Tick-borne Diseases, v. 6, n. 6, p. 737–742, 2015. OGATA, H. et al. Genome Sequence of Rickettsia bellii Illuminates the Role of Amoebae in Gene Exchanges between Intracellular Pathogens. PLoS Genetics, v. 2, n. 5, p. e76, 2006. OGDEN, N.H.; MECHAI, S.; MARGOS, G. Changing geographic ranges of ticks and tickborne pathogens: drivers, mechanisms and consequences for pathogen diversity. Frontiers in Cellular and Infection Microbiology, v. 3, n. August, p. 1–11, 2013. OGRZEWALSKA, M. et al. Rickettsial infection in Amblyomma nodosum ticks (Acari: Ixodidae) from Brazil. Annals of Tropical Medicine & Parasitology, v. 103, n. 5, p. 413–425, 2009a. OGRZEWALSKA, M. et al. Ticks (Acari: Ixodidae) Infesting Birds in an Atlantic Rain Forest Region of Brazil. Journal of Medical Entomology, v. 46, n. 5, p. 1225–1229, 2009b. OGRZEWALSKA, M. et al. Effect of Forest Fragmentation on Tick Infestations of Birds and Tick Infection Rates by Rickettsia in the Atlantic Forest of Brazil. EcoHealth, v. 8, n. 3, p. 320–331, 2011a. OGRZEWALSKA, M. et al. Epidemiology of Brazilian spotted fever in the Atlantic Forest, state of São Paulo, Brazil. Parasitology, v. 139, n. 10, p. 1283–1300, 2012. OGRZEWALSKA, M. et al. A Rickettsia parkeri-like agent infecting Amblyomma calcaratum nymphs from wild birds in Mato Grosso do Sul, Brazil. Ticks and Tick-borne Diseases, v. 4, n. 1–2, p. 145–147, 2013. OGRZEWALSKA, M. et al. Rickettsial infections in ticks from wild birds in Paraguay. Ticks and Tick-borne Diseases, v. 5, n. 2, p. 83–89, 2014. OGRZEWALSKA, M. et al. Microorganisms in the ticks Amblyomma dissimile Koch 1844 and Amblyomma rotundatum Koch 1844 collected from snakes in Brazil. Medical and Veterinary Entomology, v. 33, n. 1, p. 154–161, 2019. OGRZEWALSKA, M.; PINTER, A. Ticks (Acari: Ixodidae) as ectoparasites of Brazilian wild birds and their association with rickettsial diseases. Brazilian Journal of Veterinary Research and Animal Science, v. 53, n. 1, p. 1–31, 2016. OGRZEWALSKA, M.; UEZU, A.; LABRUNA, M.B. Ticks (Acari: Ixodidae) infesting wild birds in the eastern Amazon, northern Brazil, with notes on rickettsial infection in ticks. Parasitology Research, v. 106, n. 4, p. 809–816, 2010. OGRZEWALSKA, M.; UEZU, A.; LABRUNA, M.B. Ticks (Acari: Ixodidae) infesting wild birds in the Atlantic Forest in northeastern Brazil, with notes on rickettsial infection in ticks. Parasitology Research, v. 108, n. 3, p. 665–670, 2011b. OLIVEIRA, S.V. DE et al. A fatal case of Brazilian spotted fever in a non-endemic area in Brazil: the importance of having health professionals who understand the disease and its areas of transmission. Revista da Sociedade Brasileira de Medicina Tropical, v. 49, n. 5, p. 653– 655, 2016. OLIVEIRA, S.V. DE et al. Amblyomma ticks and future climate: Range contraction due to climate warming. Acta Tropica, v. 176, n. June, p. 340–348, 2017. OLIVEIRA, K. et al. Molecular identification of Rickettsia felis in ticks and fleas from an endemic area for Brazilian Spotted Fever. Memórias do Instituto Oswaldo Cruz, v. 103, n. 2, p. 191–194, 2008. OSTFELD, R.S. et al. Effects of a zoonotic pathogen, Borrelia burgdorferi , on the behavior of a key reservoir host. Ecology and Evolution, v. 8, n. 8, p. 4074–4083, 2018. OSTFELD, R.S.; KEESING, F. Biodiversity and Disease Risk: the Case of Lyme Disease. Conservation Biology, v. 14, n. 3, p. 722–728, 2000. PACHECO, R.C. et al. Rickettsial infection in capybaras (Hydrochoerus