Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9980
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVasconcelos Filho, Sebastiao Carvalho
dc.date.accessioned2023-12-21T18:55:47Z-
dc.date.available2023-12-21T18:55:47Z-
dc.date.issued2014-07-25
dc.identifier.citationVasconcelos Filho, Sebastiao Carvalho. Toxidez do alumínio em caju-de-árvore-do-cerrado (Anacardium othonianum Rizz.). 2014. [66 f.]. Tese( Programa de Pós-Graduação em Fitotecnia) - Universidade Federal Rural do Rio de Janeiro, [Seropédica - RJ] .por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9980-
dc.description.abstractA avaliação da toxidez causada pelo alumínio em plantas das regiões brasileiras do cerrado é de grande importância para o desenvolvimento da agricultura. Isso porque nessas áreas predominam os latossolos, que são ácidos, com baixa capacidade de troca catiônica, alta saturação por alumínio trocável e teores muito baixos de fósforo disponível às plantas. Pouca atenção tem sido dada às comunidades de plantas nativas do cerrado que toleram condições de solo ácido. A espécie Anacardium othonianum Rizz., é uma planta frutífera e conhecida popularmente como caju-de-árvore-do-cerrado, com várias aplicações alimentícias, nutricionais e medicinais, mas pouco estudada. Dessa forma, o objetivo deste estudo foi avaliar o efeito do alumínio no crescimento radicular, acúmulo de nutrientes e na estrutura anatômica das raízes de plântulas de A. othonianum Rizz. Para isso, plântulas recém germinadas foram cultivadas em solução nutritiva simples, composta de 0,1 mM de CaCl2.2H2O, ou solução nutritiva completa com baixa força iônica, ambas com cinco concentrações de alumínio (0, 150, 300, 600 e 1200 μM). Posteriormente, as plântulas foram avaliadas quanto ao crescimento radicular, elongação radicular, massa seca, além de estudos anatômicos utilizando técnicas de microscopia de campo claro e fluorescência. Também foram avaliadas a porcentagem de emergência e índice de velocidade de emergência das plântulas utilizando areia lavada umedecida com solução de alumínio em diferentes concentrações. Os resultados demonstraram que o alumínio provocou redução nas taxas de crescimento radicular e elongação radicular relativa, sendo constatado fitotoxidez a partir de 150 μM de Al na solução. Também foi observado redução no índice de velocidade de emergência, porcentagem de emergência das plântulas e alterações anatômicas nos ápices radiculares, em especial nas regiões meristemáticas, sendo demonstrado estimulo à vacuolização dessas células e interiorização do alumínio em diferentes tecidos. O alumínio diminuiu a absorção da maioria dos nutrientes nas plântulas, tendo a seguinte ordem de redução nas raízes: P>Ca>Mg>N para os macronutrientes e Fe>Cu para os micronutrientes; nas folhas a redução seguiu a ordem: Ca>Mg>P. Por outro lado, as maiores concentrações de alumínio aumentaram os teores de N e K nas folhas e Mn nas raízes. Os teores de K nas raízes, e Fe, Cu e Mn nas folhas, não foram afetados pelas concentrações de alumínio. Os resultados demonstraram que a espécie tolera altas concentrações de alumínio, porém a queda nas taxas de crescimento radicular e nos teores de nutrientes podem prejudicar a produção de castanha e pseudofruto em solos ácidos com altas concentrações desse elemento, uma vez que a redução no crescimento radicular faz com que a planta explore menos volume de solo, o que consequentemente afeta a absorção de água e nutrientes.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectcrescimentopor
dc.subjectfitotoxidezpor
dc.subjectcaju do cerradopor
dc.subjectgrowtheng
dc.subjectphytotoxicityeng
dc.subjectcashew cerradoeng
dc.titleToxidez do alumínio em caju-de-árvore-do-cerrado (Anacardium othonianum Rizz.)por
dc.title.alternativeAluminum toxicity in the tree cashew of the cerrado (Anacardium othonianum Rizz.).eng
dc.typeTesepor
dc.description.abstractOtherThe evaluation of the toxicity caused by aluminum plants in the Brazilian cerrado regions has great importance for the development of agriculture, because these areas are dominated by oxisols, which are acid soils with low cation exchange capacity, high exchangeable aluminum saturation and very low phosphorus available to plants. Little attention has been given to communities of native cerrado plants that tolerate acid soil conditions, such as the species Anacardium othonianum Rizz., fruit plant and popularly known as the tree cashew of the cerrado, with many food, nutritional and medicinal applications. Thus, the aim of this study was to evaluate the effects of aluminum on root growth, nutrient accumulation and root structure of seedlings of A. othonianum Rizz. The germinated seedlings were growth in a nutrient solution only composed of 0,1 mM CaCl2.2H2O, and also in a complete low ionic strength solution, both with concentrations of aluminum (0, 150, 300, 600 and 1200 μM) nutrient solution. Subsequently, the seedlings were evaluated for root growth, root elongation, dry mass and anatomical studies using techniques of light and fluorescence