Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9968
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Vinicius Miranda de
dc.date.accessioned2023-12-21T18:55:43Z-
dc.date.available2023-12-21T18:55:43Z-
dc.date.issued2014-02-27
dc.identifier.citationSOUZA, Vinicius Miranda de. Superexpressão do gene OsDof25 e seus efeitos sobre a absorção e assimilação de amônio. 2014. 84 f. Tese (Doutorado em Fitotecnia) - Instituto de Agronomia, Departamento de Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2014.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9968-
dc.description.abstractCom o objetivo de aumentar a eficiência de absorção e assimilação de N em plantas de arroz, foram transformadas plantas de arroz (Oryza sativa L. cv Nipponbare) com o fator de transcrição OsDof25 sobe o controle do promotor da ubiquitina e com o promotor do gene OsDof25 fusionado aos genes repórteres GUS e EGFP, para identificar seus locais de expressão e sua possível correlação com as proteínas de transporte e assimilação de N. Todas as linhagens transformadas apresentaram menor ciclo de cultivo, entre dez e sete dias comparadas à plantas tipo selvagem. As linhagens L#5.1, L#9,6 e L#10.8 apresentaram maiores atividades das enzimas de assimilação de nitrogênio GS e NADH-GOGAT, tanto em folhas quando em raízes quando cultivadas com 2,0 mM de NH4+, gerando maiores concentrações internas de aminoácidos totais. Foi verificado ainda um aumento na atividade da GDH aminação nas raízes, que pode estar associado ao fornecimento de 2-OG para manutenção da atividade do ciclo GS/GOGAT. Entretanto, menor atividade de ICDH, indicando maior homeostase nos níveis internos de glutamato. Os resultados apresentados evidenciam que as plantas transformas com o gene OsDof25 foram mais eficientes na assimilação de amônio.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectassimilação de amôniopor
dc.subjectfator de transcriçãopor
dc.subjecttransportadores de amôniopor
dc.subjectAmmonium assimilationeng
dc.subjecttranscription factoreng
dc.subjectammonium transporterseng
dc.titleSuperexpressão do gene OsDof25 e seus efeitos sobre a absorção e assimilação de amôniopor
dc.title.alternativeOverexpression of gene OsDof25 and the effects on the absorption and assimilation of ammoniumeng
dc.typeTesepor
dc.description.abstractOtherIn order to increase the efficiency of use of nitrogen (NUE) in the crop production, rice plants (Oryza sativa L. cv Nipponbare) were transformed with the transcription factor OsDof25. Were also transformed plants with OsDof25 gene promoter fused to GUS and EGFP reporter genes to identify sites of expression and its possible correlation with protein transport and assimilation of N. The MultiSite Gateway ® cloning technology was used to produced six independent transformants lines regenerated from calli of rice . All transformed lines showed lower crop cycle , between ten and seven days compared to WT plants. The lines L#1.1 , L#5.1 L#9.6 and L#10.8 showed higher enzyme activities of nitrogen assimilation (GS and NADH - GOGAT), both in leaves when roots when grown with 2.0 mM NH4+, generating higher internal concentrations of total amino acids. An increase in the GDH activity in roots amination, which can be associated with the supply of 2-OG to maintain the GS / GOGAT cycle activity was also checked. However lowest ICDH activity , indicating greater internal homeostasis in glutamate levels . These results show that plants transformed with the gene OsDof25 are more efficient in ammonium assimilation.eng
dc.contributor.advisor1Fernandes, Manlio Silvestre
dc.contributor.advisor1ID002.180.573-37por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6269004387821466por
dc.contributor.advisor-co1Santos, Leandro Azevedo
dc.contributor.advisor-co1ID983.907.835-68por
dc.contributor.referee1Fernandes, Manlio Silvestre
dc.contributor.referee2Vidal, Marcia Soares
dc.contributor.referee3Schwab, Stefan
