Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9979
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGonçalves, Fabíola Vieira
dc.date.accessioned2023-12-21T18:55:47Z-
dc.date.available2023-12-21T18:55:47Z-
dc.date.issued2017-03-22
dc.identifier.citationGONÇALVES, Fabíola Vieira. Caracterização nutricional de genótipos comerciais de feijão-caupi. 2017. 68 f. Tese (Doutorado em Fitotecnia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2017.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9979-
dc.description.abstractDentre as leguminosas que se destacam pelo elevado teor proteico, está o feijão-caupi, sendo o mais amplamente cultivado na maioria das regiões tropicais em torno do mundo. O perfil nutricional do grão de feijão-caupi é semelhante ao de outras leguminosas com teor de gordura relativamente baixo e conteúdo de proteína total que é de duas a quatro vezes maior do que de cereais e tubérculos. O feijão-caupi é ainda uma excelente fonte de minerais, em especial, ferro e zinco. Entretanto, o uso do grão como alimento rico em proteína de qualidade tem sido limitado pela baixa digestibilidade, pela deficiência de aminoácidos sulfurados e pela presença de fatores antinutricionais como o fitato. Assim, tendo em vista a importância da cultura, especialmente para populações de baixa renda, esse trabalho teve por objetivo estudar as características do grão quanto ao conteúdo proteico, mineral e de fitato em grupo de 18 genótipos e em uma segunda etapa avaliar quatro destes genótipos da planta ao grão com análises de peso fresco da parte aérea e peso seco da parte aérea, raiz e nódulos, número de nódulos, produção de grãos, assim como a caracterização proteica dos grãos. Os resultados obtidos nos dois estudos nos permitiram observar alguns genótipos contrastantes para diferentes características, demonstrando que estes podem tanto serem utilizadas em programas de melhoramento, quanto como fonte de recursos genéticos, podendo ainda serem recomendados conforme o interesse do produtor, para características específicas como composição mineral, conteúdo proteico e/ou produção de grãos. Os resultados obtidos neste estudo não permitiram apontar apenas uma cultivar para atender a todos os caracteres desejáveis nutricionalmente. Entretanto, as cultivares Paulistinha, Novaera e BR17 Gurguéia parecem despontar com melhor equilíbrio entre qualidade e produção de grãos; com bom teor proteico, mineral e conteúdo de aminoácidos solúveis sulfuradospor
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectfrações solúveispor
dc.subjectVigna unguiculata (L.) Walp.por
dc.subjectSDS-PAGEpor
dc.subjectmineraispor
dc.subjectfitatopor
dc.subjectsoluble fractionseng
dc.subjectVigna unguiculata (L.) Walpeng
dc.subjectSDS-PAGEpor
dc.subjectmineralseng
dc.subjectphytic acideng
dc.titleCaracterização nutricional de genótipos comerciais de feijão-caupipor
dc.title.alternativeNutritional characterization of commercial cowpea genotypeseng
dc.typeTesepor
dc.description.abstractOtherAmong the legumes that stand out for their high protein content are cowpea (Vigna unguiculata (L.) Walp.), being the most widely cultivated in most tropical regions around the world. The nutritional profile of cowpea bean is almost the same as other legumes, with a relatively low-fat content and total protein content that is two to four times higher than cereals and tubers. Cowpea is still an excellent source of minerals, especially iron (Fe) and zinc (Zn). However, the use of grain as food rich in quality protein has been limited by low digestibility, deficiency of sulfur amino acids and presence of antinutritional factors such as phytate. In this way, considering the great number of cultivars and the importance of culture as a protein source, together with the growing scientific interest in its chemical composition (antinutritional and mineral factors), we aimed to investigate and characterize initially 18 genotypes of cowpea in terms of protein content (total protein, soluble fractions and their polypeptides), mineral content and phytate. From these eighteen genotypes four were chosen to have some of their characteristics evaluated in four stages of development: fresh weight of shoot and dry weight of shoot, root and nodules, nodules number, grain yield as well as the grains protein characterization. That way the conjuncture of the data pointed out some contrasting genotypes, demonstrating that these can be used both in breeding programs and as a source of genetic resources, and may be indicated by some specific characteristic such as protein and mineral content or yield. The results obtained in this study did not allow to indicate only one cultivar to meet all the nutritional desirable characteristics. However, the cultivars Paulistinha, Novaera and BR17 Gurguéia seem to emerge with a better balance between quality and grain production with good protein content, mineral content and sulfur amino acidseng
dc.contributor.advisor1Medici, Leonardo Oliveira
dc.contributor.advisor1ID001.234.037-58por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7750014045851333por
