Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9981
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPinto, Tatiana de Oliveira
dc.date.accessioned2023-12-21T18:55:48Z-
dc.date.available2023-12-21T18:55:48Z-
dc.date.issued2020-02-20
dc.identifier.citationPINTO, Tatiana de Oliveira. Estudos citogenéticos, reprodutivos, moleculares e químicos como base auxiliar no melhoramento genético da erva-cidreira brasileira (Lippia alba), quimiótipo citral. 2020.86 f. Tese (Doutorado em Fitotecnia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro,Seropédica, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9981-
dc.description.abstractA erva-cidreira brasileira (Lippia alba) possui grande potencial medicinal. Porém, genótipos selecionados se fazem necessários, já que existe uma grande variação química no seu óleo essencial. Portanto, conhecer sua estabilidade reprodutiva e como se processa a reprodução na espécie são pontos de grande importância. Tecnologias modernas que contribuem para seleção de plantas para qualidade do óleo também devem ser implementadas. Assim, a presente pesquisa teve por objetivos analisar, em genótipos de erva-cidreira brasileira quimiótipo citral, o comportamento meiótico durante a formação dos grãos de pólen, investigar evidências de autofecundação e de barreiras para sua ocorrência e verificar possibilidades de se aplicar marcadores de DNA ISSR (Inter Simple Sequence Repeats) na seleção de genótipos, para qualidade química de óleo essencial. Para tal, analisaram-se genótipos de erva-cidreira brasileira da coleção de germoplasma do Departamento de Fitotecnia/Instituto de Agronomia da UFRRJ. No primeiro capítulo, foram coletados botões florais e fixados em ácido acético e etanol 70% até o uso. Anteras dos botões foram retiradas e digeridas com pectinase/celulase. As células meióticas foram coradas com carmim acético, e grãos de pólen com Solução Tripla de Alexander. As lâminas foram observadas em microscópio óptico. Analisaram-se as fases da meiose, número de cromossomos, nível de ploidia e estimaram-se os índices meióticos (IM) e viabilidade dos grãos de pólen (VB). Também foram estimados o coeficiente de determinação genotípico e outros importantes parâmetros genéticos a partir do IM e VB. O segundo capítulo envolveu a coleta de botões florais, após autopolinização natural e artificial, e após polinização livre. Os botões foram amaciados com NaOH e corados com azul de anilina. As lâminas foram observadas sob microscopia de fluorescência. Observaram-se a presença/ausência de tubos polínicos no estigma, estilo e cavidade ovariana dos botões. O terceiro capítulo constou da análise de 27 genótipos da coleção, oriundos de Minas Gerais e Rio de Janeiro, que tiveram seu óleo extraído via hidrodestilação, a partir de folhas secas e analisados em cromatografia gasosa (CG-DIC e CG-EM – com detector de ionização em chama e espectrômetro de massas). Os genótipos também tiveram seu DNA extraído e analisado via marcadores do tipo ISSR. Estimaram-se as diversidades química e molecular, utilizando agrupamento UPGMA (Unweighted Pair Groups Method with Arithmetic Mean). Os dendrogramas foram correlacionados para obtenção do coeficiente de entrelaçamento, cujo objetivo foi verificar o quanto os marcadores ISSR contribuem na seleção de plantas para qualidade de óleo essencial. Os resultados demonstraram meiose sem alterações. A espécie é diploide com 2n=2x=30 cromossomos. O IM (94,48%) e VB (94,32%) tiveram maior controle genético (H2=91,50 e 76,77%, respectivamente). Os genótipos não apresentaram sistemas de autoincompatibilidade genética, já que se detectaram tubos polínicos no estigma, estilo e cavidade ovariana destes. Conclui-se que a erva-cidreira brasileira pode ser autofecundada. Barreiras físicas à autofecundação são prováveis. Nas análises química e molecular, os genótipos foram agrupados conforme perfil químico dos óleos essenciais. O coeficiente de entrelaçamento foi estimado em 0,24, indicando alta correspondência química e molecular. Foi possível aplicar os marcadores ISSR para seleção de plantas para qualidade de óleo essencial em erva-cidreira brasileirapor