hydrochaeris) from São Paulo, Brazil: serological evidence for infection by Rickettsia bellii and Rickettsia parkeri. Biomedica : Revista del Instituto Nacional de Salud, v. 27, n. 3, p. 364–71, 2007. PACHECO, R.C. et al. Rickettsia monteiroi sp. nov., Infecting the Tick Amblyomma incisum in Brazil. Applied and Environmental Microbiology, v. 77, n. 15, p. 5207–5211, 2011. PACHECO, R.C. et al. Rickettsial Infection in Ticks (Acari: Ixodidae) Collected on Birds in Southern Brazil. Journal of Medical Entomology, v. 49, n. 3, p. 710–716, 2012. PADDOCK, C.D. et al. Rickettsia parkeri: A Newly Recognized Cause of Spotted Fever Rickettsiosis in the United States. Clinical Infectious Diseases, v. 38, n. 6, p. 805–811, 2004. PADDOCK, C.D. The Science and Fiction of Emerging Rickettsioses. Annals of the New York Academy of Sciences, v. 1166, n. 1, p. 133–143, 2009. PADDOCK, C.D. et al. High prevalence of “Candidatus Rickettsia andeanae” and apparent exclusion of Rickettsia parkeri in adult Amblyomma maculatum (Acari: Ixodidae) from Kansas and Oklahoma. Ticks and Tick-borne Diseases, v. 6, n. 3, p. 297–302, 2015. PADURARU, O.A. et al. Zoonotic Transmission of Pathogens by Ixodes ricinus Ticks, Romania. Emerging Infectious Diseases, v. 18, n. 12, p. 2089–2090, 2012. PALOMAR, A.M. et al. Role of Birds in Dispersal of Etiologic Agents of Tick-borne Zoonoses, Spain, 2009. Emerging Infectious Diseases, v. 18, n. 7, p. 1188–1191, 2012. PARKER, R.R. et al. Observations on an infectios agent from Amblyomma maculatum. Public Health Reports, v. 54, n. 32, p. 1482–1484, set. 1939. PAROLA, P. et al. Update on Tick-Borne Rickettsioses around the World: a Geographic Approach. Clinical Microbiology Reviews, v. 26, n. 4, p. 657–702, 2013. PARTE, A.C. LPSN – List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. International Journal of Systematic and Evolutionary Microbiology, v. 68, n. 6, p. 1825–1829, 2018. PECKLE, M. et al. Multi-locus phylogenetic analysis groups the New World bacterium Rickettsia sp. strain ApPR with the Old World species R. africae; proposal of “Candidatus Rickettsia paranaensis”. Ticks and Tick-borne Diseases, v. 10, n. 6, p. 101261, 2019. PEÑALVER, E. et al. Ticks parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nature Communications, v. 8, n. 1, p. 1924, 2017. PENICHE-LARA, G. et al. Simple Method to Differentiate among Rickettsia Species. Journal of Molecular Microbiology and Biotechnology, v. 23, n. 3, p. 203–208, 2013. PIACENTINI, V. DE Q. et al. Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee / Lista comentada das aves do Brasil pelo Comitê Brasileiro de Registros Ornitológicos. Revista Brasileira de Ornitologia, v. 23, n. 2, p. 91–298, 2015. PINHEIRO, M. DA C. et al. Amblyomma nodosum (Neumann, 1899): observations on life cycle under laboratory conditions. Revista Brasileira de Parasitologia Veterinária, v. 24, n. 3, p. 357–360, 2015. PINTER, A. et al. Serosurvey of Rickettsia spp. in dogs and humans from an endemic area for Brazilian spotted fever in the State of São Paulo, Brazil. Cadernos de Saúde Pública, v. 24, n. 2, p. 247–252, 2008. PIRES, M.S. et al. Amblyomma cajennense infestation on horses in two microregions of the state of Rio de Janeiro, Brazil. Revista Brasileira de Parasitologia Veterinária, v. 22, n. 2, p. 235–242, 2013. POLO, G. et al. Hosts mobility and spatial spread of Rickettsia rickettsii. PLOS Computational Biology, v. 14, n. 12, p. e1006636, 2018. PORTILLO, A. et