dc.contributor.advisor-co1Pimentel, Carlos
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/6405553451083267por
dc.contributor.referee1Macrae, Fernanda Reinert Thomé
dc.contributor.referee2Xavier, Gustavo Ribeiro
dc.contributor.referee3Rumjanek, Norma Gouvêa
dc.contributor.referee4Jacob Neto, Jorge
dc.contributor.referee5Médici, Leonardo Oliveira
dc.creator.ID016.873.486-93por
dc.creator.Latteshttp://lattes.cnpq.br/6556389593053584por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesABYOMI, Y. A. et al. Growth and yield responses of cowpea (Vigna unguiculata (L.) Walp.) genotypes to nitrogen fertilizer (NPK) application in the Southern Guinea Savanna zone of Nigeria. Asian Journal of Plant Sciences, v.7, n.2, p.170-176, 2008. AVANZA, M. et al. Nutritional and anti-nutritional components of four cowpea varieties under thermal treatments: Principal component analysis. LWT-Food Science and Technology, v. 51, n. 1, p. 148-157, 2013. BABIKER, E. E. et al. Effect of nitrogen fixation, nitrogen fertilization and viral infection on yield, tannin and protein contents and in vitro protein digestibility of faba bean. Plant Foods for Human Nutrition, Dordrecht, v.47, n.3, p.257-263, 1995. BLISS, F. A. et al. Genetic and environmental variation of seed yield, yield components, and seed protein quantity and quality of cowpea. Crop science, Madison, v.13, n.6, p.656-660, 1973. BORGHI, B. et al. Influence of crop rotation, manure and fertilizers on bread making quality of wheat (Triticum aestivum L.). European Journal of Agronomy, Oxford v.4, n.1, p.37-45, 1995. BOUKAR, O. et al. Evaluation of cowpea germplasm lines for protein and mineral concentrations in grains. Plant Genetic Resources, Cambridge, v.9, n.4, p.515-522, 2011. BOYE, J.; ZARE, F.; PLETCH, A. Pulse proteins: processing, characterization, functional properties and applications in food and feed. Food Research International, v. 43, n. 2, p. 414-431, 2010. BRESSANI, R. Grain quality of common beans. Food Reviews International, Philadelphia, v.9, n.2, p.237-297, 1993. BURSTIN, J. et al. 20 Improving Protein Content and Nutrition Quality. Biology and breeding of food legumes, p. 314, 2011. BURTON, J. W. Quantitative genetics: Relevance to soybean breeding. p. 211–247. In J.R. Wilcox (ed.) Soybeans: Improvement, production and uses. 2nd ed. Agronomy Monography 16. ASA, CSSA, and SSSA, Madison, WI. 1987. BURTON, J.W. Development of soybeans with altered protein and oil content. Proc. Am. Seed Trade Assoc., v. 17, p. 46–52, 1988. CAMPOS-VEGA, R.; LOARCA-PIÑA, G.; OOMAH, B. D. Minor components of pulses and their potential impact on human health. Food research international, v. 43, n. 2, p. 461-482, 2010. CHERYAN, M.; RACKIS, J. J. Phytic acid interactions in food systems. Critical Reviews in Food Science and Nutrition, v. 13, n. 4, p. 297-335, 1980. COSTA, E. M. et al. Nodulação e produtividade de Vigna unguiculata (L.) Walp. por cepas de rizóbio em Bom Jesus, PI. Revista Ciência Agronômica, Fortaleza, v.42, n.1, p.1-7, 2011. COSTA, E. S. et al. Photochemical efficiency in bean plants (Phaseolus vulgaris L. and Vigna unguiculata L. Walp.) during recovery from high temperature stress. Brazilian Journal of Plant Physiology, Londrina, v.14, n.2, p.105-110, 2002. COWIESON A. J.; WILCOCK P.; BEDFORD M. R. 2011. Super-dosing effects of phytase in poultry and other monogastrics. World's Poultry Science Journal v. 67, n. 2, p. 225-236. 13 DEBAEKE, P. et al. Grain nitrogen content of winter bread wheat (Triticum aestivum L.) as related to crop management and to the previous crop. European Journal of Agronomy, Oxford, v.5, n.3-4, p.273-286, 1996. DURANTI, M. Grain legume proteins and nutraceutical properties. Fitoterapia, v. 77, n. 2, p. 67-82, 2006. DURANTI, M.; GIUS, C. Legume seeds: protein content and nutritional value. Field Crops Research, v. 53, n. 1-3, p. 31-45, 1997. DUTRA, A. S. et al. Produtividade e qualidade fisiológica de sementes de feijão-caupi em função da adubação nitrogenada. Revista Ciência Agronômica, Fortaleza, v.43, n.4, p.816-821, 2012. EHLERS, J. D.; HALL, A. E. Cowpea (Vigna unguiculata L. Walp.). Field Crops Research, Oxford, v.53, n.1, p.187-204, 1997. ELSHEIKH, E.A.E; ELZIDANY, A.A. Effect of Rhizobium inoculation, organic and chemical fertilizers on proximate composition, in vitro protein digestibility, tannin and sulphur content of faba beans. Food Chemistry, Londres, v.59, n.1, p.41-45, 1997. EMBRAPA MEIO-NORTE. Sistemas de Produção, 2. Jan/2003. Acesso em: 28 ago de 2013 Disponível em: <http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Feijao/FeijaoCaupi/cultivares.htm>. ERDMAN, L. W. Bioavailability of trace minerals from cereals and legumes. Cereal Chemistry 58: 21- 26. 