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectMeiosepor
dc.subjectReprodução vegetalpor
dc.subjectÓleos Essenciaispor
dc.subjectMeiosiseng
dc.subjectPlant reproductioneng
dc.subjectEssential oilseng
dc.titleEstudos citogenéticos, reprodutivos, moleculares e químicos como base auxiliar no melhoramento genético da erva-cidreira brasileira (Lippia alba), quimiótipo citralpor
dc.title.alternativeCytogenetic, reproductive, molecular and chemical studies as auxiliary basis in the plant breeding of bushy mat grass (Lippia alba), citral chemotypepor
dc.typeTesepor
dc.description.abstractOtherBushy mat grass (Lippia alba) has great medicinal potential. However, selected genotypes are necessary, as there is a great chemical variation in their essential oil. Therefore, knowing its reproductive stability and how it reproduces are points of great importance. Modern technologies that contribute to the selection of plants for oil quality must also be implemented. Thus, the present research aimed to analyze meiotic behavior during the formation of pollen grains in Bushy mat grass genotypes, to investigate evidence of self-fertilization and barriers to their occurrence and to verify possibilities of applying DNA markers. ISSR (Inter Simple Sequence Repeats) in the selection of genotypes, for chemical quality of essential oil. To this end, genotypes of Bushy mat grass from the germplasm collection of the Department of Phytotechnics / Institute of Agronomy at UFRRJ were analyzed. In the first chapter, flower buds were collected and fixed in acetic acid and 70% ethanol until use. Anthers of the buds were removed and digested with pectinase / cellulase. Meiotic cells were stained with acetic carmine, and pollen grains with Alexander Triple Solution. The slides were observed under an optical microscope. The phases of meiosis, number of chromosomes, ploidy level and the meiotic indices (IM) and viability of pollen grains (VB) were analyzed. The genotypic determination coefficient and other important genetic parameters were also estimated from the IM and VB. The second chapter involved the collection of flower buds, after natural and artificial self-pollination, and after free pollination. The buds were softened with NaOH and stained with aniline blue. The slides were observed under fluorescence microscopy. The presence / absence of pollen tubes was observed in the stigma, style and ovarian cavity of the buds. The third chapter consisted of the analysis of 27 genotypes from the collection, from Minas Gerais and Rio de Janeiro, which had their oil extracted via hydrodistillation, from dry leaves and analyzed in gas chromatography (CG-DIC and CG-EM - with detector flame ionization and mass spectrometer). Genotypes also had their DNA extracted and analyzed via ISSR-type markers. Chemical and molecular diversity were estimated using UPGMA (Unweighted Pair Groups Method with Arithmetic Mean). The dendrograms were correlated to obtain the entanglement coefficient, whose objective was to verify how much the ISSR markers contribute in the selection of plants for essential oil quality. The results demonstrated meiosis without changes. The species is diploid with 2n = 2x = 30 chromosomes. IM (94.48%) and VB (94.32%) had greater genetic control (H2 = 91.50 and 76.77%, respectively). The genotypes did not present systems of genetic self-incompatibility, since pollen tubes were detected in their stigma, style and ovarian cavity. It is concluded that Bushy mat grass can be self-fertilized. Physical barriers to self-fertilization are likely. In chemical and molecular analysis, genotypes were grouped according to the chemical profile of essential oils. The entanglement coefficient was estimated at 0.24, indicating a high chemical and molecular correspondence. It was possible to apply ISSR markers for plant selection for essential oil quality in Bushy mat grasseng