al. Guidelines for the Detection of Rickettsia spp. Vector-Borne and Zoonotic Diseases, v. 17, n. 1, p. 23–32, 2017. RAGHAVAN, R.K. et al. Current and Future Distribution of the Lone Star Tick, Amblyomma americanum (L.) (Acari: Ixodidae) in North America. PLOS ONE, v. 14, n. 1, p. e0209082, 2019. RAHIMIAN, F. et al. A modified PCR-RFLP method to determine genetic diversity of Giardia lamblia human isolates based on triosephosphate isomerase (TPI) gene. Acta Tropica, v. 186, p. 58–62, 2018. RAMACHANDRAN, A. et al. Immunofluorescence as a diagnostic tool. Indian Journal of Multidisciplinary Dentistry, v. 7, n. 1, p. 25, 2017. RAMOS, D.G. DE S. et al. Rickettsial infection in ticks from wild birds from Cerrado and the Pantanal region of Mato Grosso, midwestern Brazil. Ticks and Tick-borne Diseases, v. 6, n. 6, p. 836–842, 2015. RANDOLPH, S.E.; ROGERS, D.J. The arrival, establishment and spread of exotic diseases: patterns and predictions. Nature Reviews Microbiology, v. 8, n. 5, p. 361–371, 2010. RAOULT, D. Technology-driven research will dominate hypothesis-driven research: the future of microbiology. Future Microbiology, v. 5, n. 2, p. 135–137, 2010. RATNASINGHAM, S.; HEBERT, P.D.N. A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System. PLoS ONE, v. 8, n. 7, p. e66213, 2013. RAUCH, J. et al. Rickettsia typhi as Cause of Fatal Encephalitic Typhus in Hospitalized Patients, Hamburg, Germany, 1940–1944. Emerging Infectious Diseases, v. 24, n. 11, p. 1982–1987, 2018. REGNERY, R.L.; SPRUILL, C.L.; PLIKAYTIS, B.D. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. Journal of bacteriology, v. 173, n. 5, p. 1576–89, 1991. RENVOISÉ, A. et al. Widespread use of real-time PCR for rickettsial diagnosis. FEMS Immunology & Medical Microbiology, v. 64, n. 1, p. 126–129, 2012. RICKETTS, H.T. A micro-organism which apparently has a specific relationship to Rocky Mountain Spotted Fever. Journal of the American Medical Association, v. LII, n. 5, p. 379, 1909. RIVERA-PÁEZ, F.A. et al. Contributions to the knowledge of hard ticks (Acari: Ixodidae) in Colombia. Ticks and Tick-borne Diseases, v. 9, n. 1, p. 57–66, 2018. RODRIGUES, A.M.; DE HOOG, G.S.; DE CAMARGO, Z.P. Genotyping species of the Sporothrix schenckii complex by PCR-RFLP of calmodulin. Diagnostic Microbiology and Infectious Disease, v. 78, n. 4, p. 383–387, 2014. RODRIGUES, D.S. et al. Amblyomma rotundatum (Koch, 1844) (Acari: Ixodidae) two-host life-cycle on Viperidae snakes. Revista Brasileira de Parasitologia Veterinária, v. 19, n. 3, p. 174–178, 2010. ROSENFIELD, D.A.; POLO, G.; PIZZUTTO, C.S. Brazilian Spotted Fever Prevention through a Nonlethal Capybara Population Control Strategy. Revista da Sociedade Brasileira de Medicina Tropical, v. 52, p. 0–1, 2019. ROUX, V. et al. Reassessment of the Taxonomic Position of Rickettsiella grylli. International Journal of Systematic Bacteriology, v. 47, n. 4, p. 1255–1257, 1997. ROUX, V.; RAOULT, D. Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). International Journal of Systemamatic and Evolutionary Microbiology, v. 50, n. 4, p. 1449–1455, 1 jul. 2000. ROY-DUFRESNE, E. et al. Poleward Expansion of the White-Footed Mouse (Peromyscus leucopus) under Climate Change: Implications for the Spread of Lyme Disease. PLoS ONE, v. 8, n. 11, p. e80724, 2013. ROZEN, S.; SKALETSKY, H. Primer3 on the WWW for General Users and for Biologist Programmers. In: MISENER, S.; KRAWETZ, S.A. (Eds.). Bioinformatics Methods and