microscopy field. Emergence percentage and speed index emergence seedlings using washed sand moistened with a solution of aluminum in different concentrations were also assessed. The results showed that aluminum caused a reduction in the rate of root growth and root elongation relative phytotoxicity being observed from 150 μM Al in solution. Reduction in the rate of emergence rate, percentage of seedlings emergence and anatomical changes in root tips, particularly in meristematic regions was also observed being demonstrated stimulation of these cells with vacuolization and internalization of aluminum in different tissues. Aluminum decreased absorption of most nutrients in the seedlings, with the following order of reduction in roots: P> Ca> Mg> N for macronutrients and Fe> Cu for micronutrients; reduction in leaves followed the order: Ca> Mg> P. On the other hand, higher concentrations of aluminum increased N and K content in leaves and Mn in roots. The K content in roots, and Fe, Cu and Mn in leaves were not affected by concentrations of aluminum. The results showed that this species tolerates high concentrations of aluminum, but the fall in rates of root growth and nutrient content can reduced the production of nut and pseudofruit in acid soils with high concentrations of this element, since the reduction in root growth makes plant operates less volume of soil, which in turn affects water and nutrient absorption.eng
dc.contributor.advisor1Jacob Neto, Jorge
dc.contributor.advisor1ID088505851-08por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6508017274417976por
dc.contributor.referee1Silva, Fabiano Guimarães
dc.contributor.referee2Alves, José Milton
dc.contributor.referee3Goi, Silvia Regina
dc.contributor.referee4Vasconcellos, Marco Antônio da Silva
dc.creator.ID004225241-58por
dc.creator.Latteshttp://lattes.cnpq.br/8676132636864862por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesABRÀMOFF, M.D.; MAGALHÃES, P.J.; RAM, S.J. Image Processing with Image J. Biophotonics international, v. 11, p. 36 – 42, 2004. ACHARY, V.M. M.; JENA, S.; PANDA, K.K.; PANDA, B.B. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicology and Environmental Safety. v.70, p.300–310, 2008. ACHARY, V.M.M.; PANDA, B.B. Aluminium-induced DNA damage and response to genotoxic stress in plant cells are mediated through reative oxygen intermediates. Mutagenesis, v.25, n.2, p.201-209, 2010. AGOSTINI-COSTA, T.S.; LIMA, A.; LIMA, M.V. Determinação de taninos em pedúnculo de caju: método da vanilina versus método do butanol ácido. Química Nova, São Paulo, v. 26, n. 5, p. 763-765, 2003. AHN, S.J.; SIVAGURU, M.; CHUNG, G.C.; Rengel, Z.; Matsumoto, H. Aluminum-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo). Journal of Experimental Botany.v.53, p.59–66, 2001. AKESON, M.A.; MUNNS, D.N.; BURAU, R.G. Adsorption of Al3+ to phosphatidylcholine vesicles. Biochimica et Biophysica Acta. v.986, p.33–40, 1989. ALMEIDA, S.P.; PROENÇA, C.E.B.; SANO, S.M.; RIBEIRO, J.F. Cerrado: espécies vegetais úteis. Planaltina, DF: EMBRAPA-CPAC, 1998. 464 p. AQUINO, A.R.L.; OLIVEIRA, F.N.S.; ROSSETTI, A.G. Correção do solo para cultivo do cajueiro no cerrado Piauiense. Fortaleza: Embrapa Agroindústria Tropical, 2004, 20p. (Documentos, 81). BARCELÓ, J.; POSCHENRIEDER, C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environmental and Experimental Botany, Oxford, v.48, n.1, p.75-92, 2002. BARCELÓ, J.; POSCHENRIEDER, C.; VÁZQUEZ, M.D.; GUNSÉ, B. Aluminum phytotoxicity. A challenge for plant scientists. Fertilizer Research, v.43, p217–23, 1996. BARROS, L.M.; CRISÓSTOMO, J.R. Melhoramento Genético do Cajueiro. In: ARAÚJO, J. P.P. e SILVA, V.V. Cajucultura: Modernas Técnicas de Produção. EMBRAPA-CNPAT, Fortaleza, p. 73-96, 1995. BASSO, L.H.M.; LIMA, G.P.P.; GONÇALVES, A.N.; VILHENA, S.M.C.; PADILHA, C.C. F. Efeito do alumínio no conteúdo de poliaminas livres e atividadeda fosfatase ácida durante o crescimento de brotações de Eucalyptus grandis x Eucalyptus urophylla cultivadas in vitro. Revista Scintia Florestalis, Piracicaba, n. 75, p. 9-18, 2007 BASSO, S.M.S.; AGNOL, M.D.; CAETANO, J.H.S.; JACQUES, A.V.A. Crescimento de plântulas de Adesmia ssp. submetidas a doses de alumínio em solução nutritiva. Ciência Rural, v.30, n.2, p.217-222, 2000. BATISTA, M.F.; MOSCHETA, I.S.; BONATO, C.M.; BATISTA, M.A.; ALMEIDA, O.J.G.; INOW, T.T. Aluminum in corn plants: influence on growth and morphoanatomy of root and leaf. Revista Brasileira de Ciências do Solo, v.37(1), p.177, 2013. BELLO, I.Á.; ESCOBAR, I.M.R.; TESTILLANO, P.S.; RISUEÑO, M. del C. Efectos del alumínio em la división y el alargamento celular em plântulas de arroz (Oryza sativa L.). Cultivos Tropicales, v.33, n.1, p.35-40, 2012. BENNET, B.J.; BREEN, C.M. The recovery of the roots of Zea mays L. from various aluminium treatments: Towards elucidating, the regulatory processes that underlie root growth control. Environmental and Experimental Botany, Amsterdam, v. 31, n. 2, p. 153-163, 1991. 