dc.contributor.advisor1Damasceno Junior, Pedro Corrêa
dc.contributor.advisor1ID031.066.477-28por
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-8879-4850por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3493599001978076por
dc.contributor.referee1Damasceno Junior, Pedro Corrêa
dc.contributor.referee1ID031.066.477-28por
dc.contributor.referee1IDhttps://orcid.org/0000-0001-8879-4850por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3493599001978076por
dc.contributor.referee2Menezes, Bruna Rafaela da Silva
dc.contributor.referee2IDhttps://orcid.org/0000-0001-6568-8115por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9643745154814449por
dc.contributor.referee3Santos, Marilene Hilma dos
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2955792197623296por
dc.contributor.referee4Vidal, Márcia Soares
dc.contributor.referee4Latteshttp://lattes.cnpq.br/3036544314910366por
dc.contributor.referee5Trindade, Roberto dos Santos
dc.contributor.referee5Latteshttp://lattes.cnpq.br/6034333526540637por
dc.creator.ID095.393.907-37por
dc.creator.IDhttps://orcid.org/0000-0002-1039-9233por
dc.creator.Latteshttp://lattes.cnpq.br/1198198660196049por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesADAMS, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (No. Ed. 4). Allured publishing corporation. 2007. 81 ALMEIDA, A. A. C. et al. Potential antioxidant and anxiolytic effects of (+)-limonene epoxide in mice after marble-burying test. Pharmacology, Biochemistry and Behavior. Vol. 118, p. 69–78, 2014. ALMEIDA, M. C. et al. Genetic diversity and chemical variability of Lippia spp. (Verbenaceae). BMC Res Notes, Vol. 11, n.725, 2018. ANVISA, Agência Nacional de Vigilância Sanitária. Medicamentos Fitoterápicos. Disponível em: < http://portal.anvisa.gov.br/> Consulta em 20-10-2019. BHATTACHARYYA, P.; KUMARIA, S.; TANDON, P. Applicability of ISSR and DAMD markers for phyto-molecular characterization and association with some important biochemical traits of Dendrobium nobile, an endangered medicinal orchid. Phytochemistry. Vol. 117, p. 306–316, 2015. BLANK, A. F. et al. Chemical Diversity in Lippia alba (Mill.) N. E. Brown Germplasm. The Scientific World Journal, 11 pages, 2015. BOSZORMÉNYI, A. et al. Chemical and Genetic Relationships among Sage (Salvia officinalis L.) Cultivars and Judean Sage (Salvia judaica Boiss.). J. Agric. Food Chem., Vol. 57, p. 4663– 4667, 2009. BRANDÃO, A. D., VICCINI, L. V., RECCO-PIMENTEL, S. M. Meiotic analysis of two putative polyploidy species of Verbenaceae from Brazil. CARYOLOGIA Vol. 58, no. 4: 315- 319, 2005. BRANDÃO, A. D. et al. Cytogenetic characterization of Lippia alba and Lantana camara (Verbenaceae) from Brazil. J Plant Res. 120:317–321, 2007. BRASIL. Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Cutivar web – Gerenciamento de Informação. [WWW Document]. URL http://sistemas.agricultura.gov.br/snpc/cultivarweb/cultivares_protegidas.php (Acessado em 28.01.20). CARVALHO, D. F. et al. Avaliação da evapotranspiração de referência na região de Seropédica-RJ, utilizando lisímetro de pesagem. Revista Brasileira de Agrometeorologia, Vol. 14, n. 2, p. 108-116, 2006. CHIES, C. E. et al, Antioxidant Effect of Lippia alba (Miller) N. E. Brown. Antioxidants, Vol. 2, p. 194-205, 2013. CLARKE, K. R.; GREEN, R. H. Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series. Vol. 92, p. 213-226, 1988. COSTA, A. G et al. Crescimento vegetativo e produção de óleo essencial de hortelã‑pimenta cultivada sob malhas. Pesq. agropec. bras. Vol.47 no.4, p.534-540, 2012. DOYLE, J.J.; DOYLE, J.L. Isolation of plant DNA from fresh tissue. Focus. Vol. 12, p. 13-15, 1990. 82 ECHEVERRIGARAY, S. Correlation between the Chemical and Genetic Relationships among Commercial Thyme Cultivars. J. Agric. Food Chem., Vol. 49, p. 4220-4223, 2001. EHRLICH, P. R.; RAVEN, P. H. Butterflies and Plants: A Study in Coevolution. Evolution, Vol. 18, n. 4, p. 586-608, Dec., 1964. FERRONATTO, A. N.; ROSSI, R. C. Extraction and application of orange peel essential oil as a natural ingredient. Estudos Tecnológicos em Engenharia, Vol. 12, n. 2, p. 78-93, 2018. GALILI, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. v. 31(22): p. 3718–3720, 2015. GALILI, T. et al. Package ‘dendextend’- Extending 'dendrogram' Functionality in R. Version 1.12.0. 2019-05-11. Disponível em: < https://cran.r-project.org/package=dendextend>. Acessado em 17-09-2019. GEROMINI, K. V. N. et al. Fungicidal effect of Lippia alba essential oil on a white-rot fungus. Maderas. Ciencia y tecnología Vol. 17, n.1 p. 29 - 38, 2015. HAO, D. C.; GU, X-J; XIAO, P. G. Phytochemical and biological research of Cannabis pharmaceutical resources. In: Medicinal Plants: Chemistry, Biology and Omics. Elsevier Ltd. p. 431-464, 2015. HELDWEIN, C. G. et al. S-(+)-Linalool from Lippia alba: sedative and anesthetic for silver catfish (Rhamdia quelen). Veterinary Anaesthesia and Analgesia, Vol. 41, p. 621–629, 2014. HENNEBELLE, J.; et al. Ethnopharmacology of Lippia alba. Journal of Ethnopharmacology 116, 211–222, 2008. INMET – Instituto Nacional de Meteorologia. Disponível em: http://www.inmet.gov.br/portal/index.php?r=estacoes/estacoesAutomaticas. Acesso em: 02/10/2017. JACCARD, P. Nouvelles recherches sur la distribution florale. Bulletin de la Société vaudoise des sciences naturalles. Vol.44, p: 223–270. 1908. JANNUZZI, H. et al. Avaliação agronômica e química de dezessete acessos de erva-cidreira [Lippia alba (Mill.) N.E.Brown] - quimiótipo citral, cultivados no Distrito Federal. Rev. Bras. Pl. Med., Botucatu, v.13, n.3, p.258-264, 2011. KAUR, P. et al. Assessment of genetic diversity among different population of five Swertia species by using molecular and phytochemical markers. Industrial Crops & Products. Vol. 138, p. 3-10, 2019. KELLEY, L. A.; GARDNER, S. P.; SUTCLIFFE, M. J. An automated approach for clustering an ensemble of NMR derived protein structures into conformationally-related subfamilies. Protein Engineering, Vol. 9, p. 1063-1065, 1996. 83 LIMA, N. G. P. B. et al. Anxiolytic-like activity and GC–MS analysis of (R)-(+)-limonene fragrance, a natural compound found in foods and plants. Pharmacology, Biochemistry and Behavior. Vol. 103, p. 450–454, 2013. LIU, Z. et al. Metabolite profiles of essential oils and SSR molecular markers in Juniperus rigida Sieb. et Zucc. from different regions: A potential source of raw materials for the perfume and healthy products. Industrial Crops & Products. Vol. 133, 424–434, 2019. LÓPEZ, M. A..; STASHENKO, E. E.; FUENTES, J. L. Chemical composition and antigenotoxic properties of Lippia alba essential oils. Genetics and Molecular Biology, Vol. 34, n. 3, p. 479-488, 2011. LOUCHARD, B. de O.; ARAÚJO, T. G. de. Pharmacological effects of different chemotypes of Lippia alba (Mill.) N.E. Brown. Boletín Latinoamericano y del Caribe de plantas medicinales y aromáticas. Vol. 18, n. 2, p. 95 – 105, 2019. LOVELESS, M. D.; HAMRICK, J. L. Ecological determinants of genetic structure in plant populations. Ann. Rev. Em/. Syst. Vol. 15, p. 65-95, 1984. MA, L. et al. Effects of lemon essential oil and limonene on the progress of early