Protocols. New Jersey: Humana Press, 2000. p. 365–386. RYU, S. et al. One Health Perspectives on Emerging Public Health Threats. Journal of Preventive Medicine and Public Health, v. 50, n. 6, p. 411–414, 2017. SAGOFF, M. Can hypothesis-driven research survive the sequence-data deluge? Microbial Biotechnology, v. 12, n. 3, p. 414–420, 2019. SAKAI, R.K. et al. Experimental infection with Rickettsia rickettsii in an Amblyomma dubitatum tick colony, naturally infected by Rickettsia bellii. Ticks and Tick-borne Diseases, v. 5, n. 6, p. 917–923, 2014. SÁNDOR, A.D. et al. Do the Ticks of Birds at an Important Migratory Hotspot Reflect the Seasonal Dynamics of Ixodes ricinus at the Migration Initiation Site? A Case Study in the Danube Delta. PLoS ONE, v. 9, n. 2, p. e89378, 2014. SANTOLIN, I. D. A; FAMADAS, K. M.; MCINTOSH, D. Detection and identification of Rickettsia agents in ticks collected from wild birds in Brazil by Polymerase Chain Reaction- Restriction Fragment Length Polymorphism (PCR-RFLP) analysis. Revista Brasileira de Medicina Veterinária, v. 35, n. 2, p. 68–73, 2013. SANTOLIN, I.D.A.C. et al. Ticks on birds caught on the campus of the Federal Rural University of Rio de Janeiro, Brazil. Revista Brasileira de Parasitologia Veterinária, v. 21, n. 3, p. 213–218, 2012. SARAIVA, D.G. et al. Ticks (Acari: Ixodidae) associated with small terrestrial mammals in the state of Minas Gerais, southeastern Brazil. Experimental and Applied Acarology, v. 58, n. 2, p. 159–166, 2012. SARWAR, M. Status of Argasid (Soft) Ticks (Acari: Parasitiformes: Argasidae) In Relation To Transmission of Human Pathogens. International Journal of Vaccines & Vaccination, v. 4, n. 4, p. 00089, 2017. SCHRIEFER, M.E. et al. Identification of a novel rickettsial infection in a patient diagnosed with murine typhus. Journal of Clinical Microbiology, v. 32, n. 4, p. 949–954, 1994. SCOTT, J.D. et al. Birds Disperse Ixodid (Acari: Ixodidae) and Borrelia burgdorferi -Infected Ticks in Canada. Journal of Medical Entomology, v. 38, n. 4, p. 493–500, 2001. SCOTT, J.D. et al. First Record of Ixodes affinis Tick (Acari: Ixodidae) Infected with Borrelia burgdorferi sensu lato Collected from a Migratory Songbird in Canada. Journal of Bacteriology & Parasitology, v. 7, n. 3, p. 1000281, 2016. SEARS, K.T. et al. Surface Proteome Analysis and Characterization of Surface Cell Antigen (Sca) or Autotransporter Family of Rickettsia typhi. PLoS Pathogens, v. 8, n. 8, p. e1002856, 2012. SHEN, Z. et al. Development of a tick-borne pathogen qPCR panel for detection of Anaplasma, Ehrlichia, Rickettsia, and Lyme disease Borrelia in animals. Journal of Microbiological Methods, v. 151, n. May, p. 83–89, 2018. SHPYNOV, S.N. et al. New approaches in the systematics of rickettsiae. New Microbes and New Infections, v. 23, p. 93–102, 2018. SHREINER, A.B.; KAO, J.Y.; YOUNG, V.B. The gut microbiome in health and in disease. Current Opinion in Gastroenterology, v. 31, n. 1, p. 69–75, 2015. SILVA, A.B. et al. First report of a Rickettsia asembonensis related infecting fleas in Brazil. Acta Tropica, v. 172, n. April, p. 44–49, 2017. SILVA, A.B. et al. Rickettsia amblyommatis infecting Amblyomma pseudoconcolor in area of new focus of spotted fever in northeast Brazil. Acta Tropica, v. 182, n. March, p. 305–308, 2018. SILVA, N. et al. Eschar-associated Spotted Fever Rickettsiosis, Bahia, Brazil. Emerging Infectious Diseases, v. 17, n. 2, p. 275–278, 2011. SILVEIRA, I. et al. Rickettsia