1981. FAROOQ, M. et al. Drought stress in grain legumes during reproduction and grain filling. Journal of Agronomy and Crop Science, Madison, v.203, n.2, p.81-102, 2017. FARRAG, A. A.; SHEHATA, A.A.; KANDIL, M.M. The effect of phosphorus and sulphur fertilizers on seed protein of broad bean plants. In: Proceedings Middle East Sulphur Symposium. John Wiley Washington, DC, 1992. FENNER, M. Environmental influences on seed size and composition. Horticultural reviews, v. 13, p. 183-213, 1992. FERREIRA, L.V. M. et al. Biological nitrogen fixation in production of Vigna unguiculata (L.) Walp., family farming in Piauí, Brazil. Journal of Agricultural Science, Toronto, v.5, n.4, p.153-160, 2013. FREIRE FILHO, F. R. Origem, evolução e domesticação do caupi. In: Araújo, J. P. P. de; Watt, E. E. (Org.). O caupi no Brasil. Brasília, DF: IITA: EMBRAPA, p. 26-46, 1988. FREIRE FILHO, F. R. et al. Adaptabilidade e estabilidade da produtividade de grãos de genótipos de caupi enramador de tegumento mulato. Pesquisa Agropecuária Brasileira, Brasília, v.38, n.5, p.591-598, 2003. FREIRE FILHO, F. R.; LIMA, J.A.A.; RIBEIRO, V.Q. Feijão-caupi: avanços tecnológicos. Brasília: Embrapa Informação Tecnológica, 2005. 519 p. FREIRE FILHO, F. R. et al. Feijão-caupi no Brasil: produção, melhoramento genético, avanços e desafios. Teresina: Embrapa Meio-Norte, v. 1, 2011. FREITAS, R. L.; TEIXEIRA, A. R.; FERREIRA, A. B. Characterization of the Proteins from Vigna unguiculata Seeds. J. Agric. Food Chem., v. 52, n. 6, p.1682−1687, 2004. FROTA, K. M. G. et al. Composição química do feijão-caupi (Vigna unguiculata L. Walp.), cultivar BRS-Milênio. Ciência e Tecnologia de Alimentos, Campinas, v.28, n.2, p.470-476, 2008. 14 GARRIDO-LESTACHE, E.; LÓPEZ-BELLIDO, R.J.; LÓPEZ-BELLIDO, L. Effect of N rate, timing and splitting and N type on bread-making quality in hard red spring wheat under rainfed Mediterranean conditions. Field Crops Research, Oxford, v.85, n.2, p.213-236, 2004. GERRANO, A. S. et al. Genetic variability in cowpea (Vigna unguiculata (L.) Walp. genotypes. South African Journal of Plant and Soil, Pretoria, v.32, n.3, p.165-174, 2015. GHANBARI, A. A. et al. Nitrogen changes in the leaves and accumulation of some minerals in the seeds of red, white and chitti beans (Phaseolus vulgaris) under water deficit conditions. Australian Journal of Crop Science, Camberra, v.7, n.5, p.706, 2013. GIBBS, P. E.; STRONGIN, K. B.; MCPHERSON, A. Evolution of legume seed storage proteins-a domain common to legumins and vicilins is duplicated in vicilins. Molecular biology and evolution, v. 6, n. 6, p. 614-623, 1989. GONÇALVES, A. et al. Cowpea (Vigna unguiculata L. Walp.), a renewed multipurpose crop for a more sustainable agri‐food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 2016. GOODING, M. J.; Davies, W.P. Wheat Production and Utilization. CAB International, Wallingford, UK. 1997. GREENWOOD, J.S.; BEWLEY, J.D. Subcellular distribution of phytin in the endosperm of developing castor bean. Planta, v.160, p.113-120, 1984. GRUSAK, M. A. Enhancing mineral content in plant food products. Journal of the American College of Nutrition, Amherst, v.21, n. sup3, p.178S-183S, 2002. GUPTA, P. et al. Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L.) Walp.]. Physiology and Molecular Biology of Plants, v. 16, n. 1, p. 53-58, 2010. GUPTA, P. et al. Cowpea [Vigna unguiculata (L.) Walp.] seed proteins: Heterogeneity in total proteins and protein fractions. Legume Research: An International Journal, v. 37, n. 1, 2014. GUPTA, R. S.; SINGH, B. Mutagenic responses of five independent genetic loci in CHO cells to a variety of mutagens: Development and characteristics of a mutagen screening system based on selection of multiple drug-resistant markers. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, v. 94, n. 2, p. 449-466, 1982. HALL, A. E. et al. Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crops Research, Oxford, v.82, n.2, p.103-134, 2003. HERMAN, E.M.; LARKINS, B.A. Protein storage bodies and vacuoles. The Plant Cell, v.11, p.601-613, 1999. JOHNSON, V. A.; MATTERN, P. J. Wheat, rye and triticale. In: Olson, R.A., Frey, K.J. (Eds.), Nutritional Quality of Cereal Grains: Genetic and Agronomy Improvements, No. 28. American Society of Agronomy, Inc., Madison, WI, USA, pp. 133–182. 1987. KUMAR, V. et al. Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, v. 120, n. 4, p. 945-959, 2010. KUMAR, A. et al. Effect of sulfur and nitrogen nutrition on storage protein quality in mungbean [Vigna radiata (L.) Wilczek] seeds. Indian Journal of Agricultural Biochemistry, v.26, n.1, p.86-91, 2013. GRANGEIRO, B. T. et al. Composição química da semente, cap. 9, p.339-365. In: Feijão-Caupi: Avanços Tecnológicos Ed. Francisco Rodrigues Freire Filho, José Albenízio de Araújo Lima e Valdenir Queiroz Ribeiro – Brasília, DF: Embrapa Informação Tecnológica, 519p. 2005. 15 MARTINS, R. N. L. et al. Nitrogênio e micronutrientes na produção de grãos de feijão-caupi inoculado1 Nitrogen and micronutrients on grain yield of cowpea inoculated. Semina: Ciências Agrárias, Londrina, v.34, n.4, p.1577-1586, 2013. MONTI, L. M.; GRILLO, S. Legume seed improvement for protein content and quality. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum), v. 32, n. 3, p. 253-266, 1983. NAKASATHIEN, S. et al. Regulation of seed protein concentration in soybean by supra-optimal nitrogen supply. Crop Science, Madison, v.40, n.5, p.1277-1284, 2000. NIELSEN, S. S.; BRANDT, W.E.; SINGH, B.B. Genetic variability for nutritional composition and cooking time of improved cowpea lines. Crop Science, Madison, v.33, n.3, p. 469-472. 