58 BRACCINI, M.C.L.; MARTINEZ, H.E.P.; SILVA, E.A.M.; BRACCINI, A.L.; SCAPIM, C. A. Crescimento da planta e coloração das raízes com hematoxilina como critérios de avaliação de genótipos de café quanto à tolerância à toxidez de alumínio. Revista Brasileira de Ciência do Solo, Viçosa, MG, v. 24, n. 1, p. 59-68, 2000. BRASIL. Ministério da Agricultura. Regras para análise de sementes. Brasília: DNPV-DISEM, 1992. 365 p. CAKMAK, I.; HORST, J.H. Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum, Copenhagen, v. 83, n. 3, p. 463-468, 1991. CONCEIÇÃO, L.D.H.C.S.; SERENO, M.J.C.M.; BARBOSA NETO, J.F. Tolerância ao alumínio em plantas: toxicidade, mecanismos e genes em espécies cultivada. Revista Brasileira de Agrociência, Pelotas, v.14, n.3-4, p.01-10, 2008. CORRALES, I.; POSCHENRIEDER, C.; BARCELÓ, J. Boron-induced amelioration of aluminum toxicity in a monocot and a dicot species. Journal Plant Physiology. v.165, p.504–513, 2008. DEGENHARDT, J.; LARSEN, P.B.; HOWELL, S.H.; KOCHIAN, L.V. Aluminum resistance in the Arabidopsis mutant alr-104 is caused by aluminum-induced increase in rhizosphere pH. Plant Physiology, Rockville, v.117, n.1, p.19-27, 1998. DELHAIZE, E.; GRUBER, B.D.; RYAN, P.R. The roles of organic anion permeases in aluminum resistance and mineral nutrition. Federation of European Biochemical Societies Letters, v. 581. p. 2255-2262, 2007. DELHAIZE, E.; RYAN, P.R. Aluminum toxicity and tolerance in plants. Plant Physiology, Lancaster, v.107, p.315-321, 1995. DELHAIZE, E.; RYAN, P.R.; HEBB, D.M.; YAMAMOTO, Y.; SASAKI, T.; MATSUMOTO, H. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proceedings of the National Academy of Sciences USA, Washington, v.101, n.42, p.15249-15254, 2004. DELIMA, M.L.; COPELAND, L. Changes in the ultrastructure of the root tip of wheat following exposure to aluminum. Australian Journal of Plant Physiology, Collingwood, v. 21, n. 1, p. 85-94, 1994. DODGE, C.S.; HIATT, A.J. Relationship of pH to ion uptake imbalance by varieties of wheat (Triticum vulgare). Agronomy Journal, Madison v.64, n.4, p.476-481, 1992. ECHART, C.L; CAVALLI-MOLINA, S. Fitotoxicidade do alumínio: efeitos, mecanismo de tolerância e seu controle genético. Revista Ciência Rural, Santa Maria, v. 31, n. 3, p. 531-541, 2001. ELEFTHERIOU, P.E.; MOUSTAKAS, M.; GRAGISKOS, N. Aluminate-induced changes in morphology and ultrastructure of Thinopyrum roots. Journal of Experimental and Botany, London, v. 44, n. 2, p. 427-436, 1993. EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária. Manual de análises químicas de solos, plantas e fertilizantes. Brasília: Embrapa Solos/Embrapa Informática Agropecuária/Embrapa Comunicação para Transferência de Tecnologia, 1999. 370p. ETICHA, D.; STASS, A.; HORST, W.J. Localization of aluminium in the maize root apex: can morin detect cell wall-bound aluminium? Journal of Experimental Botany, v. 56, p.1351–1357, 2005. FAÇANHA, A.R.; OKOROKOVA – FAÇANHA, A.L. Inhibition of phosphate uptake in corn roots by aluminum-fluoride complexes. Plant Physiology, v.129 (4), p.1763-1772, 2002. FAGERIA, N.K.; WRIGHT, R.J.; BALIGAR, V.C. Rice cultivar response to aluminium in nutrient solution. Communications in Soil Science and Plant Analysis, v. 19, n. 7/12, p. 1133-1142, 1988. FAQUIM, V.; VALE, F.R. Toxidez de alumínio e manganês. Informe Agropecuário, Belo Horizonte, v.15, n.170, p.17-28, 1991. 59 FERNANDES, M.S. Nutrição mineral de plantas. Viçosa: Sociedade Brasileira de Ciências do Solo, 2006. 432p. FERREIRA, M. B. Frutos comestíveis do DF (II): gabirobas, araçás, amoreira e cajus. Cerrado, v.05, 1973. p. 25-29. FERREIRA, R. P; MOREIRA, A; RASSINI, J. B. Toxidez de alumínio em culturas anuais. Embrapa. São Carlos, SP. p. 6, 2006. FORTUNATO, R.P.; NICOLOSO, F.T. Toxidez de alumínio em plântulas de grápia (Apuleia leiocarpa Vog. Macbride). Ciência Rural, Santa Maria, v. 34, n. 1, 2004. FOY, C. D. & SILVA, A. R. DA. Tolerances of wheat germplasm to acid subsoil. Journal of Plant Nutrition, v. 14, p. 1277-1295, 1991. FOY, C. D.; CHANEY, R. L.; WHITE, M. C.The physiology of metal toxicity in plants. Annual Review of Plant Physiology, v. 29, p.511-56, 1978. FRANTZIOS, G.; GALATIS, B.; APOSTOLAKOS, P. Aluminum effects on Microtubule Organization in Dividing Root-Tip Cells of Triticum turgidum. Journal of Plant Research, v.114, p.157- 170, 2001. FREITAS, F.A; KOPP, M.M; SOUSA, R.O; ZIMMER, P.D; CARVALHO, F.I.F; OLIVEIRA, A.C. Absorção de P, Mg, Ca e K e tolerância de genótipos de arroz submetidos a estresse por alumínio em sistemas hidropônicos. Revista Ciência Rural, Santa Maria, v. 36, n. 1, p. 72-79, 2006. FROTA, P.C.E. Clima e fenologia. In: LIMA, V. P. M. S. A cultura do cajueiro no nordeste do Brasil. Fortaleza: Banco do Nordeste do Brasil, p. 63-80, 1988. FURLANI, P.R.; DUARTE, A.P.; PATERNIANI, M.E.A.G.Z. Tolerância ao alumínio em cultivares de milho. In: DUARTE, A.P.; PATERNIANI, M.E.A.G.Z. (Coords). Fatores bióticos e abióticos em cultivares de milho e estratificação ambiental: avaliação IAC/CATI/Empresas – 1999-2000. Campinas: Instituto Agronômico, 2000, p. 19-29. (Boletim Científico, 