parkeri in Brazil. Emerging Infectious Diseases, v. 13, n. 7, p. 1111–1113, 2007. SILVESTER, R. et al. GroEL PCR- RFLP – An efficient tool to discriminate closely related pathogenic Vibrio species. Microbial Pathogenesis, v. 105, p. 196–200, 2017. SKOSYREV, V.S. et al. Specialized software product for comparative analysis of multicomponent DNA fingerprints. Genetika, v. 49, n. 4, p. 531–7, 2013. SOARES, H.S. et al. Ticks and rickettsial infection in the wildlife of two regions of the Brazilian Amazon. Experimental and Applied Acarology, v. 65, n. 1, p. 125–140, 2015. SPOLIDORIO, M.G. et al. Novel Spotted Fever Group Rickettsiosis, Brazil. Emerging Infectious Diseases, v. 16, n. 3, p. 521–523, 2010. SPOLIDORIO, M.G. et al. Rickettsial Infection in Ticks Collected from Road-Killed Wild Animals in Rio de Janeiro, Brazil. Journal of Medical Entomology, v. 49, n. 6, p. 1510–1514, 2012. SPOLIDORIO, M.G. et al. Serosurvey for tick-borne diseases in dogs from the Eastern Amazon, Brazil. Revista Brasileira de Parasitologia Veterinária, v. 22, n. 2, p. 214–219, 2013. STOTHARD, D.R.; CLARK, J.B.; FUERST, P.A. Ancestral Divergence of Rickettsia bellii from the Spotted Fever and Typhus Groups of Rickettsia and Antiquity of the Genus Rickettsia. International Journal of Systematic Bacteriology, v. 44, n. 4, p. 798–804, 1994. STRAILY, A. et al. Notes from the Field. American Journal of Public Health, v. 81, n. 10, p. 1339–1341, 1991. ŠUMILO, D. et al. Socio-economic factors in the differential upsurge of tick-borne encephalitis in central and Eastern Europe. Reviews in Medical Virology, v. 18, n. 2, p. 81–95, 2008. SZABÓ, M.P.J. et al. In vitro isolation from Amblyomma ovale (Acari: Ixodidae) and ecological aspects of the Atlantic rainforest Rickettsia , the causative agent of a novel spotted fever rickettsiosis in Brazil. Parasitology, v. 140, n. 6, p. 719–728, 2013a. SZABÓ, M.P.J.; PINTER, A.; LABRUNA, M.B. Ecology, biology and distribution of spottedfever tick vectors in Brazil. Frontiers in Cellular and Infection Microbiology, v. 3, n. July, p. 1–9, 2013b. SZOKOLI, F. et al. Disentangling the Taxonomy of Rickettsiales and Description of Two Novel Symbionts (“Candidatus Bealeia paramacronuclearis” and “Candidatus Fokinia cryptica”) Sharing the Cytoplasm of the Ciliate Protist Paramecium biaurelia. Applied and Environmental Microbiology, v. 82, n. 24, p. 7236–7247, 2016. TAHIR, D. et al. New Rickettsia species in soft ticks Ornithodoros hasei collected from bats in French Guiana. Ticks and Tick-borne Diseases, v. 7, n. 6, p. 1089–1096, 2016. TALAGRAND-REBOUL, E. et al. Relapsing Fevers: Neglected Tick-Borne Diseases. Frontiers in Cellular and Infection Microbiology, v. 8, p. 98, 2018. TAMEKUNI, K. et al. Serosurvey of antibodies against spotted fever group Rickettsia spp. in horse farms in Northern Paraná, Brazil. Revista Brasileira de Parasitologia Veterinária, v. 19, n. 4, p. 259–261, 2010. TAMURA, A. et al. Classification of Rickettsia tsutsugamushi in a New Genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. International Journal of Systematic Bacteriology, v. 45, n. 3, p. 589–591, 1995. TAY, S.T. et al. Rickettsial Infections in Monkeys, Malaysia. Emerging Infectious Diseases, v. 21, n. 3, p. 545–547, 2015. TAYLOR, L.H.; LATHAM, S.M.; WOOLHOUSE, M.E.J. Risk factors for human disease emergence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, v. 356, n. 1411, p. 983–989, 2001. TEIMOURI, A. et