caries: An in vitro study. Archives of Oral Biology. Vol 111, 104638, 2020. MALACRINÒ, A. et al. Fumigant and Repellent Activity of Limonene Enantiomers Against Tribolium confusum du Val. Neotrop Entomol. Vol. 45, p. 597–603, 2016. MANICA-CATTANI, M. F. et al. Genetic variation among South Brazilian accessions of Lippia alba Mill. (Verbenaceae) detected by ISSR and RAPD markers. Brazilian Journal of Biology, Vol. 69, n. 2, p. 375-380, 2009. MANTEL, N. The detection of disease clustering and a generalized regression approach. Cancer Research, Vol. 27, n. 2, p. 209-202, 1967. MATOS, F. J. de A. et al. Essential Oil Composition of Two Chemotypes of Lippia alba Grown in Northeast Brazil. J. Essent. Oil Res., 8,695-698, 1996. MOORE, B. D. et al. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytologist, Vol. 201, p. 733–750, 2014. MORONE-FORTUNATO, I. et al. Essential oils, genetic relationships and in vitro establishment of Helichrysum italicum (Roth) G. Don ssp. italicum from wild Mediterranean germplasm. Industrial Crops and Products. Vol. 32, p. 639–649, 2010. NICULAU, E dos S. et al. Atividade inseticida de óleos essenciais de Pelargonium graveolens l’Herit E Lippia alba (Mill) N. E. Brown sobre Spodoptera frugiperda (J. E. Smith). Quim. Nova, Vol. 36, No. 9, 1391-1394, 2013. OKSANEN, J., F. G.et al. Vegan: community ecology package. R package version 2.5-6. 2019 accessed through [http://cran.r-project.org]. 2019. 84 OSPINA, J. D.; OROZCO, M. S. S.; CORREA, C. R. B. Efecto del secado y la edad de las plantas en la composición de los aceites esenciales de Lippia alba (Mill.) N.E.Br. ex Britton & P. Wilson y Lippia origanoides Kunth. Acta Agron., Vol. 65, n.2, p. 170-175, 2016. PARRA-GARCÉS, M. I. et al. Morfología, anatomía, ontogenia y composición química de metabolitos secundarios en inflorescencias de Lippia alba (Verbenaceae). Rev. Biol. Trop. (Int. J. Trop. Biol. Vol. 58 (4): p. 1533-1548, December 2010. PASCUAL, M. E. et al. Lippia: traditional uses, chemistry and pharmacology: a review. Journal of Ethnopharmacology. Vol. 76, p. 201–214, 2001. PIERRE, P. M. O. et al. Karyotype analysis, DNA content and molecular screening in Lippia alba (Verbenaceae). An Acad. Bra. Ciênc. Vol. 83 (n.3), 2011. PORFÍRIO, E. M. et al. In Vitro Antibacterial and Antibiofilm Activity of Lippia alba Essential Oil, Citral, and Carvone against Staphylococcus aureus. The Scientific World Journal Volume, 7 pages, 2017. RAMOS, D. P.; CASTRO, A. F.; CAMARGO, M. N. Levantamento detalhado de solos da área da Universidade Federal Rural do Rio de Janeiro. Pesquisa Agropecuária Brasileira, Série Agronomia, Brasília, Vol. 8, n. 1, p. 1-27, 1973. REIS, A. C. et al. Lippia alba (Verbenaceae): A new tropical autopolyploid complex? American Journal of Botany. Vol. 101, n. 6, p. 1002–1012. 2014. SABINO, J. F. P.; REYES, M. M.; BARRERA, C. D. F. Análise e discriminação de quimiotipos de lippia graveolens h.b.k. da Guatemala por microextração em fase sólida, CG-EM e análise multivariada. Quim. Nova, Vol. 35, n. 1, 97-101, 2012. SALAZAR, D. et al. Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nature Ecology & Evol ution. Vol.2, p. 983–990, 2018. SALIMENA, F. R. G; MÚLGURA, M. E. Notas taxonômicas em Verbenaceae do Brasil. Rodriguésia. Vol. 66, n. 1, p. 191-197. 2015. SANDERS, R. W. The genera of Verbenaceae in the southeaster United States. Havard papers in Botany, Vol. 5, n. 2, p. 303-358, 2001. SHOWLER, A.T.; HARLIEN, J. L.; de LÉON, A. A. P. Effects of Laboratory Grade Limonene and a Commercial Limonene-Based Insecticide on Haematobia irritans irritans (Muscidae: Diptera): Deterrence, Mortality, and Reproduction. Journal of Medical Entomology, Vol. 56, n. 4, p. 1064–1070, 2019. SILVA, N. A. et al. Caracterização química do óleo essencial da erva cidreira (Lippia alba (Mill.) N. E. Br.) cultivada em Ilhéus na Bahia. Rev. Bras. Pl. Med., Botucatu, Vol. 8, n.3, p. 52-55, 2006. 