5) GIANNAKOULA, A.; MOUSTAKAS, M.; MYLONA, P.; PAPADAKIS, I.; YUPSANIS, T. Aluminum tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline, and decreased levels of lipid peroxidation and Al accumulation. Journal of Plant Physiology, Stuttgart, v. 165, n. 4, p. 385-396, 2008. GRABSKI, S.; SCHINDLER, M. Aluminum induces rigor within the actin network of soybean cells. Plant Physiology, Rockville, v. 108, n. 3, p. 897-901, 1995. GREVENSTUK, T., ROMANO, A. Aluminium speciation and internal detoxification mechanisms in plants: Where do we stand? Metallomics, v.5, p. 1584-1594, 2013. GUPTA, N.; GAURAV, S.S.; KUMAR, A. Molecular Basis of Aluminium Toxicity in Plants: A Review. American Journal of Plant Sciences, v.4, p-21-37, 2013. HAAG, H.P.; SARRUGE, J.R.; DE OLIVEIRA, G.D.; DECHEN, A.R. Nutrição mineral do cajueiro (Anacardium occidentale L.). I – Deficiência dos macronutrientes – Nota Prévia. Anais da Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, v.32, p.185-190, 1975. HAMILTON, C.A.; GOOD, A.G.; TAYLOR, G.J. Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in the aluminum-resistant cultivar of wheat. Plant Physiology, v.125, p. 2068-2077, 2001. HARIDASAN, M. Nutrição mineral de plantas nativas do cerrado. Revista Brasileira de Fisiologia Vegetal, v.12, p.54-64, 2000. ROSSI, M.; MATTOS, I.F.A.; COELHO, R.M.; MENK, J.R.F.; ROCHA, F.T.; PFEIFER, R.M.; MARIA, I.C. de. Relação solos/vegetação em área natural no Parque Estadual de Porto Ferreira, São Paulo. Revista do Instituto Florestal, v.17, p.45-61, 2005. HARIDASAN, M. Nutritional adaptations of native plants of the cerrado biome in acid soils. Brazilian Journal of Plant Physiology, v.20 (3), p.183-195, 2008. HARTWIG, I.; OLIVEIRA, A.C.; CARVALHO, F.I.F.; BERTAN, I.; SILVA, J.A.G.; SCHMIDT, D.A.M.; VALÉRIO, I.P.; MAIA, L.C.; FONSECA, D.A.R.; REIS, C.E.S. 60 Mecanismos associados à tolerância ao alumínio em plantas. Semina: Ciências Agrárias, Londrina, v. 28, n. 2, p. 219-228, 2007. HORST W.J.; WANG, Y.; ETICHA, D. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: A review. Annals of Botany (London), v.106, p.185-197, 2010. HUANG, C.F.; YAMAJI, N.; CHEN, Z.; MA, J.F.A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. The Plant Journal, v.69 (5), p.857–867, 2012. IKEDA, H.; TADANO, T. Ultrastructural changes of the root tip cells in barley induced by a comparatively low concentration of aluminum. Soil Science and Plant Nutrition, v.39, p.109-117, 1993. JACOB NETO, J. The interations of H+/ OH- exchanges between roots and rhizosphere with plant nutricion and aluminium effects. Dundee, University of Dundee, 1993. 281p. (Tese de Doutorado). JACOB NETO, J.; RAVEN, J. A.; WOLLENWEBER, B. Aluminium in the rhizosphere of Phaseolus vulgaris L. In: INTERNATIONAL CONFERENCE ON HEAVY METALS IN THE ENVIROMENT, 1991, Edinburg. Proceedings. Edinburg, CEP Consultants, p. 103-106, 1991. JAMAL, S.H.N.; IGBAL, M.Z.; ATHAR, M. Effect of aluminum and chromium on the growth and germination of mesquite (Prosopis juliflora Swartz.)DC. International Journal of Environmental Science and Technology, v.3 (2), p.173, 2006. JAN, F. & PETERSSON, S. Varietal diversity of upland rice in sensitivity to aluminium. Journal of Plant Nutrition, v. 12, n. 9, p. 973- 993, 1989. JOHANSEN, D.A. Plant microtechnique. New York: McGraw-Hill Book Co. Inc., 1940. 423p. JONES, D.L.; BLANCAFLOR, E.B.; KOCHIAN, L.V.; GILROY, S. Spatial coordination of aluminum uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environment, v.29, p.13–18, 2006. JONES, D.L.; GILROY, S.; LARSEN, P.B.; HOWELL, S.H.; KOCHIAN, L.V. Effects of aluminum on cytoplasmic Ca 2+ homeostasis in root hairs of Arabidopsis thaliana (L.) Planta, v.206, p.378-387, 1998. JONES, D.L.; KOCHIAN, L.V. Aluminum Inhibition of the Inositol 1,4,5- Trisphosphate Signal Transduction Pathway in Wheat Roots: A Role in Aluminum Toxicity? Plant Cell, v.7 (11), p.1913-1922, 1995. KALOVOULOS, J.M. & MISOPOLINOS, N.D. Aluminium detection on corn roots by the quinalizarin method. Plant Soil, v.74, p.131-132, 1983. KARNOVSKY, M.J. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. Journal of Cell Biology, v. 27, p. 137-138, 1965. KASAI, M.; SASAKI, M.; YAMAMOTO, Y.; MATSUMOTO, H. Aluminum stress increases K+ efflux and activities of ATP- and PPi-dependent H+ pumps of tonoplast-enriched membrane vesicles from barley roots. Plant Cell Physiology, v.33, p.1035-1039, 1992. KIDD, P.S.; LLUGANY, M.; POSCHENRIEDER, C.; GUNSE, B.; BARCELO, J. The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.). Journal of Experimental Botany, Oxford, v.52, n.359, p.1339-1352, 2001. KINRAIDE, T.B.; ARNOLD, R.C.; BALIGAR, V.C. A rapid assay for aluminium phytotoxicity at submicromolar concentrations. Physiologia Plantarum, v. 65, p. 245-250, 1985. KISS, T. Interaction of aluminum with biomolecules – any relevance to Alzheimer’s disease? Arch Geront Geriat, v.21 (1), p.99-112, 1995. 