dc.contributor.referee4Bucher, Carlos Alberto
dc.contributor.referee5Santos, André Marques dos
dc.creator.ID091.318.707-08por
dc.creator.Latteshttp://lattes.cnpq.br/2566951939485398por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesABIKO, T.; OBARA, M.; USHIODA, A.; HAYAKAWA, T.; HODGES, M.; YAMAYA, T. Localization of NAD-isocitrate dehydrogenase and glutamate dehydrogenase in rice roots: candidates for providing carbon skeletons to NADH-glutamate synthase. Plant and Cell Physiology, v.46, n.10, p.1724-1734, 2005. ANDREWS, M.; RAVEN, A.J.; SPRENT, I.J. Environmental effects of dry matter partitioning between shoot and root of crop plants: relations with growth and shoot protein concentration. Annals of Applied Biology, v.138, p.57-68, 2001. BAENA-GONZÁLEZ, E., ROLLAND, F., THEVELEIN, J.M., SHEEN, J. A central integrator of transcription networks in plant stress and energy signalling. Nature, v.448, p.938-994, 2007. BARBIER-BRYGOO, H.; ANGELI, A.DE.; FILLEUR, S.; FRACHISSE, J-M, GAMBALE, F.; THOMINE, S.; WEGE, S. Anion channels/transportersin plants: from molecular bases to regulatory networks. Annual Review of Plant Biology, v.62, p.25-51, 2011. BEEK, C.L.V.; MEERBURG, B.G.; SCHILS, R.L.M.; VERHAGEN, J.; KUIKMAN, P.J. Feeding the world’s increasing population while limiting climate change impacts: linking N2O and CH4 emissions from agriculture to population growth. Environmental Science & Policy, v.13, p.89-96, 2010. BRADFORD, M.M. Rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry, v.72, p.248- 254, 1976. BRAY C.M. Nitrogen Metabolism in Plants. Longman, London, 1983. BRITTO, D.T.; SIDDIQI, M.Y.; GLASS, A.D.M.; KRONZUCKER, H.J. Futile transmembrane NH4 + cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proceedings of the National Academy of Sciences of the United States of America, v.98, p.4255-4258, 2001. CATALDO, D.; HARRON, M.; SCHARADER, E.L.; YOUNGS, L.V. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communication in Soil Science and Plant Analysi, v.6, p.853-855, 1975. CHARDON, F.; NOËL, V.; MASCLAUX-DAUBRESSE, C. Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. Journal of Experimental Botany, p.1-12, 2012. CENTURY, K.; REUBER, T.L.; RATCLIFFE, O.J. Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiology, v.147, p.20-29, 2008. CHEN, D.R., GADAL, P. Do mitochondria provide the 2-oxoglutarateneeded for glutamate synthesis in higher plant chloroplasts? Plant Physiology and Biochemistry, v.28, p.141-145, 1990. CHEN, R.; GREER, A.; DEAN, A.M. A highly active decarboxylating dehydrogenase with rationally inverted coenzyme specificity. Proceedings of the National Academy of Sciences, v.92, n.25, p.11666-11670, 1995. CHICHKOVA, S.; ARELLANO, J.; VANCE, C.P.; HERNANDEZ, G. Transgenic tobacco plants that overexpress alfalfa NADH-glutamate synthase have higher carbon and nitrogen content. Journal of Experimental Botany, v.52, p.2079-2087, 2001. CORUZZI G., BUSH D.R. Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiology, v.125, p.61-64, 2001. CRAWFORD, N.M & GLASS, A.D.M. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, v.3, n.10, p.389-395, 1998. DANIEL, M.; GONZÁLEZ, E.M.; FRENDO, P.; PUPPO, A.; ARRESE-IGOR, C. NADPH recycling systems in oxidative stressed pea nodules: a key role for the NADP+ -dependent isocitrate dehydrogenase. Planta, v.225, p.413-421, 2007. DECHORGNAT, J.; NGUYEN, C.T.; ARMENGAUD, P.; JOSSIER, M.; DIATLOFF, E.; FILLEUR, S.; DANIEL-VEDELE, F. From the soil to the seeds: the long journey of nitrate in plants. Journal of Experimental Botany, v.62, n.4, p.1349-1359, 2011. DUAN, Y.H.; ZHANG, Y.L.; YE, L.T.; FAN, X.R.; XU, G.H.; SHEN, Q.R. Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Annals of Botany, v.99, p.1153-1160, 2007. DUBOIS, F.; TERCÉ-LAFORGUE, T.; GONZALEZ-MORO, M-B.; ESTAVILLO, J-M.; SANGWAN, R.; GALLAIS, A.; HIREL, B. Glutamate dehydrogenase in plants: is there a new story for an old enzyme? Plant Physiology and Biochemistry, p.41, 565-576, 2003. FARNDEN, K.J.F.; ROBERTSON, J.G. Methods for studying enzyme involved in metabolism related to nitrogen. In: BERGSEN, F. J. Ed. Methods for Evaluating Biological Nitrogen Fixation, 1980. FELKER, P. Microdetermination of nitrogen in seed protein extracts. Analitical Chemical, v.49, p.1980, 1977. FERNANDES, M.S. N-Carriers, light and temperature influences on the free amino acid pool composition of rice plants. Turrialba, v.33, n.3, p.297-301, 1984. FERNANDES, M.S & SOUZA, S.R. Absorção de Nutrientes. In: Fernandes M. S. (Org.). Nutrição Mineral de Plantas. 1 ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2006, v.1, p.115-152. FONTAINE, J.X.; SALADINO, F.; AGRIMONTI, C.; BEDU, M.; TERCÉ-LAFORGUE, T.; TÉTU, T.; DUBOIS, F. Control of the synthesis and subcellular targeting of the two GDH genes products in leaves and stems of Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant and cell physiology, v.47, n.3, p.410-418, 2006. FONTAINE, J.X.; TERCÉ-LAFORGUE, T.; ARMENGAUD, P.; CLÉMENT, G.; RENOU, J.P.; PELLETIER, S.; DUBOIS, F. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. The Plant Cell Online, v.24, n.10, p.4044-4065, 2012. FORDE, B.G. Nitrate transporters in plants: structure, function and regulation. Biochimica et Biophysica Acta, v.1465, p.219-235, 2000. FOYER, C.H.; NOCTOR, G.; VERRIER, P. Photosynthetic carbon-nitrogen interactions: modelling inter-pathway control and signalling. In Annual Plant Reviews, 2006. FUNAYAMA, K.; KOJIMA, S.; TABUCHI-KOBAYASHI, M.; SAWA, Y.; NAKAYAMA, Y.; HAYAKAWA, T.; YAMAYA, T. Cytosolic glutamine synthetase1, 2 is responsible for the primary assimilation of ammonium in rice roots. Plant and Cell Physiology, v.54, n.6, p.934-943, 2013. GALLARDO, F.; GÁLVEZ, S.; GADAL, P.; CÁNOVAS, F.M. Changes in NADP1-linked isocitrate dehydrogenase during tomato fruit ripening. Characterization of the predominant cytosolic enzyme from green and ripe pericarp. Planta, v.196, p.148-154, 1995. GÁLVEZ, S.; HODGES, M.; DECOTTIGNES, P.; BISMUTH, E.; LANCIEN, M.; SANGWAN, R.S.; DUBOIS, F.; LEMARECHAL, P.; CRÉTIN, C.; GADAL, P. Identification of a tobacco cDNA encoding a cytosolic NADP-isocitrate dehydrogenase. Plant Molecular Biology, v.30, p.307-320, 1996. GÁLVEZ, L.; GONZÁLEZ, E.M.; ARRESE-IGOR, C. Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. Journal of Experimental Botany, v.56, n.419, p.2551-2561, 2005. GÁLVEZ, S.; LANCIEN, M.; HODGE, M.S. Are isocitrate dehydrogenases and 2- oxoglutarate involved in the regulation of glutamate synthesis? Trends in Plant Science, v.4, p.484-490, 1999. GAUR, V.S.; SINGH, U.S.; KUMAR, A.L. Transcriptional profiling and in silico analysis of Dof transcription factor gene family for understanding their regulation during seed development of rice Oryza sativa L. Molecular Biology Reports, v.38, p.2827-2848, 2011. GAXIOLA, R.A.; LI, J.; UNDURRAGA, S.; DANG, L.M.; ALLEN, G.J.; ALPER, S.L.; FINK, G.R. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+- pump. Proceedings of the National Academy of Sciences, v.98, p.11444-11449, 2001. GLASS, A.D.M.; SHAFF, J.E.; KOCHIAN, L.V. Studies of the uptake of nitrate in Barley. Plant Physiology, v.99, p.456-463, 1992. GOJON, A.; NACRY, P.; DAVIDIAN, J-C. Root uptake regulation: a central process for NPS homeostasis in plants. Current Opinion in Plant Biology, v.12, p.328-338, 2009. GOOD, A.G.; SHRAWAT, A.K.; MUENCH, D.G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, v.9, n.12, p.597-605, 2004. GROTEWOLD, E. Transcription factors for predictive plant metabolic engineering: are we there yet? Current opinion in biotechnology, v.19, n.2, p.138-144, 2008. GROTEWOLD, E. Transcription factors for predictive plant metabolic engineering: are we there yet? Current Opinion in Biotechnology, v.9, p.138–144, 2008. GUALBERTI, G.; PAPI, M.; BELLUCI, L.; RICCI, I.; BOUCHEZ, D.; CAMILLERI, C.; COSTANTINO, P.; VITTORIOSO, P. Mutations in the Dof zinc finger genes DAG2 and DAG1 influence with opposite effects the germination of Arabidopsis seeds. Plant Cell, v.14, p.1253–1263, 2002. GUO, A.; HE, K.; LIU D.; BAI, S.; GU, X.; WEI, L.; LUO, J. DATF: a database of Arabidopsis transcription factors. Bioinformatics, v.21, p.2568–2569, 2005. GUTIÉRREZ, R.A.; LEJAY, L.V.; DEAN, A.; CHIAROMONTE, F.; SHASHA, D.E.; CORUZZI, G.M. Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biology. v.8, p.17, 2007. HARRISON, J.; CRESCENZO, M.-A.P. DE; SENÉ, O.; HIREL, B. Does Lowering glutamine synthetase activity in nodules modify nitrogen metabolism and growth of Lotus japonicus? Plant Physiology, v.133, p.253-262, 2003. HAYAKAWA, T.; HOPKINS, L.; PEAT, L.J.; YAMAYA, T.; TOBIN, A.K. Quantitative intercellular localization of NADH-dependent glutamate synthase protein in different types of root cells in rice plants. Plant Physiology, v.119, n.2, p.409-416, 1999. HIEI, Y. & KOMARI, T. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nature Protocol, v.3, n.5, p.824-834, 2008. HIEI, Y.; KOMARI, T.; KUBO, T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Molecular Biology, v.35, p.205-218, 1997. HIEI, Y.; OHTA, S.; KOMARI, T.; KUMASHIRO, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, v.6, n.2, p.271-282, 1994. HIREL, B.; GOUIS, J.L.; NEY, B.; GALLAIS, A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, p.1-19, 2007. HIREL, B.; LEA, P.J. Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism, (eds. FOYER, C.H.; NOCTOR, G.). The biochemistry, molecular biology and genetic manipulation of primary ammonia assimilation, Kluwer Academic, p.71- 92, 2002. HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil. California Agricultural of Experimental Stn. Bull, v.347, p.1-32, 1950. HODGES, M.; FLESCH, V.; GÁLVEZ, S.; BISMUTH, E. Higher plant NADP+ dependent isocitrate dehydrogenases, ammonium assimilation and NADPH production. Plant Physiology. Biochemistry, v.41, p.577-585, 2003. HOQUE, M.S.; MASLE, J.; UDVARDI, M.K.; RYAN, P.R.; UPADHYAYA, N.M. Overexpression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Functional Plant Biology, v.33, p.153-163, 2006. IBGE. Produção e área plantada de cereais, leguminosas e oleaginosas 2011. Disponível em:http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/lspa/default.shtm. Acesso em: 12 de janeiro de 2012. IIDA, K.; SEKI, M.; SAKURAI, T.; SATOU, M.; AKIYAMA, K.; TOYODA, T.; KONAGAYA, A.; SHINOZAKI, K. RARTF: database and tools for complete sets of Arabidopsis transcription factors. DNA Research, v.12, p.247-256, 2005. ISHIYAMA, K.; KOJIMA, S.; TAKAHASHI, H.; HAYAKAWA, T.; YAMAYA, T. Cell type distinct accumulation of mRNA and protein for NADH-dependent glutamate synthase in rice roots in response to the supply of NH4 +. Plant Physiology and Biochemistry, v.41, p.643-647, 2003. JAIN, M.; NIJHAWAN, A.; TYAGI, A.K.; KHURANA, J.P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, .v.345, n.2, p.646-651, 2006. KAISER, B.N.; RAWAT, S.R.; SIDDIQI, M.Y.; MASLE, J.; GLASS, A.D.M. Functional analysis of an Arabidopsis T-DNA ‘Knockout’ of the high-affinity NH4 + transporter AtAMT1;1. Plant Physiology, v.130, p.1263-1275, 2002. KANT, S.; BI, Y-M.; ROTHSTEIN, S.J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany, v.62, n.4, p.1499-1509, 2011. KARIMI, M.; INZÉ, D.; DEPICKER, A. Gateway-vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, v.7, n.5, p.193-195, 2002. KICHEY, T.; LE GOUIS, J.; SANGWAN, B.; HIREL, B.; DUBOIS, F. Changes in the cellular and subcellular localization of glutamine synthetase and glutamate dehydrogenase during flag leaf senescence in wheat (Triticum aestivum L.). Plant and Cell Physiology, v.46, n.6, p.964-974, 2005. KIYOMIYA, S.; NAKANISHI, H.; UCHIDA, H.; TSUJI, A.; NISHIYAMA, S.; FUTATSUBASHI, M.; TSUKUDA, H.; ISHIOKA, N.S.; WATANABE, S.; ITO, T.; MIZUNIWA, C.; OSA, A.; MATSUHASHI, S.; HASHIMOTO, S.; SEKINE, T.; MORI, S. Real time visualization of 13N-translocation in rice under different environment conditions using position emitting tracer imaging system. Plant Physiology, v.125, .p.1743–1754, 2001. KRONZUCKER, H.J.; BRITTO, D.T.; DAVENPORT, R.J.; TESTER, M. Ammonium toxicity and the real cost of transport. Trends in Plant Science, v.6, p.335-337, 2001. KUMAR, A.; SILIM, S.N.; OKAMOTO, M.; SIDDIQI, M.Y.; GLASS, A.D.M. Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4 + transporters in roots of Oryza sativa subspecies indica. Plant Cell and Environment, v.26, p.907-914, 2003. KURAI, T.; WAKAYAMA, M.; ABIKO, T.; YANAGISAWA, S.; AOKI, N.; OHSUGI, R. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low‐nitrogen conditions. Plant Biotechnology Journal, v.9, n.8, p.826-837, 2011. KUSHWAHA, H.; GUPTA, S.; SINGH, V.K.; RASTOGI, S.; YADAV, D. Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis. Molecular Biology Reports. v.38, p.5037- 5053, 2010. LABBOUN, S.; TERCÉ-LAFORGUE, T.; ROSCHER, A.; BEDU, M.; RESTIVO, F.M.; VELANIS, C.N.; HIREL, B. Resolving the role of plant glutamate dehydrogenase. I. in vivo real time nuclear magnetic resonance spectroscopy experiments. Plant and Cell Physiology, v.50, n.10, p.1761-1773, 2009. LEA, P.J. & MIFLIN, B.J. Nitrogen assimilation and its relevance to crop improvement. Nitrogen metabolism in plants in the post-genomic era. Chichester, UK: Wiley-Blackwell, p.1-40, 2011. LEA, P.J. & MIFLIN, B.J. Glutamate synthase and the synthesis of glutamate in plants. Plant Physiology and Biochemistry, v.41, p.555-564, 2003. LEA, P.J. & AZEVEDO, R.A. Nitrogen use efficiency. Uptake of nitrogen from the soil. Annals of Applied Biology, v.149, n.3, p.243-247, 2006. LEJAY, L.; GANSEL, X.; CEREZO, M.; TILLARD, P.; MULLER, C.; KRAPP, A.; VON WIREN, N.; DANIEL-VEDELE, F.; GOJON, A. Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell v.15, p.2218- 2232, 2003. LEJAY, L.; TILLARD, P.; LEPETIT, M.; OLIVE, F.D.; FILLEUR, S.; DANIEL-VEDELE, F.; GOJON, A. Molecular and functional regulation of two NO3-uptake systems by N- and Cstatus of Arabidopsis thaliana. Plant Journal, v.18, p.509-519, 1999. LEMAITRE, T.; URBANCZYK-WOCHNIAK, E.; FLESCH, V.; BISMUTH, E.; FERNIE, A.R.; HODGES, M. NAD-dependent isocitrate dehydrogenase mutants of Arabidopsis suggest the enzyme is not limiting for nitrogen assimilation. Plant Physiology, v.144, n.3, p.1546-1558, 2007. LIAN, X.; XING,Y.; XU, H.Y.C.; LI, X.; ZHANG, Q. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theoretical and Applied Genetics, v.112, p.85-96, 2005. LIJAVETZKY, D.; CARBONERO, P.; VICENTE-CARBAJOSA, J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evolutionary Biology, v.23, p.3-17, 2003. LIVAK, K.J. & SCHMITTGEN, T.D. Analysis of relative gene expression data using realtime quantitative PCR and the 2-ΔΔCт method. Methods, v.25, p.402-408, 2001. LÓPEZ-GÁLVEZ, G.; SALTVEIT, M.; CANTWELL, M. Wound-induced phenylalanine ammonia lyase activity: factors affecting its induction and correlation with the quality of minimally processed lettuces. Postharvest Biology and Technology, v.9, n.2, p.223-233, 1996. LOQUÉ, D & WIRÉN, N.V. Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany, v.55, n.401, p.1293-1305, 2004. LOTHIER, J.; GAUFICHON, L.; SORMANI, R.; LEMAÎTRE, T.; AZZOPARDI, M.; MORIN, H.; MASCLAUX-DAUBRESSE, C. The cytosolic glutamine synthetase GLN1,2 plays a role in the control of plant growth and ammonium homeostasis in Arabidopsis rosettes when nitrate supply is not limiting. Journal of Experimental Botany, v.62, n.4, p.1375- 1390, 2011. LU, B.; YUAN, Y.; ZHANG, C.; OU, J.; ZHOU, W.; LIN, Q. Modulation of key enzymes involved in ammonium assimilation and carbon metabolism by low temperature in rice (Oryza sativa L.) roots. Plant Science, v.169, n.2, p.295-302, 2005. LUDEWIG, U.; NEUHAUSER, B.; DYNOWSKI, M. Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Letters, v.581, p.2301-2308, 2007. MASCLAUX-DAUBRESSE, C.; REISDORF-CREN, M.; PAGEAU, K.; LELANDAIS, M.; GRANDJEAN, O.; KRONENBERGER, J.; SUZUKI, A. Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiology, v.140, n.2, p.444-456, 2006. MASCLAUX-DAUBRESSE, C.; DANIEL-VEDELE, F.; DECHORGNAT, J.; CHARDON, F.; GAUFICHON, L.; SUZUKI, A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, v.105, p.1- 17, 2009. MILLER, A.J & CRAMER, M.D. Root nitrogen acquisition and assimilation. Plant and Soil, v.274, p.1-36, 2004. MITSUDA, N.; OHME-TAKAGI, M. Functional analysis of transcription factors in Arabidopsis. Plant and Cell Physiology, p.50, n.7, p.1232-1248, 2009. MIYASHITA, Y.; GOOD, A.G. NAD (H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. Journal of Experimental Botany, v.59, n.3, p.667-680, 2008. MORITA, S.; LUX, A.; ENSTONE, D.E.; PETERSON, C.A.; ABE, J. Re‐examination of rice seminal root ontogeny using fluorescence microscopy. Japanese Journal of Crop Science, v.65, p.37-38, 1996. PAEZ-VALENCIA, J.; PATRON-SOBERANO, A.; RODRIGUEZ-LEVIZ, A.; SANCHEZLARES, J.; SANCHEZ-GOMEZ, C.; VALENCIA-MAYORAL, P.; GAXIOLA, R. Plasma membrane localization of the type I H+-PPase AVP1 in sieve element–companion cell complexes from Arabidopsis thaliana .Plant Science, v.181, n.1, p.23-30, 2011. PALOMO, J.; GALLARDO, F.; SUAREZ, M.F.; CANOVAS, F.M., Purification and characterization of NADP-linked isocitrate dehydrogenase from scots pine. Evidence for different physiological roles of the enzyme in primary development. Plant Physiology, v.118, p.617-626, 1998. PAPAVASSILIOU, A.G.Transcription factor-based drug design in anticancer drug development. Molecular Medicine, v.3, n.12, p.799-810, 1997. PEOPLES, M.B.; HERRIDGE, D.F.; LADHA, J.K. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant Soil, v.174, p.3-28, 1995. QU, L-J. & ZHU, Y-X. Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Current Opinion on Plant Biology, v.9, p.544-549, 2006. RANATHUNGE, K.; EL-KEREAMY, A.; GIDDA, S.; BI, Y.M.; ROTHSTEIN S.J. OsAMT1,1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions. Journal of Experimental Botany, v.4, n.65, p.965-979, 2014. RANATHUNGE, K.; STEUDLE, E.; LAFITTE, R. Control of water uptake by rice (Oryza sativa L.): role of the outer part of the root. Planta, v.217, n.2, p.193-205, 2003. RAWAT, S.R.; SILIM, S.N.; KRONZUCKER, H.J.; SIDDIQI, M.Y.; GLASS, A.D.M. AtAMT1 gene expression and NH4 + uptake in roots of Arabidopsis thaliana: evidence for regulation by root glutamine levels. The Plant Journal, v.19, p.143-152, 1999. ROUBELAKIS-ANGELAKIS, K.A.; KLIEWER, W.M. Nitrogen metabolism in grapevine. Horticultural Reviews, v.14, p.407-452, 1992. RUEDA-LÓPEZ, M.; CRESPILLO, R.; CÁNOVAS, F.M.; ÁVILA, C. Differential regulation of two glutamine synthetase genes by a single Dof transcription factor. The Plant Journal, v.56, p.73-85, 2008. SANTOS, L.A., DE SOUZA, S.R., FERNANDES, M.S. OsDof25 expression alters carbon and nitrogen metabolism in Arabidopsis under high N-supply. Plant Biotechnology Reports, v.6, n.4, p.327-337, 2012. SANTOS, L.A. Efeito da Superexpressão dos Fatores de Transcrição ZmDof1 e OsDof25 sobre a Eficiência de Uso de Nitrogênio em Arabidopsis thaliana L. 2009. 81f. (Tese de Doutorado em Ciência do Solo) Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. SCHEIBLE, W.R.; GONZALEZ-FONTES, A.; LAUERER, M.; MULLER-ROBER, B.; CABOCHE, M.; STITT, M. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. The Plant Cell Online, v.9, p.5, p.783-798, 1997. SCHIAVON, M.; ERTANI, A.; NARDI, S. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. Journal of Agricultural and Food Chemistry, v.56, n.24, p.11800-11808, 2008. SERRA,T X.; ESTEBAN, R.; PEÑAS, G.M.; CATALÀ, M.; MELÉ, E.; MESSEGUER, J. Direct and reverse pollen-mediated gene flow between GM rice and red rice weed. AoB Plants, v.5, p.50, 2013. SHANAHAN, J.F.; KITCHEN, N.R.; RAUN, W.R.; SCHEPERS, J.S. Responsive in-season nitrogen management for cereals. Computers and Electronics in Agriculture, v.61, n.1, p. 51-62, 2008. SHI, W.M.; XU, W.F.; LI, S.M.; ZHAO, X.Q.; DONG, G.Q. Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions. Plant and Soil, v.326, n.1-2, p.291-302, 2010. SHIGYO, M.; TABEI, N.; YONEYAMA, T.; YANAGISAWA, S. Evolutionary processes during the formation of the plant-specific Dof transcription factor family. Plant Cell Physiology, v.48, n.1, p.179-185, 2007. SILVA, R.A.C. Efeito da superexpressão do fator de transcrição OsDof25 sobre a eficiência de absorção de nitrogênio em Oryza sativa L. 2012. 52f. Dissertação (Mestrado em Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. SILVA, M.R. de. Embriogênese somática, melhoramento da resposta in vitro e transformação de milho (Zea mays L.) via Agrobacterium tumefaciens. 2009.196f. (Dissertação de mestrado em Produção vegetal), Passo Fundo: UPF. SKOPELITIS, D.S.; PARANYCHIANAKIS, N.V.; PASCHALIDIS, K.A.; PLIAKONIS, E.D.; DELIS, I.D.; YAKOUMAKIS, D.I.; ROUBELAKIS-ANGELAKIS, K.A. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. The Plant Cell Online, v.18, .n10, p.2767- 2781, 2006. SONODA, Y.; IKEDA, A.; SAIKI, S.; von WIRÉN, N.; YAMAYA, T.; YAMAGUCHI, J. Distinct expression and function of three ammonium transporter genes (OsAMT1,1–1,3) in rice. Plant Cell Physiology, v.44, p.726-734, 2003a. SONODA, Y.; IKEDA, A.; SAIKI, S.; YAMAYA, T.; YAMAGUCHI, J. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiology, v.44, p.1396-1402, 2003b. SOUZA & FERNANDES. Nitrogênio. In: FERNANDES, M.S. Nutrição de Plantas. Viçosa: Sociedade Brasileira de Ciência do Solo, 2006. p.215-252. SOUZA, V.M. Avaliação dos parâmetros cinéticos de absorção de amônio entre variedades locais e melhorada de arroz (Oryza sativa L.) e expressão em real-time RTPCR dos transportadores OsAMT1. 2010. 57f. Dissertação (Mestrado em Fitotecnia). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. SPERANDIO. M.V.L.; SANTOS, L.A.; BUCHER, C.A.; FERNANDES, M.S.; SOUZA, S.R. Isoforms of plasma membrane H+-ATPase in rice root and shoot are differentially induced by starvation and resupply of NO3 − or NH4 +. Plant Science, v.180, p. 251-258, 2011. STEWART, G.R.; SHATILOV, V.R.; TURNBULL, M.H.; ROBINSON, S.A.; GOODALL, R. Evidence that glutamate dehydrogenase plays a role in the oxidative deamination of glutamate in seedlings of Zea mays. Functional Plant Biology, v.22, n.5, p.805-809, 1995. STITT, M.; KRAPP, A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell & Environment, v.22, n.6, p.583-621, 1999. SUENAGA, A.; MORIYA, K.; SONODA, Y.; IKEDA, A.; VON WIRÉN, N.; HAYAKAWA, T.; YAMAGUCHI, J.; YAMAYA, T. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant and Cell Physiology, v.44, p.206-211, 2003. TABUCHI, M.; SUGIYAMA, K.; ISHIYAMA, K.; INOUE, E.; SATO, T.; TAKAHASHI, H.; YAMAYA, T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1,1, a cytosolic glutamine synthetase1,1. The Plant Journal, v.42, .n5, p.641-651, 2005. TABUCHI, M.; ABIKO, T.; YAMAYA, T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental Botany, v.58, n.9, p.2319- 2327, 2007. TOBIN, A.K.; YAMAYA, T. Cellular compartmentation of ammonium assimilation in rice and barley. Journal of Experimental Botany, v.52, n.356, p.591-604, 2001. TOKI, S.; HARA, N.; ONO, K.; ONODERA, H.; TAGIRI, A.; OKA, S.; TANAKA, H. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. The Plant Journal, v.47, p.969-976, 2006. UDVARDI, M.K; KAKAR, K.; WANDREY, M.; MONTANARI, O.; MURRAY, J.; ANDRIANKAJA, A.; ZHANG, J.-Y.; BENEDITO, V.; HOFER, J.M.I.; CHUENG, F.; TOWN, C.D. Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiology, v.144, p.538-549, 2007. VEGA, J.M.; YU, W.; KENNON, A.R.; CHEN, X.; ZHANG, Z.J. Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays L.) using standard binary vectors. Plant Cell Reports, v.27, p.297-305, 2008. VIDAL, E.A. & GUTIÉRREZ, R.A. A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Current Opinion in Plant Biology, v.11, p.521-529, 2008. WANG, H.W.; ZHANG, B.; HAO, Y.J.; HUANG, J.; TIAN, A.G.; LIAO, Y.; ZHANG, J.S.; CHEN, S.Y. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant Journal. v.52, n.4, p.716-729, 2007. YAMASAKI, K.; KIGAWA, T.; INOUE, M.; WATANABE, S.; TATENO, M.; SEKI, M.; SHINOZAKI, K.; YOKOYAMA, S. Structures and evolutionary origins of plant-specific transcription factor DNA-binding domains. Plant Physiology and Biochemistry, v.46, n.3, p.394-401, 2008. YAMAYA, T.; HAYAKAWA, T.; TANASAWA, K.; KAMACHI, K.; MAE, T.; OJIMA, K. Tissue distribution of glutamate synthase and glutamine synthetase in rice leaves occurrence of NADH-dependent glutamate synthase protein and activity in the unexpanded, nongreen leaf blades. Plant Physiology, v.100, n.3, p.1427-1432, 1992. YAMAYA, T.; OAKS, A. Metabolic regulation of ammonium uptake and assimilation. In Nitrogen Acquisition and Assimilation in Higher Plants. Kluwer Academic Publishers, v.I, p.35–63, 2004. YAN, F.; ZHU, Y.; MULLER, C.; ZORB, C.; SCHUBERT, S. Adaptation of H+-pumping and plasma membrane H+ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiology, v.129, p.50-63, 2002. YANAGISAWA, S.; AKIYAMA, A.; KISAKA, H.; UCHIMIYA, H.; MIWA, T. Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proceedings of the National Academy of Sciences of the United States of America, n.101, n.20, p.7833-7838, 2004a. YANAGISAWA, S. & SHEEN, J. Involvement of maize Dof zinc finger proteins in tissuespecific and light-regulated gene expression. The Plant Cell, v.10, p.75-89, 1998. YANAGISAWA, S. Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiology, v.45, n.4, p.386-391, 2004b. YANAGISAWA, S. Dof1 and Dof2 transcriptional factors are associated with expression of multiple genes involved in carbon metabolism in maize. The Plant Journal, v.21, n.3, p.281- 288, 2000. YANAGISAWA, S. The Dof family of plant transcription factors. TRENDS in Plant Science, v.7 n.12, p.555-560, 2002. YANAGISAWA, S.; IZUI, K. Molecular cloning two DNA-biding proteins of maize that are structurally different but interact with the same sequence motif. The Journal of Biological Chemistry, v.268, n.21, p.16028-16036, 1993. YANG H., KNAPP J., KOIRALA P., RAJAGOPAL D., PEER W. A., SILBART L. K., MURPHY A., GAXIOLA R. A. Enhanced phosphorus nutrition in monocots and dicots overexpressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnology Journal, v.5, p.735-745, 2007. YAO, S-G.; SONODA, Y.; TSUTSUI, T.; NAKAMURA, H.; ICHIHAWA, H.; IKEDA, A.; YAMAGUCHI, J. Promoter analysis of OsAMT1.2 and OsAMT1.3 implies their distinct roles in nitrogen utilization in rice. Breeding Science, v.58, p. 201-207, 2008. YEMM, E.W. & COCKING, E. C. The determination of amino-acid with ninhydrin. Analytical Biochemistry, v.80, p.209-213, 1955. YEMM, E.W. & WILLIS, A.J. The estimation of carbohydrate in plants extracts by anthrone. Biochemistry, v.57, p.508-514, 1954. ZHANG, Y.H.; ZHANG, Y.L.; SHEN Q.R. Nitrogen accumulation and translocation of different Japonica rice cultivars under different nitrogen application rates. Pedosphere, 2007. ZHAO, X.-Q. & SHI, W.-M. Expression analysis of the glutamine synthetase and glutamate synthase gene families in young rice (Oryza sativa) seedlings. Plant Science, v.170, p.748- 754, 2006.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/70611/2014%20-%20Vinicius%20Miranda%20de%20Souza.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5956
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-09-01T18:46:02Z No. of bitstreams: 1 2014 - Vinicius Miranda de Souza.pdf: 2240533 bytes, checksum: f3d5a4b64ed0e47230ae2e34b1be6346 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-09-01T18:46:02Z (GMT). No. of bitstreams: 1 2014 - Vinicius Miranda de Souza.pdf: 2240533 bytes, checksum: f3d5a4b64ed0e47230ae2e34b1be6346 (MD5) Previous issue date: 2014-02-27eng
Appears in Collections:Doutorado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2014 - Vinicius Miranda de Souza.pdf2.19 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.