85 SILVA, R. E. R. et al. Vasorelaxant effect of the Lippia alba essential oil and its major constituent, citral, on the contractility of isolated rat aorta. Biomedicine & Pharmacotherapy, Vol. 108, p.792–798, 2018. SILVA JÚNIOR, A. Q. da. et al. Seasonal and circadian evaluation of a citral-chemotype from Lippia alba essential oil displaying antibacterial activity. Biochemical Systematics and Ecology. Vol. 85, p. 35–42, 2019. SINGH, D. The relative importance of characters affecting genetic divergence. The Indian Journal of Genetics e Plant Breeding, v.41, p.237-245, 1981. SIQUEIRA-LIMA, P. S. et al. Central nervous system and analgesic profiles of Lippia genus. Revista Brasileira de Farmacognosia. Article in press. 2018. SOARES, C. H. N. et al. Selection of genotypes (citral chemotype) of Lippia alba (Mill.) N. E. Brown regarding seasonal stability of the essential oils chemical profile. Industrial Crops & Products. Vol. 139, 111497, 2019. SOKAL, R. R.; MICHENER, C.D. A statistical method for evaluating systematic relationships. Science Bulletin. Vol. 38, p. 1409–1438. 1958. SOKAL, R. R.; ROHLF, F. J. The comparison of dendrograms by objective methods. Taxon, Vol. 11, n. 2, p. 33-40, 1962. SOUSA, M. S. et al. Chromosome banding and essential oils composition of Brazilian accessions of Lippia alba (Verbenaceae). Biologia, Vol. 64, n. 4, p. 711—715, 2009. SOUSA, D. G. et al. Essential oil of Lippia alba and its main constituent citral block the excitability of rat sciatic nerves. Braz J Med Biol Res, Vol. 48, n. 8, 2015. SOUZA, R. C. et al. Antimicrobial and synergistic activity of essential oils of Aloysia triphylla and Lippia alba against Aeromonas spp. Microbial Pathogenesis. Vol. 113, p. 29–33, 2017. TAVARES, E. S. et al. Análise do óleo essencial de folhas de três quimiótipos de Lippia alba (Mill.) N. E. Br. (Verbenaceae) cultivados em condições semelhantes. Rev. Bras. Farmacogn. Braz J. Pharmacogn. Vol. 15, n. 1, jan/mar. 2005. TELES, S. et al. Geographical origin and drying methodology may affect the essential oil of Lippia alba (Mill) N.E. Brown. Industrial Crops and Products. Vol. 37, 247– 252, 2012. VAN DEN DOOL, H.; KRATZ, P. Dec. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. Journal of Chromatography A, v. 11, p. 463-471, 1963. VERMA, N.; SHUKLA, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants. Vol. 2, n.4, p. 105-113, 2015. WOLDEMARIAN, M et al. NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuate. BMC Plant Biology. Vol. 13, n. 73, p. 1-14, 2013. 86 YAMAMOTO, P. Y. et al. Performance of ginger grass (Lippia alba) for traits related to the production of essential oil. Sci. Agric. (Piracicaba, Braz.), Vol. 65, n.5, p.481-489, 2008. XU, H-L. et al. Study on the correlation between genetic and chemical diversity of Tetrastigma hemsleyanum on the basis of ISSR and UHPLC. Process Biochemistry. Vol. 84, p. 220–229, 2019.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/72372/2020%20-%20Tatiana%20de%20Oliveira%20Pinto.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6375
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-03-01T11:35:04Z No. of bitstreams: 1 2020 - Tatiana de Oliveira Pinto.pdf: 2338618 bytes, checksum: 18fefd60f5937f0faf5b3c1026d75733 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-03-01T11:35:04Z (GMT). No. of bitstreams: 1 2020 - Tatiana de Oliveira Pinto.pdf: 2338618 bytes, checksum: 18fefd60f5937f0faf5b3c1026d75733 (MD5) Previous issue date: 2020-02-20eng
Appears in Collections:Doutorado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Tatiana de Oliveira Pinto.pdf2020 - Tatiana de Oliveira Pinto2.28 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.