61 KOCHIAN, L. V.; JONES, D. L. Aluminum toxicity and resistance in plants. In: YOKEL, R.; GOLUB, M. S. Research Issues in Aluminum Toxicity. Bristol: Taylor and Francis Publishers, p.69-90, 1997. KOCHIAN, L.V.; HOEKENGA, O.A.; PIÑEROS, M.A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology, Palo Alto, v.55, p.459-93, 2004. KOCHIAN, L.V.; SHAFF, J.E.; KUHTREIBER, W.M.; JAFFE, L.F.; LUCAS, W.J. Use of an extracellular, ion-selective vibrating microelectrode system for the quantification of K+, H+ and Ca2+ fluxes in Mayze roots and Mayze suspension of K+, H+ and C2+ fluxes in maize roots and maize suspension cells. Planta, v. 188, p. 601-610, 1992. KORN, M.; JORGE, R.A.; ARRUDA, P. Aluminum induced organic acid exudation by roots of an aluminum tolerant tropical maize. Phytochemistry, Oxford, v.45, n.4, p.675-681, 1997. LENOBLE, M.E.; BLEVINS, D.G.; SHARP, R.E.; CUMBIE, B.G. Prevention of aluminum toxicity with supplemental boron. I. maintenance of root elongation and cellular structure. Plant Cell Environment, Oxford, v. 19, n. 10, p. 1132-1142, 1996. LI, X.F.; MA, J.F.; MATSUMOTO, H. Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiology, Rockville, v.123, n.4, p.1537-1544, 2000. LI, Y.Y.; YANG, J.L.; ZHANG, Y.J.; ZHENG, S.J. Disorganized distribution of homogalacturonan epitopes in cell walls as one possible mechanism for aluminium-induced root growth inhibition in maize. Annals of Botany, v.104, p.235-241, 2009. LIMA, A.C.; GARCIA, N.H.P.; LIMA, J.R. Obtenção e caracterização dos principais produtos do caju. Boletim CEPPA, v. 22, n. 1, p. 133-144, 2004. LIN, Y.H. Effects of aluminum on root growth and absorption of nutrients by two pineapple cultivars [Ananas comosus (L.) Merr.]. African Journal of Biotechnology, v.9 (26), p.4034-4041, 2010. LLUGANY, M.; POSCHENRIEDER, C.H.; BARCELÓ, J. Monitoring of aluminum-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminum and proton toxicity. Physiologia Plantarum, v.93, p.265–271, 1995. LÓPEZ-BUCIO, L; NETO JACOBO, M.F.; RAMIREZ-RODRIGUES, V.; HERRARA-ESTELLA, L. Organic acids metabolismo in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Science, v.10, p.1-13, 2000. MA, J.F.; SHEN, R.F.; NAGAO, S.; TANIMOTO, E. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiology, v.45, p.583–589, 2004. MACEDO, F.L.; PEDRA, W.N.; SILVA, S.A.; BARRETO, M.C.V.; SIVA-MANN, S. Effect of aluminum in plants of Jatropha curcas L. grown in nutritive solution. Semina: Ciências Agrárias, Londrina, v.32, n.1, p. 157-164, 2011. MAGALHAES, J.V.; LIU, J.; GUIMARAES, C.T. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature and Genetics, v.39, p.1156-1161, 2007. MAGNAVACA, R,; BAHIA FILHO, A.F.C. Seleção de milho para tolerância ao alumínio. Sete Lagoas: Embrapa-CNPMS, 30p, 1991. MAGUIRE, J.D. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, Madison, v.2, n.1, p.176-177, 1962. MALAVOLTA, E.; VITTI, G.C.; OLIVEIRA, S.A. Avaliação do estado nutricional das plantas; princípios e aplicações. Associação Brasileira para Pesquisa da Potassa e do Fosfato, Piracicaba, 1997. 319p. MARIANO, E.D.; JORGE, R.A.; KELTJENS, W.G.; MENOSSI, M. Metabolism and root exudation of organic acid anions under aluminium stress, Brazilian Journal Plant Physiology, Campinas, v. 17, n. 1, p. 157-172, 2005. 62 MARIANO, E.D.; KELTJENS, W.G. Long-term effects of aluminum exposure on nutrient uptake by maize genotypes differing in aluminum resistance. Journal of Plant Nutrition, v.28, n.2, p-232-333, 2005. MARIENFIELD, S.; LEHMANN, H.; STELZER, R. Ultrastructural investigations and EDX-analyses of Al-treated oat (Avena sativa) roots. Plant Soil, v.171, p.167-173, 1995. MARIN, A.; SANTOS, D.M.M. Interação da deficiência hídrica e da toxicidade do alumínio em guandu cultivado em hidropônica. Pesquisa Agropecuária Brasileira, Brasília, v. 43, n. 10, p. 1267-1275, 2008. MARON, GUIMARAES, C.T.; KIRST, M.; ALBERT, P.S.; BIRCHLER, J.A.; BRADBURY, P.J.; BUCKLER, E.S.; COLUCCIO, A.E.; DANILOVA, T.V.; KUDRNA, D.; MAGALHAES, J.V.; PINEROS, M.A.; SCHATZ, M.C.; WING, R.A.; KOCHIAN, L.V. Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proceedings of the National Academy of Sciences of The United States of America, p.1-6, 2013. MARSCHNER, H. Mechanisms of adaptation of plants to acid soils. In: R.J. Wright, V.C. Baligar, and R.P. Moorman (eds), Plant-soil interactions at low pH. Proceedings of the Second International Symposium on Plant-Soil Interactions at Low pH, Beckley, West Virginia, USA. Kluwer Academic Publisher, p.683–702, 1991. MATSUMOTO, H. Biochemical mechanism of the toxicity of aluminum and the sequestration of aluminum in plant cells. In Plant-Soil Interactions at Low pH (Wright, R.J., Baligar, V.C., Murrmann, R.P., eds), Kluwer Academic Publishers, p.825-838, 1991. MATSUMOTO, H. Cell biology of aluminum toxicity and tolerance in higher plants. International Review Cytology, San Diego, v.200, p.1-46, 2000. MATSUMOTO, H.; SENOO, Y.; KASAI, M.; MAESHIMA, M. Response of the plant root to aluminum stress: Analysis of the inhibition of the root elongation and changes in membrane function. Journal of Plant Research, v.109, p.99-105, 1996. MENDONÇA, R.C.; FELFILI, J.M.; WALTER, B.M.T.; SILVA JÚNIOR, M.C.; RESENDE, A.V.; FILGUEIRAS, T.S.; NOGUEIRA, P.E. Flora