1993. NIELSEN, S. S.; OHLER, T.A.; MITCHELL, C.A. Cowpea leaves for human consumption: production, utilization, and nutrient composition. Advances in cowpea research, p. 326-332, 1997. NURSU’AIDAH, H. et al. Growth and photosynthetic responses of long bean (Vigna unguiculata) and mung bean (Vigna radiata) response to fertilization. J Anim Plant Sci, v. 24, n. 2, p. 573-578, 2014. OSBORNE, T. B. The vegetable proteins (2nd edn.). Longmans Green, London. 1924. OSBORN, T.C.; BUROW, M.; BLISS, F.A. Purification and Characterization of Arcelin Seed Protein from Common Bean. Plant Physiology, v. 86, p. 399-405, 1988. POPELKA, J. C.; TERRYN, N.; HIGGINS, T. J. V. Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Science, v. 167, p. 195–206, 2004. PRINYAWIWATKUL, W. et al. Cowpea flour: a potential ingredient in food products. Critical Reviews in Food Science e Nutrition, v. 36, n. 5, p. 413-436, 1996. RAMOS, H. M. M. Características produtivas, fisiológicas e econômicas do feijão-caupi para grãos verdes sob diferentes regimes hídricos. Dissertação (Mestrado), Universidade Federal do Piauí, Teresina, PI, 111 p., 2011. REDDY, N. R.; SALUNKHE, D. K. Interactions between phytate, protein, and minerals in whey fractions of black gram. Journal of Food Science, v. 46, n. 2, p. 564-567, 1981. REDDY, N. R.; SATHE, S. K.; SALUNKHE, D. K. Phytates in legumes and cereals. Advances in food research, v. 28, p. 1-92, 1982. RUBIO, L. A. et al. Characterization of pea (Pisum sativum) seed protein fractions. Journal of the Science of Food and Agriculture, v. 94, n. 2, p. 280-287, 2014. RUFINI, M. et al. Symbiotic efficiency and identification of rhizobia that nodulate cowpea in a Rhodic Eutrudox. Biology and fertility of soils, v. 50, n. 1, p. 115-122, 2014. RUMJANEK, N.G. et al. Fixação biológica do nitrogênio. In: FREIRE FILHO, F.R. et al. (Eds). Feijão-Caupi; avanços tecnológicos. Brasília: EMBRAPA, 2005. p.281-335. SALES, M. P. et al. Do legume storage proteins play a role in defending seeds against bruchids?. Plant Physiology, v. 124, n. 2, p. 515-522, 2000. SANTOS, C. A. F. et al. Genetic analysis of total seed protein content in two cowpea crosses. Crop Science, v. 52, n. 6, p. 2501-2506, 2012. 16 SANTOS, C. A. F.; BOITEUX, L. S. Breeding biofortified cowpea lines for semi-arid tropical areas by combining higher seed protein and mineral levels. Genetics and Molecular Research, v. 12, n.4, p. 6782-6789, 2013. SEBETHA, E. T.; MODI, A. T.; OWOEYE, L. G. Cowpea crude protein as affected by cropping system, site and nitrogen fertilization. Journal of Agricultural Science, v. 7, n. 1, p. 224, 2015. SHARMA, A.; SHARMA, S. Effect of nitrogen and sulphur nutrition on yield parameters and protein composition in soybean [Glycine max (L.) Merrill]. Journal of Applied and Natural Science, v. 1, n. 6, p. 402-408, 2014. SILVA JÚNIOR, E. B. et al. Inserção do Feijão-Caupi no Centro-Oeste e a Importância da Fixação Biológica de Nitrogênio no Manejo do Solo. Cadernos de Agroecologia, v. 9, n. 4, 2015. SINGH, B. B.; HADLEY, H. H. Maternal Control of Oil Synthesis in Soybeans, Glycine max (L.) Merr. Crop Science, v. 8, n. 5, p. 622-625, 1968. SINGH, B. B. (Ed.). Advances in cowpea research. IITA, 1997. SINGH, B. B. et al. Recent progress in cowpea breeding. In: Challenges and Opportunities for Enhancing Sustainable Cowpea Production, p. 22-40, 2002. SINGH, B. B. et al. Improving the production and utilization of cowpea as food and fodder. Field Crops Research, v. 84, p. 169–177, 2003. SINGH, B. B. Cowpea breeding at IITA: highlights of advances and impacts In: Congresso Nacional de feijão-caupi, 1. Reunião Nacional de feijão-caupi, v. 6, 2006. SINGH, B. B. Recent progress in cowpea genetics and breeding. Acta Hortic., v. 752, p. 69-75, 2007. SINGH, U.; JAMBUNATHAN, R. Distribution of seed protein fractions and amino acids in different anatomical parts of chickpea (Cicer arietinum L.) and pigeonpea (Cajanus cajan L.). Plant Foods for Human Nutrition, v. 31, n. 4, p. 347-354, 1982. SPARVOLI, F.; BOLLINI, R.; COMINELLI, E. Nutritional value. In: Grain legumes. Springer New York, 2015. p. 291-325. TIMKO, M. P.; SINGH, B. B. Cowpea, a multifunctional legume. Genomics of Tropical Crop Plants. Edited by: Moore PH, Ming R. v. 200, p. 227-258, 2008. TIMKO M. P.; EHLERS J. D.; ROBERTS P. A. Cowpea. In: Kole C (ed.) Pulses, Sugar and Tuber Crops, Genome Mapping and Molecular Breeding in Plants. vol. 3. Berlin/Heidelberg: Springer-Verlag, pp. 49–67, 2007. TRIBOI, E.; TRIBOI-BLONDEL, A. M. Productivity and grain or seed composition: a new approach to an old problem invited paper. European Journal of Agronomy, v. 16, n. 3, p. 163-186, 2002. VADIVEL, V.; PUGALENTHI, M. Evaluation of nutritional value and protein quality of an under-utilized tribal food legume. Indian Journal of Traditional Knowledge, v. 9, n.4, p. 791-797, 2010 VASCONCELOS, I. M.; et al. Protein fractions, amino acid composition and antinutritional constituents of high-yielding cowpea cultivars. Journal Food Composition and Analysis, v. 23, p. 54–60, 2010. WANG, N.; DAUN, J. K. Effects of variety and crude protein content on nutrients and anti-nutrients in lentils (Lens culinaris). Food Chemistry, v. 95, n. 3, p. 493-502, 2006. 