al. Molecular Identification of Agents of Human Cutaneous Leishmaniasis and Canine Visceral Leishmaniasis in Different Areas of Iran Using Internal Transcribed Spacer 1 PCR-RFLP. Journal of Arthropod-Borne Diseases, v. 12, n. 2, p. 162–171, 2018. TELFORD, S.R. Status of the “East Side Hypothesis” (Transovarial Interference) 25 Years Later. Annals of the New York Academy of Sciences, v. 1166, n. 1, p. 144–150, 2009. THANGAMANI, S.; BENTE, D. Establishing protocols for tick containment at Biosafety Level 4. Pathogens and Disease, v. 71, n. 2, p. 282–285, 2014. THYSSEN, P.J. et al. The value of PCR-RFLP molecular markers for the differentiation of immature stages of two necrophagous flies (Diptera: Calliphoridae) of potential forensic importance. Neotropical Entomology, v. 34, n. 5, p. 777–783, 2005. TIJSSE-KLASEN, E.; KOOPMANS, M.P.G.; SPRONG, H. Tick-Borne Pathogen - Reversed and Conventional Discovery of Disease. Frontiers in Public Health, v. 2, n. July, p. 1–8, 2014. TOKAREVICH, N.K. et al. Coxiella burnetii in ticks and wild birds. Ticks and Tick-borne Diseases, v. 10, n. 2, p. 377–385, 2019. TOLESANO-PASCOLI, G.V. et al. Ticks on birds in a forest fragment of Brazilian cerrado (savanna) in the municipality of Uberlândia, State of Minas Gerais, Brazil. Revista Brasileira de Parasitologia Veterinária, v. 19, n. 4, p. 244–248, 2010. TORGA, K. et al. Ticks on birds from Cerrado forest patches along the Uberabinha river in the Triângulo Mineiro region of Minas Gerais, Brazil. Ciência Rural, v. 43, n. 10, p. 1852–1857, 2013. TORRES, A.C. et al. Amblyomma ticks infesting amphibians and Squamata reptiles from the lower Amazon region, Brazil. Experimental and Applied Acarology, v. 75, n. 4, p. 399–407, 2018. UNTERGASSER, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Research, v. 40, n. 15, p. e115, 2012. USPENSKY, I. The importance of distinguishing between cryptic species by morphological characters. Ticks and Tick-borne Diseases, v. 9, n. 2, p. 389, 2018. VAN MAURIK, I.S. et al. Development and Usability of ADappt: Web-Based Tool to Support Clinicians, Patients, and Caregivers in the Diagnosis of Mild Cognitive Impairment and Alzheimer Disease. JMIR Formative Research, v. 3, n. 3, p. e13417, 2019. VARELA, J.B. Influência dos Métodos de Conservação Sobre a Recuperação e a Frequência de Amplificação de Marcadores Mitocondriais e Nucleares de Carrapatos das Espécies Amblyomma parvum e Amblyomma sculptum (Acari: Ixodidae). 2016. Dissertação (Mestrado em Ciências Veterinárias) - Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 2016. VAYSSIER-TAUSSAT, M. et al. How a multidisciplinary ‘One Health’ approach can combat the tick-borne pathogen threat in Europe. Future Microbiology, v. 10, n. 5, p. 809–818, 2015a. VAYSSIER-TAUSSAT, M. et al. Emerging horizons for tick-borne pathogens: from the ‘one pathogen–one disease’ vision to the pathobiome paradigm. Future Microbiology, v. 10, n. 12, p. 2033–2043, 2015b. VENZAL, J.M. et al. The Ornithodoros (Alectorobius) talaje species group (Acari: Ixodida: Argasidae): description of Ornithodoros (Alectorobius) rioplatensis n. sp. from southern South America. Journal of medical entomology, v. 45, n. 5, p. 832–40, 2008. VESTERLUND, S.