Vascular do Cerrado. In: SANO, S.M.; ALMEIDA, S.P. (Ed.). Cerrado: ambiente e flora. Planaltina: Embrapa-CPAC, p.89-168, 1998. MOSSOR-PIETRASZEWSKA, T. Effect of aluminium on plant growth and metabolism. Acta Biochemical Polonica, v.48, p.673-686, 2001. MOTODA, H.; KANO, Y.; HIRAGAMI, F.; KAYAMURA, K.; MATSUMOTO, H. Morphological changes in the apex of pea roots during and after recovery from aluminium treatment. Plant and Soil, v. 333, n. 1-2, p. 49-58, 2010. NAGY, N.E.; DALEN, L.S.; JONES, D.L.; SWENSEN, B.; FOSSDAL, C.G.; ELDHUSET, T.D. Cytological and enzymatic responses to aluminium stress in root tips of Norway spruce seedlings. New Phytologist, v. 163, p. 595- 607, 2004. NAIDOO, G.; STEWART, J. McD.; LEWIS, R.J. Accumulation sites of Al in snap bean and cotton roots. Agronomy Journal, Madison, v.70, n.3, p.489-492, 1978. NASCIMENTO, A. S. G. Leguminosas arbóreas de Florestas Pluviais Tropicais: Comportamento ecofisiológico em relação ao nitrogênio mineral e alumínio. 1998. 120 p.Dissertação (Mestrado em Ciências Florestais e Ambientais). Universidade Federal Rural do Rio Janeiro. Seropédica, RJ, 1998. NAVES, R.V. Espécies frutíferas nativas dos Cerrados de Goiás: caracterização e influências do clima e dos solos. 1999. 206 f. Tese (Doutorado em Agronomia: Produção Vegetal) -Escola de Agronomia, Universidade Federal de Goiás, Goiânia. NICHOL, E.; OLIVEIRA, L.A.; GLASS, A.D.M.; SIDDIQI, M.Y. The effects of aluminum on the influx of calcium, potassium, ammonium, nitrate, and phosphate in an aluminum-sensitive cultivar of barley (Hordeum vulgare L.). Plant Physiology, Rockville, v. 101, n. 4, p. 1263-1266, 1993. 63 O’BRIEN, T.P.; FEDER, N.; McCULLY, M.E. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasm, v. 59, p.368-373, 1964. OFEI-MANU, P.; WAGATSUMA, T.; ISHIKAWA, S.; TAWARAYA, K. The plasma membrane strength of the root-tip cells and root phenolic compounds are correlated with Al tolerance in several common woody plants. Soil Science Plant Nutrition, Tokyo, v.47, n.2, p.359-375, 2001. OLIVARES, E.; PENA, E.; MARCANO, E.; MOSTACERO, J.; AGUIAR, G.; BENITEZ, M.; RENGIFO, E. Aluminum acculation and its relationship with mineral plant nutrients in 12 pteridophytes from Venezuela. Environmental and Experimental Botany, v.65, n.1, p.132-141, 2009. OLIVEIRA, M.S. Tolerância de variedades de cana-de-açúcar (Saccharum spp.) à toxidez por alumínio em solução. 2012. 206 f. Dissertação (Mestrado em Agricultura e Ambiente) – Centro de Ciências Agrária, Universidade Federal de São Carlos, São Carlos. OLIVEIRA, V.H. de. Cajucultura. Revista Brasileira de Fruticultura, Jaboticabal, v. 30, n. 1, 2008. ONTHONG, J. & OSAKI, M. Adaptations of tropical plants to acid soils. Tropics, v.15 (4), p.337-347, 2006. PAIVA, J.R.; CRISOSTOMO, J.R.; BARROS, L.M. Recursos Genéticos do cajueiro: coleta, conservação, caracterização e utilização. Fortaleza: EMBRAPA-CNPAT, 43p. 2003. PAVAN, M.A.; BINGHAM, F.T.; PRATT, P.F. Redistribution of exchangeable calcium, magnesium and aluminium following lime or gypsum application to a Brazilian oxisol. Soil Science Society of America Journal, v.48, p.33-38, 1982. PEIXOTO, P.H.P.; PIMENTA, D.S.; CAMBRAIA, J. Alterações morfológicas e acúmulo de compostos fenólicos em plantas de sorgo sob estresse de alumínio. Bragantia, Campinas, v. 66, n.1, p.17-25, 2007. PEJCHAR, P.; PLESKOT, R.; SCHWARZEROVÁ, K.; MARTINEC, J.; VALENTOVÁ, O.; NOVOTNÁ, Z. Aluminum ions inhibit phospholipase D in a microtubule-dependent manner. Cell Biology International. v.32, p.554-556, 2008. PELLET, D.M.; GRUNES, E.L.; KOCHIAN, L.V. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta, New York, v.196, n.4, p.788- 795, 1995. PEREIRA, J.M.; CAMBRAIA, J.; FONSECA JÚNIOR, É.M.; RIBEIRO, C. Efeito do alumínio sobre a absorção, o acúmulo e o fracionamento do fósforo em sorgo. Bragantia, v. 67, n.4, p. 961-967, 2008. PIÑEROS, M.A.; MAGALHAES, J.V.; ALVES, V.M.C.; KOCHIAN, L.V. The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiology, Rockville, v.129, n.3, p.1194-1206, 2002. POLLE, E.; KONZAC, C.F.; KITTRICK, J.A. Visual detection of aluminium tolerance levels in wheat by hematoxylim staining of seedling roots. Crop Science, v. 18, p. 823- 827, 1978. PORTALUPPI, R.; BRAMMER, S.P.; MAGALHAES, J.V.; COSTA, C.T.; CAIEIÃO, E.; NASCIMENTO JUNIOR, A.; SILVA JUNIOR, J.P. Tolerância de genótipos de cereais de inverno ao alumínio em cultivo hidropônico e em campo. Pesquisa Agropecuária Brasileira, v.45, p.178-185, 2010. QIN, R.; JIANG, W.; LIU, D. Aluminum can induce alterations in the cellular localization and expression of three major nucleolar proteins in root tip cells of Allium cepa var. agrogarum L. Chemosphere, v.90(2), p.827-834, 2013. RAMOS, A.D.; OLIVEIRA, F.N.S.; LIMA, A.A.C. Solos cultivados com cajueiro no Piauí. Fortaleza: Embrapa-CNPCa, 1994. 24p. (Embrapa-CNPCa. Boletim de Pesquisa, 11). RENGEL, Z. Uptake of aluminum by plant cells. New Phytologyst, v.134, p.389–406, 1996. RENGEL, Z.; ELLIOTT, D.C. Mechanism of Aluminum Inhibition of Net Ca Uptake by Amaranthus Protoplasts. Plant Physiology, v.98 (2), p.632-638, 1992. 