17 WANG, T. L. et al. Can we improve the nutritional quality of legume seeds?. Plant Physiology, v. 131, n. 3, p. 886-891, 2003. WHITE, P. J.; BROADLEY, M. R. Biofortifying crops with essential mineral elements. Trends in plant science, v. 10, n. 12, p. 586-593, 2005. WHITE, P. J.; BROADLEY, M. R. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, v. 182, n. 1, p. 49-84, 2009. WILLIAMS, P. C.; SINGH, U. Nutritional quality and the evaluation of quality in breeding programmes. In: Saxena, M. C. and Singh, K. B. (eds.) The Chickpea. CAB International, p. 329-356, 1987. XAVIER, Terezinha Ferreira et al. Ontogenia da nodulação em duas cultivares de feijão-caupi. Ciência Rural, v. 37, n. 2, p. 561-564, 2007. XU, G.; FAN, X.; MILLER, A. J. Plant nitrogen assimilation and use efficiency. Annual review of plant biology, v. 63, p. 153-182, 2012. ZAYAS, J. F. Solubility of proteins. In: Functionality of proteins in food. Springer Berlin Heidelberg, 1997. p. 6-75. ZILLI, J. E. et al. Eficiência simbiótica de estirpes de Bradyrhizobium isoladas de solo do Cerrado em caupi. Pesquisa Agropecuária Brasileira, v. 41, n. 5, p. 811-818, 2006. ALCÂNTARA, J. dos P. et al. BRS Paraguaçu, novo cultivar de caupi de porte "enramador" e tegumento branco para o Estado da Bahia. Revista Ceres, Viçosa, v.49, p.695-703, 2002. AVANZA, M. et al. Nutritional and anti-nutritional components of four cowpea varieties under thermal treatments: Principal component analysis. LWT-Food Science and Technology, v. 51, n. 1, p. 148-157, 2013. BARRETO, P. D.et al. EPACE-10: nova cultivar de caupi para o Ceará. Fortaleza: EPACE, 1988. BEEBE, S; GONZALEZ, A. V.; RENGIFO, J. Research on trace minerals in the common bean. Food and Nutrition Bulletin, v. 21, n. 4, p. 387-391, 2000. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, v. 72, n. 1-2, p. 248-254, 1976. BRESSANI, R. Nutritive value of cowpea in cowpea research production and utilization, ed. SR Singh e KD Rachie, p. 355-359, 1985. CARVALHO, A. F. U. et al. Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. Journal of Food Composition and Analysis, v. 26, n. 1, p. 81-88, 2012. CHAN, Chi-Wah; PHILLIPS, R. Dixon. Amino acid composition and subunit constitution of protein fractions from cowpea (Vigna unguiculata L. Walp.) seeds. Journal of agricultural and food chemistry, v. 42, n. 9, p. 1857-1860, 1994. CHITRA, U. et al. Variability in phytic acid content and protein digestibility of grain legumes. Plant Foods for Human Nutrition, v. 47, n. 2, p. 163-172, 1995. CLEMENTE, A. et al. Effect of cooking on protein quality of chickpea (Cicer arietinum) seeds. Food Chemistry, v. 62, n. 1, p. 1-6, 1998. COSTA, A. F. et al. Miranda IPA 207, nova cultivar de feijão-caupi para o nordeste brasileiro. Pesq. agropec. pernamb., Recife-PE, v18, n. 1, p. p39-43, 2013. COULIBALY, O.; LOWENBERG-DEBOER, J. The economics of cowpea in West Africa. In: Proceedings, Third World Cowpea Conference, Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Ibadan: IITA. p. 351-366, 2002. ELHARDALLOU, S. B. et al. Amino Acid Composition of Cowpea (Vigna ungiculata L. Walp.) Flour and Its Protein Isolates. Food and Nutrition Sciences, v. 6, n. 9, p. 790, 2015. FOTSO, M. et al. Molecular heterogeneity of cowpea (Vigna unguiculata Fabaceae) seed storage proteins. Plant Systematics and Evolution, v. 191, n. 1-2, p. 39-56, 1994. FREIRE FILHO, F. R. et al. BRS Guariba. Nova cultivar de feijão-caupi para região Meio Norte. Teresina: Embrapa Meio-Norte, folder, 2004. FREIRE FILHO, F. R. et al. BRS Gurguéia. Teresina: Embrapa Meio-Norte, folder, 2008. FREIRE FILHO, Rodrigues et al. BRS Milênio e BRS Urubuquara: cultivares de feijão-caupi para a região Bragantina do Pará. Revista Ceres, v. 56, n. 6, 2009a. 37 FREIRE FILHO, F. R. et al. BRS Pajeu: Cultivar de feijão-caupi com grão mulato claro. Teresina: Embrapa Meio-Norte, folder, 2009b. FREIRE FILHO, F. R. et al. BRS Tumucumaque Cultivar de feijão-caupi com ampla adaptação e rica em ferro e zinco: Teresina: Embrapa Meio-Norte, folder, 2009c. GHAFOOR, A. et al. Inter-relationship between SDS-PAGE markers and agronomic traits in chickpea (Cicer arietinum L.). Pak. J. Bot, v. 35, n. 4, p. 613-624, 2003. GONÇALVES, J. R. P. BRS Novaera: cultivar de feijão-caupi para cultivo em várzeas do Amazonas. Comunicado Técnico 51. São Paulo, 2012. GONÇALVES, A. et al. Cowpea (Vigna unguiculata L. Walp.), a renewed multipurpose crop for a more sustainable agri‐food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 2016. GUPTA, P. et al. Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L.) Walp.]