-R.; SORVARI, J.; VASEMÄGI, A. Molecular identification of cryptic bumblebee species from degraded samples using PCR-RFLP approach. Molecular Ecology Resources, v. 14, n. 1, p. 122–126, 2014. VIEIRA, F. DE T. et al. Tick-borne infections in dogs and horses in the state of Espírito Santo, Southeast Brazil. Veterinary Parasitology, v. 249, p. 43–48, 2018a. VIEIRA, F.T. et al. Occurrence of ticks in dogs in a hospital population in the state of Espírito Santo, Brazil. Pesquisa Veterinária Brasileira, v. 38, n. 3, p. 519–521, 2018b. VINCZE, T.; POSFAI, J.; ROBERTS, R.J. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Research, v. 31, n. 13, p. 3688–3691, 2003. WALKER, D.H. Rickettsiae and Rickettsial Infections: The Current State of Knowledge. Clinical Infectious Diseases, v. 45, n. Supplement_1, p. S39–S44, 2007. WANG, L.-F.; ANDERSON, D.E. Viruses in bats and potential spillover to animals and humans. Current Opinion in Virology, v. 34, p. 79–89, 2019. WIKEL, S. Ticks and Tick-Borne Infections: Complex Ecology, Agents, and Host Interactions. Veterinary Sciences, v. 5, n. 2, p. 60, 2018. WIKSWO, M.E. et al. Detection and Identification of Spotted Fever Group Rickettsiae in Dermacentor Species from Southern California. Journal of Medical Entomology, v. 45, n. 3, p. 509–516, 2008. WITTER, R. et al. Rickettsial infection in ticks (Acari: Ixodidae) of wild animals in midwestern Brazil. Ticks and Tick-borne Diseases, v. 7, n. 3, p. 415–423, 2016. WORLD HEALTH ORGANIZATION. Control of the leishmaniases. World Health Organization Technical Report Series, v. 949, p. 1–186, 2010. WORLD HEALTH ORGANIZATION. Global Vector Control Response 2017-2030. 2017. 51 p. YANG, L. et al. Species identification through mitochondrial rRNA genetic analysis. Scientific Reports, v. 4, n. 1, p. 4089, 2015. YANG, L.H.; HAN, B.A. Data-driven predictions and novel hypotheses about zoonotic tick vectors from the genus Ixodes. BMC Ecology, v. 18, n. 1, p. 7, 2018. YE, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, v. 13, n. 1, p. 134, 2012. ZAHLER, M.; GOTHE, R.; RINDER, H. Genetic evidence against a morphologically suggestive conspecificity of Dermacentor reticulatus and D. marginatus (Acari: Ixodidae). International Journal for Parasitology, v. 25, n. 12, p. 1413–1419, 1995. ZERINGÓTA, V. et al. Molecular detection of Rickettsia rhipicephali and other spotted fever group Rickettsia species in Amblyomma ticks infesting wild birds in the state of Minas Gerais, Brazil. Ticks and Tick-borne Diseases, v. 8, n. 1, p. 81–89, 2017. ZHENG, W. et al. Molecular Detection and Genetic Characterization of Toxoplasma gondii in Farmed Minks (Neovison vison) in Northern China by PCR-RFLP. PLOS ONE, v. 11, n. 11, p. e0165308, 2016. ZINSSTAG, J. et al. Climate change and One Health. FEMS Microbiology Letters, v. 365, n. 11, p. 1–9, 2018. | por |
dc.subject.cnpq | Medicina Veterinária | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/68854/2019%20-%20Daniel%20Paiva%20Barros%20de%20Abreu.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5543 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-04-12T17:46:37Z No. of bitstreams: 1 2019 - Daniel Paiva Barros de Abreu.pdf: 6594927 bytes, checksum: 39a5ab76889b68874a3fda2969a98517 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-04-12T17:46:37Z (GMT). No. of bitstreams: 1 2019 - Daniel Paiva Barros de Abreu.pdf: 6594927 bytes, checksum: 39a5ab76889b68874a3fda2969a98517 (MD5) Previous issue date: 2019-11-21 | eng |
Appears in Collections: | Doutorado em Ciências Veterinárias |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2019 - Daniel Paiva Barros de Abreu.pdf | 6.44 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.