64 RENGEL, Z.; ZHANG, W.H. Role of dynamics of intracellular calcium in aluminum-toxicity syndrome. New Phytologyst, v.159, p.295–314, 2003. RIBEIRO, C., CAMBRAIA, J., PEIXOTO, P.H.P., FONSECA JUNIOR, E. M. Antioxidant system response induced by aluminum in two rice cultivars. Brazil Journal of Plant Physiology, v.24, p. 107-116, 2012. RIBEIRO, M.A.Q.; ALMEIDA, A.F.; MIELKE, M.S.; GOMES, F.P.; PIRES, M.V.; BALIGAR, V.C. Aluminum effects on growth, photosynthesis, and mineral nutrition of cacao genotypes. Journal of Plant Nutrition, v.36, p.1161-1179, 2013. ROSSIELLO, R.O.P.; JACOB NETO, J. Toxidez de alumínio em plantas: novos enfoques para um velho problema. In: FERNANDES, M.S. (Ed.). Nutrição mineral de plantas. Viçosa: Sociedade Brasileira de Ciência do Solo, 2006. p. 375-418. RUGGIERO, P.G.C.; PIVELLO, V.R.; SPAROVEK, G.; TERAMOTO,E.; PIRES NETO, A.G. Relação entre solo, vegetação e topografia em área de cerrado (Parque Estadual de Vassununga, SP): como se expressa em mapeamentos? Acta Botanica Brasilis, v.20, p.383-394, 2006. RYAN, P.R.; DITOMASO, J.M.; KOCHIAN, L.V. Aluminum toxicity in roots: an investigation of spatial sensivity and the role of the root cap. Journal Experimental Botany, London, v. 44, n. 259, p. 437-446, 1993. RYAN, P.R.; RAMAN, H.; GUPTA, S.; HORST, W.J.; DELHAIZE, E. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiology, v. 149, p.340-351, 2009. SAKIHAMA, Y.; YAMASAKI, H. Lipid peroxidation induced by phenolics in conjunction with aluminum ions. Biologia Plantarum, Praha, v. 45, n. 2, p.249-254, 2002. SANCHEZ-CHACÓN, C.D.; FEDERIZZI, L.C.; MILACH, S.C.K.; PACHECO, M.T. Variabilidade genética e herança da tolerância à toxicidade do alumínio em aveia. Pesquisa Agropecuária Brasileira, Brasília, v. 35, n. 9, p. 1797-1808, 2002. SASAKI, M.; YAMAMOTO, Y.; MATSUMOTO, H. Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots. Physiologya Plantarum, Copenhagen, v. 96, n. 2, p. 193- 198, 1996. SASAKI, T.; YAMAMOTO, Y.; EZAKI, B.; KATSUHARA, M.; AHN, S.J.; RYAN, P.R.; DELHAIZE, E.; MATSUMOTO, H. A wheat gene encoding an aluminum-ativated malate transporter. Plant Journal, Oxford, v.37, p.645-653, 2004. SCHEFFER-BASSO. S.M.; AGNOL, M.A.; CAETANO, J.H.S.; JACQUES, A.V.A. Growth of Adesmia spp. Seedlings submitted to aluminum doses in nutritive solution. Ciência Rural, Santa Maria, v.30, n.2, p. 217-222, 2000. SHAMSI, I.H.; WEI, K.; JILANI, G.; ZHANG, GUO-PING. Interactions of cadmium and aluminum toxicity in their effect on growth and physiological parameters in soybean. Journal of Zhejiang University Science B, v.8 (3), p.181-188, 2007. SILVA, A.H.; PATERNIANI, M.E.A.G.Z.; CAMARGO, C.E.O. Genetic variability and inheritance to aluminum tolerance in nutriente solution in triticale. Bragantia, Campinas, v.73, n.1, p.8-13, 2014. SILVA, D.B. da; SILVA, A.S. da; JUNQUEIRA, N.T.V.; ANDRADE, L.R.M. de. Frutas do Cerrado. Brasília: Embrapa Informação Tecnológica, p.178, 2001. SILVA, I.R.; SMYTH, T.J.; MOXLEY, D.F.; CARTER, T.E.; ALLEN, N.S.; RUFTY, T.W. Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiology, Rockville, v.123, n.2, p.543-552, 2000. SILVA, I.R.; SMYTH, T.J.; MOXLEY, D.F.; CARTER, T.E.; ALLEN, N.S.; RUFTY, T.W. Aluminum Accumulation at Nuclei of Cells in the Root Tip. Fluorescence Detection Using 65 Lumogallion and Confocal Laser Scanning Microscopy. Plant Physiology, v. 123, p.543-552, 2000. SILVA, I.R; SMYTH, T.J.; RAPER, C.D.; CARTER, T.E.; RUFTY, T.W. Differential aluminum tolerance in soybean: An evaluation of the role of organic acids. Physiologia Plantarum, Oxford, v.112, n.2, p.200-210, 2001. SILVA, M.R.; LACERDA, B.C.L.; SANTOS, G.G.; MARTINS, D.M. de O. Caracterização química de frutos nativos do cerrado. Ciência Rural, Santa Maria, v. 38, n. 6, p. 1790-1793, 2008. SILVA, R.S.M.; CHAVES, L.J.; NAVES, R.V. Caracterização de frutos e árvores de cagaita (Eugenia dysenterica DC.) no sudeste do estado de Goiás, Brasil. Revista Brasileira de Fruticultura, Jaboticabal - SP, v. 23, n. 2, p. 330-334, 2001. SILVA, S. Aluminium toxicity targets in plants. Journal of Botany, v.2012, 2012, 8p. SILVA, S.; PINTO-CARNIDE, O.; MARTINS-LOPES, P.; MATOS, M.; GUEDES-PINTO, H.; SANTOS, C. Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. Tolerant wheat. Environmental and Experimental Botany, v.68, n.1, p.91-98, 2010. SIMONOVICOVA, M.; HUTTOVA, J.; MISTRIK, I.; SIROKA, B.; TAMAS, L. Root growth inhibition by aluminum is probably caused by cell death due to peroxidase- mediated hydrogen peroxide production. Protoplasma, v. 224, p. 91-98, 2004. SIVAGURU, M.; BALUSKA, F.; VULKMANN, D.; FELLE, H.H.; HORST, W.J. Impacts of aluminum on the cytoskeleton of maize root apex: short-term effects on the distal part of the transition zone. Plant Physiology, Rockville, v.119, n.3, p.1073-1082, 1999. SIVAGURU, M.; FUJIWARA, T.; SAMAJ, J.; BALUSKA, F.; YANG, Z.; OSAWA, H.; MAEDA, T.; MORI, T.; VOLKMANN, D.; MATSUMOTO, H. Aluminum-Induced 1, 3-β-D-Glucan Inhibits Cell-to-Cell Trafficking of Molecules through Plasmodesmata. A New Mechanism of Aluminum Toxicity in Plants. Plant Physiology, v.124, p.991-1006, 2000. SOUZA, W. Microscopia Óptica: fundamentos e aplicações às Ciências Biomédicas. 