. Physiology and Molecular Biology of Plants, v. 16, n. 1, p. 53-58, 2010. GUPTA, P. et al. Cowpea [Vigna unguiculata (L.) Walp.] seed proteins: Heterogeneity in total proteins and protein fractions. Legume Research: An International Journal, v. 37, n. 1, 2014. HARMANKAYA, M. et al. Some chemical properties, mineral content and amino acid composition of cowpeas (Vigna sinensis (L.) Savi). Quality Assurance and Safety of Crops e Foods, v. 8, n. 1, p. 111-116, 2016. HÍDVÉGI, M.; LÁSZTITY, R. Phytic acid content of cereals and legumes and interaction with proteins. Periodica polytechnica. Chemical engineering, v. 46, n. 1-2, p. 59, 2002 HU, Y. et al. Kaempferol in red and pinto bean seed (Phaseolus vulgaris L.) coats inhibits iron bioavailability using an in vitro digestion/human Caco-2 cell model. Journal of agricultural and food chemistry, v. 54, n. 24, p. 9254-9261, 2006. IPA (Recife. PE). Caupi - BR - IPA - 205: nova cultivar de feijão macassar (Vigna unguiculata (L.) Walp.) para o Estado de Pernambuco. Recife, Folder. 1988. IPA (Recife, PE) BR - IPA - 206: nova cultivar de feijão macassar (Vigna unguiculata (L.) Walp.) tipo moita para Pernambuco. Recife, Folder. 1989. ISSAQ, H. J.; VEENSTRA, TD. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. Biotechniques, v. 44, n. 5, p. 697, 2008. JACOBS, D. R.; STEFFEN, L. M. Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. The American journal of clinical nutrition, v. 78, n. 3, p. 508S-513S, 2003. JAFARI, M. et al. Physicochemical characterization of a navy bean (Phaseolus vulgaris) protein fraction produced using a solvent-free method. Food chemistry, v. 208, p. 35-41, 2016. JOHNSON, V. A.; LAY, C. L. Genetic improvement of plant protein. Journal of agricultural and food chemistry, v. 22, n. 4, p. 558-566, 1974. KACHARE, D. P.; CHAVAN, J. K.; KADAM, S. S. Nutritional quality of some improved cultivars of cowpea. Plant Foods for Human Nutrition, v. 38, n. 2, p. 155-162, 1988. KALLOO, G. et al. Seed Protein Electrophoresis for Varietal Identification of Cowpea [Vigna unguiculata (L.) Walp.]. Seed Research-New Delhi-, v. 29, n. 1, p. 1-6, 2001. 38 KLUPŠAITĖ, D.; JUODEIKIENĖ, G. Legume: composition, protein extraction and functional properties. A review. Chemical Technology, v. 66, n. 1, p. 5-12, 2015. KUMAR, V. et al. Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, v. 120, n. 4, p. 945-959, 2010. LATTA, M.; ESKIN, M. A simple and rapid colorimetric method for phytate determination. Journal of Agricultural and Food Chemistry, v. 28, n. 6, p. 1313-1315, 1980. LAEMMLI, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, v. 227, p. 680-685, 1970. LOWRY, O. H. et al. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, v. 193, n. 1, p. 265-275, 1951. MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. Assessment of nutritional status of plants: principles and applications. Piracicaba: Potafós, 1997. MORRISSEY, James H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Analytical biochemistry, v. 117, n. 2, p. 307-310, 1981. MURANAKA, S. et al. Genetic diversity of physical, nutritional and functional properties of cowpea grain and relationships among the traits. Plant Genetic Resources, v. 14, n. 01, p. 67-76, 2016. ODEIGAH, P. G. C.; OSANYINPEJU, A. O. Seed protein electrophoretic characterization of cowpea (Vigna unguiculata) germplasm from IITA gene bank. Genetic Resources and Crop Evolution, v. 43, n. 6, p. 485-491, 1996. O'DELL, B. L.; DE BOLAND, A. Complexation of phytate with proteins and cations in corn germ and oil seed meals. Journal of Agricultural and Food Chemistry, v. 24, n. 4, p. 804-808, 1976. PEREIRA, E. J. et al. Effects of cooking methods on the iron and zinc contents in cowpea (Vigna unguiculata) to combat nutritional deficiencies in Brazil. Food e nutrition research, v. 58, 2014. PEYRANO, F.; SPERONI, F.; AVANZA, M. V. Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure. Innovative Food Science Emerging Technologies, v. 33, p. 38-46, 2016. RAVELOMBOLA, W. S. et al. Evaluation of Total Seed Protein Content in Eleven Arkansas Cowpea (Vigna unguiculata (L.) Walp.) Lines. American Journal of Plant Sciences, v. 7, n. 15, p. 2288, 2016. ROCHA, M. de M. et al. Seleção de genótipos de feijão-caupi tipo comercial Canapu no semiárido piauiense. 2011. SALES, M. P. et al. Do legume storage proteins play a role in defending seeds against bruchids?. Plant Physiology, v. 124, n. 2, p. 515-522, 2000. SANDBERG, Ann-Sofie. Bioavailability of minerals in legumes. British Journal of Nutrition, v. 88, n. S3, p. 281-285, 2002. SANTOS, C. A. F. et al. BRS Acauã: Cultivar de grão tipo "canapu" para o Vale do São Francisco." Petrolina: Embrapa Semi-Árido, 2011. 39 SANTOS, D. P.; LIMA, L. K. S. Avaliação agronômica de variedades de feijão-caupi em cultivo de sequeiro no município de Coremas-PB. Revista Verde de Agroecologia e Desenvolvimento Sustentável, v. 10, n. 1, p. 218-222, 2015. SINGH, R. J.; CHUNG, G. H.; NELSON, R. L. Landmark research in legumes. Genome, v. 50, n. 6, p. 525-537, 2007. SPARVOLI, F.; BOLLINI, R.; COMINELLI, E. Nutritional value. In: Grain legumes. Springer New York, p. 291-325, 2015. SREERAMA, Y. N. et al. Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chemistry, v. 131, n. 2, p. 462-468, 2012. TEIXEIRA, I. R. et al. Desempenho agronômico e qualidade de sementes de cultivares de feijão-caupi na região do cerrado. Revista Ciência Agronômica, v. 41, n. 1, p. 300-307, 2010. TIMKO, M. P.; SINGH, B. B. Cowpea, a multifunctional legume. In: Genomics of tropical crop plants. Springer New York, p. 227-258, 2008. VASCONCELOS, I. M. et al. Protein fractions, amino acid composition and antinutritional constituents of high-yielding cowpea cultivars. Journal of food composition and analysis, v. 23, n. 1, p. 54-60, 2010. VILARINHO, A. A. et al. BRS Xiquexique: Cultivar de feijão-caupi rica em ferro de zinco para cultivo em Roraima. Embrapa Roraima. Comunicado Técnico, 2008. WANG, T. L. et al. Can we improve the nutritional quality of legume seeds?. Plant Physiology, v. 131, n. 3, p. 886-891, 2003. AZEVEDO, R. A.; ARANA, J. L.; ARRUDA, P. Biochemical genetics of the interaction of the lysine plus threonine resistant mutant Ltr*19 with opaque-2 maize mutant. Plant Science, v.70, p.81-90, 1990. BARROS, R. L. N. et al. Growth and yield of common bean as affected by seed inoculation with rhizobium and nitrogen fertilization. Experimental Agriculture, p. 1-15, 2016. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytcical biochemistry, v. 72, n. 1-2, p. 248-254, 1976. BRESSANI, R. Nutritive value of cowpea. In Cowpea Research, Production, and Utilization; Singh, R. S., Rachie, K. O., Eds.; John Wiley e Sons Ltd.: New York, 1985. BURSTIN, J. et al. 20 Improving Protein Content and Nutrition Quality. Biology and breeding of food legumes, p. 314, 2011. CHAGAS JUNIOR, A. F. et al. Eficiência agronômica de estirpes de rizóbio inoculadas em feijão-caupi no Cerrado, Gurupi-TO. Revista Ciência Agronômica, v. 41, n. 4, 2010. CHAN, Chi-Wah; PHILLIPS, R. Dixon. Amino acid composition and subunit constitution of protein fractions from cowpea (Vigna unguiculata L. Walp.) seeds. Journal of agricultural and food chemistry, v. 42, n. 9, p. 1857-1860, 1994. CLEMENTE, A. et al. Effect of cooking on protein quality of chickpea (Cicer arietinum) seeds. Food Chemistry, v. 62, n. 1, p. 1-6, 1998. CHUNG, J. et al. The seed protein, oil, and yield QTL on soybean linkage group I. Crop science, v. 43, n. 3, p. 1053-1067, 2003. ELHARDALLOU, S. B. et al. Amino Acid Composition of Cowpea (Vigna ungiculata L. Walp.) Flour and Its Protein Isolates. Food and Nutrition Sciences, v. 6, n. 9, p. 790, 2015. FATOKUN, C. A. et al. Challenges and opportunities for enhancing sustainable cowpea production. In: Proceedings of the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. 2000. p. 4-8. FOTSO, M. et al. Molecular heterogeneity of cowpea (Vigna unguiculata Fabaceae) seed storage proteins. Plant Systematics and Evolution, v. 191, n. 1-2, p. 39-56, 1994. FRITH, G. J. T.; DALLINO, M. J. The role of peptide hydrolases in leaf senescence. In: Senescence in plants. Ed. K. V. Thimann. CRC Press, Inc., Boca Raton. p. 117-30, 1980. FREIRE FILHO, F. R. et al. BRS Novaera: cultivar de feijão-caupi de porte semi-ereto. Embrapa Amazônia Oriental. Comunicado técnico, 2008. FREIRE FILHO, F. R. Feijão-caupi no Brasil: produção, melhoramento genético, avanços e desafios. 1. ed. Teresina, PI: Embrapa, p. 84, 2011. FREITAS, R. L.; TEIXEIRA, A. R.; FERREIRA, A. B. Characterization of the Proteins from Vigna unguiculata Seeds. J. Agric. Food Chem., v. 52, n. 6, p.1682−1687, 2004. 57 GHANBARI, A. A. et al. Nitrogen changes in the leaves and accumulation of some minerals in the seeds of red, white and chitti beans ('Phaseolus vulgaris') under water deficit conditions. Australian Journal of Crop Science, v. 7, n. 5, p. 706, 2013. GRAHAM, P. H.; VANCE, C. P. Legumes: importance and constraints to greater use. Plant physiology, v. 131, n. 3, p. 872-877, 2003. GUPTA, P. et al. Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L.) Walp.]. Physiology and Molecular Biology of Plants, v. 16, n. 1, p. 53-58, 2010. INAIZUMI, H. Adoption and impact of dry-season dual-purpose cowpea in the semiarid zone of Nigeria. IITA, 1999. IQBAL, A. et al. Nutritional quality of important food legumes. Food Chemistry, v. 97, n. 2, p. 331-335, 2006. JUNG, M. S. et al. Herdabilidade e ganho genético em caracteres do fruto do maracujazeiro-doce. Revista Brasileira de Fruticultura, v. 30, p. 209-214, 2008. KALLOO, G. et al. Seed Protein Electrophoresis for Varietal Identification of Cowpea [Vigna unguiculata (L.) Walp.e]. Seed Research-New Delhi-, v. 29, n. 1, p. 1-6, 2001. KLUPŠAITĖ, D.; JUODEIKIENĖ, G. Legume: composition, protein extraction and functional properties. A review. Chemical Technology, v. 66, n. 1, p. 5-12, 2015. LAEMMLI, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, v. 227, p. 680-685, 1970. LONG, Stephen P. et al. Can improvement in photosynthesis increase crop yields?. Plant, Cell & Environment, v. 29, n. 3, p. 315-330, 2006. LOWRY, O. H. et al. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, v. 193, n. 1, p. 265-275, 1951. MAHFOUZ, H. M. Assessment of genetic diversity in cowpea (Vigna unguicalata) using sds-page, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. Egyptian Journal of Genetics And Cytology, v. 44, n. 1, 2015. MALIK, U.; KARMAKAR, A.; BARIK, A. Variation in fatty acids throughout the developmental stages of Vigna unguiculata (L.) Walp. leaves. Botany Letters, v. 163, n. 4, p. 461-468, 2016. MARTINS, L. M. V. et al. Contribution of biological nitrogen fixation to cowpea: a strategy for improving grain yield in the semi-arid region of Brazil. Biology and fertility of soils, v. 38, n. 6, p. 333-339, 2003. MELO, S. R.; ZILLI, J. E. Fixação biológica de nitrogênio em cultivares de feijão‑caupi recomendadas para o Estado de Roraima. Pesquisa Agropecuária Brasileira, v. 44, n. 9, p. 1177-1183, 2009. MORRISSEY, James H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Analytical biochemistry, v. 117, n. 2, p. 307-310, 1981. MURRAY, D. R. et al. Electrophoretic Studies of the Seed Proteins of Cowpea, Vigna unguiculata (L.) Walp. Zeitschrift für Pflanzenphysiologie, v. 109, n. 4, p. 363-370, 1983. ODEIGAH, P. G. C.; OSANYINPEJU, A. O. Seed protein electrophoretic characterization of cowpea (Vigna unguiculata) germplasm from IITA gene bank. Genetic Resources and Crop Evolution, v. 43, n. 6, p. 485-491, 1996. 58 OKONYA, J. S.; MAASS, B. L. Protein and iron composition of cowpea leaves: an evaluation of six cowpea varieties grown in Eastern Africa. African Journal of Food, Agriculture, Nutrition and Development, v. 14, n. 5, p. 2129-2140, 2014. OSBORNE, T. B. The vegetable proteins (2nd edn.). Longmans Green, London. 1924. PEOPLES, M. B., PATE, J. S., and ATKINS, C. A. Mobilization of nitrogen in fruiting plants of a cultivar of cowpea. Journal of Experimental Botany, v. 34, p. 563-78, 1983. POTTORFF, M. et al. Leaf morphology in Cowpea [Vigna unguiculata (L.) Walp.]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species. BMC genomics, v. 13, n. 1, p. 234, 2012. PIMENTEL, C. Efficiency of nutrient use by crops for low input agro-environments. Focus on plant agriculture, v. 1, p. 277-328, 2006. SUKOR, R. et al. Characterisation of the ability of globulins from legume seeds to produce cocoa specific aroma. ASEAN Food Journal, v. 14, n. 2, p. 103-114, 2007. RAGAB, D. M.; BABIKER, E. E., ELTINAY, A. H. Fractionation, solubility and functional properties of cowpea (Vigna unguiculata) proteins as affected by pH and/or salt concentration. Food Chemistry, v. 84, p.207–212, 2004. RAVELOMBOLA, W. S. et al. Evaluation of Total Seed Protein Content in Eleven Arkansas Cowpea (Vigna unguiculata (L.) Walp.) Lines. American Journal of Plant Sciences, v. 7, n. 15, p. 2288, 2016. ROCHA, M. de M. et al. Seleção de genótipos de feijão-caupi tipo comercial Canapu no semiárido piauiense. 2011. SANTOS, Ca. A. F.; ARAUJO, F. P de. Produtividade e morfologia de genótipos de caupi em diferentes densidades populacionais nos sistemas irrigado e de sequeiro. Pesquisa Agropecuária Brasileira, v. 35, n. 10, p. 1977-1984, 2000. SANTOS, C. A. F. et al. Genetic analysis of total seed protein content in two cowpea crosses. Crop Science, v. 52, n. 6, p. 2501-2506, 2012. SANTOS, M. A. et al. Mapping of QTLs associated with biological nitrogen fixation traits in soybean. Hereditas, v. 150, n. 2‐3, p. 17-25, 2013. SANTOS, J. A. da S. et al. Desempenho agronômico e divergência genética entre genótipos de feijão-caupi cultivados no ecótono Cerrado/Pantanal. Bragantia, v. 73, n. 4, p. 377-382, 2014. SEBETHA, E. T.; MODI, A. T.; OWOEYE, L. G. Cowpea crude protein as affected by cropping system, site and nitrogen fertilization. Journal of Agricultural Science, v. 7, n. 1, p. 224, 2015. SINGH, B. B. et al. Improving the production and utilization of cowpea as food and fodder. Field Crops Research, v. 84, n. 1, p. 169-177, 2003. SINGH, R. J.; CHUNG, G. H.; NELSON, R. L. Landmark research in legumes. Genome, v. 50, n. 6, p. 525-537, 2007. VASCONCELOS, I. M. et al. Protein fractions, amino acid composition and antinutritional constituents of high-yielding cowpea cultivars. Journal of food composition and analysis, v. 23, n. 1, p. 54-60, 2010. WANG, Trevor L. et al. Can we improve the nutritional quality of legume seeds?. Plant Physiology, v. 131, n. 3, p. 886-891, 2003. XAVIER, Gustavo Ribeiro et al. Especificidade simbiótica entre rizóbios e acessos de feijão-caupi de diferentes nacionalidades. Revista Caatinga, v. 19, n. 1, 2006por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/64001/2017%20-%20Fab%c3%adola%20Vieira%20Goncalves.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4386
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-02-11T17:17:14Z No. of bitstreams: 1 2017 - Fabíola Vieira Goncalves.pdf: 1288125 bytes, checksum: c58af9115698adca29b93d5dccab3190 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-02-11T17:17:14Z (GMT). No. of bitstreams: 1 2017 - Fabíola Vieira Goncalves.pdf: 1288125 bytes, checksum: c58af9115698adca29b93d5dccab3190 (MD5) Previous issue date: 2017-03-22eng
Appears in Collections:Doutorado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2017 - Fabíola Vieira Goncalves.pdfFabíola Vieira Goncalves1.26 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.