1ed. Rio de Janeiro: Sociedade Brasileira de Microscopia, 2010. 220 p. STEFANELLO, R.; GARCIA, D.C.; MENEZES, N.L. de; MUNIZ, M.F.B.; WRASSE, C.F. Efeito da luz, temperatura e estresse hídrico no potencial fisiológico de sementes de funcho. Revista Brasileira de Sementes, Brasília, v. 28, n. 2, p. 135-141, 2006. SUJKOWSKA-RYBKOWSKA, M. Reactive oxygen species production and antioxidative defense in pea (Pisum sativum L.) root nodules after short-term aluminum treatment. Acta Physiologia Plantarum. v.34 (4), p.1387-1400, 2012. TAIZ, L.; ZEIGER, E. Fisiologia Vegetal. 5. ed. Porto Alegre: Artmed, 2013. 500 p. TECCHIO, M.A.; PAIOLI-PIRES, E.J.; GRASSI FILHO, H.; BRIZOLA, R.M.O.; TERRA, M.M.; CORRÊA, J.C. Acúmulo de macronutrientes em porta-enxertos de videira cultivadas em solução nutritiva com adição de alumínio. Acta Scientiarum. Agronomy, v.27, n.1, p.47-54, 2005. TICE, K.R.; PARKER, D.R.; DEMASON, D.A. Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiology, v.100, p.109–318, 1992. TOLRA, R.P.; POSCHENRIEDER, C.; LUPPI, B.; BARCELO, J. Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa. Environmental and Experimental Botany, v. 54, p. 231–238, 2005. VASCONCELOS, S.S. Métodos de avaliação da tolerância à toxidade de alumínio em cultivares da arroz (Oryza sativa L.). Seropédica: UFRRJ, 1997, 137p. Tese de Mestrado. VASCONCELOS, S.S.; ROSSIELO, R.O.P.; JACOB-NETO, J. Parâmetros morfológicos para estabelecer tolerância diferencial à toxicidade de alumínio em cultivares de arroz. Pesquisa Agropecuária Brasileira, Brasília, v.37, n.3, p. 357-363, 2002. 66 VITORELLO, V.A.; HAUG, A. Short-term aluminum uptake by tobacco cells: growth dependence and evidence for internalization in a discrete peripheral region. Physiologia Plantarum, v.97, p.536–544, 1996. WAGATSUMA, T.; ISHIKAWA, S.; OBATA, H.; TAWARAYA, K.; KATOHDA, S. Plasma membrane of younger and outer cells is the primary specific site for aluminum toxicity in roots. Plant and Soil, Dordrecht, v. 171, n. 1, p. 105-112, 1995. WAGATSUMA, T.; KAWASHIMA, T.; TAWARYA, K. Comparative stainability of plant root cells with basic dye ( methylene blue) in association with aluminium tolerance. Comm. Soil Sci. Plant Anal., 19: 1207-1215, 1998. WATANABE, T. & OSAKI, M. “Mechanisms of Adaptation to High Aluminum Condition in Native Plant Species Growing in Acid Soils: A Review,” Communications in Soil Sciences and Plant Analysis, v. 33, n. 7-8, p.1247-1260, 2002. XUE, Y.J.; TAO, L.; YANG, Z.M. Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. Journal of agricultural and food chemistry, v.56 (20), p.76-84, 2008. YAMAMOTO, Y.; KOBAYASHI, Y.; DEVI, S.R.; RIKIISHI, S.; MATSUMOTO, H. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiology, v.128, p.63-72, 2002. YAMASHITA, O.M.; GUIMARÃES, S.C. Germinação de sementes de Conyza canadensis e C. bonariensis em função da presença de alumínio no substrato. Ciência Rural, v.41(4), p.599, 2011. YANG, J.L.; LI, Y.Y.; ZHANG, Y.J.; WU, Y.R.; WU, P.; ZHENG, S.J. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiology, v.146, p.602–61, 2008. YANG, Z. M.; SIVAGURU, M.; HORST, W. J.; MATSUMOTO, H. Aluminum tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Physiologia Plantarum, Oxford, v.110, n.1, p.72-77, 2000. ZHANG, W-H.; RENGEL, Z. Aluminum induces an increase in cytoplasmic calcium intact wheat root apical cells. Australian Journal of Plant Physiology, v.26, p.401-409, 1999. ZHAO, Z.; MA, J.F.; SATO, K.; TAKEDA, K. Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta, New York, v.217, n.5, p.794-800, 2003. ZHEANG, S.J.; YANG, J.L.; HE, Y.F.; YU, X.H.; ZHANG, L.; YOU, J.F.; SHEN, R.F.; MATSUMOTO, H. Imobilization of Aluminum with phosphorus in roots is associated with high aluminum resistance in Buckwheat. Plant Physiology, v.138, p.297-303, 2005. ZHENG, S. J.; MA, J. F.; MATSUMOTO, H. Continuous secretion of organic acids in related to aluminum resistance during relatively long-term exposure to aluminum stress. Physiologia Plantarum, Oxford, v.103, n.2, p.209-214, 1998.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/62748/2014%20-%20Sebasti%c3%a3o%20Carvalho%20Vasconcelos%20Filho.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4082
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-10-26T11:25:33Z No. of bitstreams: 1 2014 - Sebastião Carvalho Vasconcelos Filho.pdf: 2634728 bytes, checksum: 247486cc8bad3c42694193f806019134 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-10-26T11:25:33Z (GMT). No. of bitstreams: 1 2014 - Sebastião Carvalho Vasconcelos Filho.pdf: 2634728 bytes, checksum: 247486cc8bad3c42694193f806019134 (MD5) Previous issue date: 2014-07-25eng
Appears in Collections:Doutorado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2014 - Sebastião Carvalho Vasconcelos Filho.pdf2014 - Sebastião Carvalho Vasconcelos Filho2.57 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.