Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9985
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTavares, Orlando Carlos Huertas
dc.date.accessioned2023-12-21T18:55:49Z-
dc.date.available2023-12-21T18:55:49Z-
dc.date.issued2014-09-30
dc.identifier.citationTavares, Orlando Carlos Huertas. Efeito dos acidos húmicos sobre as H+-ATPase, transportadores de N-NO3- e N-NH4+, e sobre o crescimento em arroz. 2014. [131 f.]. Tese (Programa de Pós-Graduação em Fitotecnia) - Universidade Federal Rural do Rio de Janeiro, [Seropédica - RJ] .por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9985-
dc.description.abstractMuitos estudos têm demonstrado a capacidade das substâncias húmicas (SH) em afetar o crescimento e desenvolvimento de diversas espécies de plantas modelo e cultivadas em hidroponia, substratos inertes e vários tipos de solo. No entanto, os principais mecanismos responsáveis pelos efeitos da SH sobre o crescimento e desenvolvimento das plantas permanecem como foco de intensa investigação. Em geral três principais hipóteses têm sido propostas para explicar as ações da SH sobre o crescimento e desenvolvimento das plantas, a “hipótese nutricional”; a de efeito semelhante a hormonal; e a de promoção de estresse coloidal nas raízes. Na presente tese, abordamos o efeito direto de ácidos húmicos (AHs) sobre a nutrição das plantas. Os AHs podem promover uma melhoria na nutrição das plantas proporcionando um estímulo para o crescimento a partir do aumento da atividade das bombas de prótons levando ao aumento da força próton motriz e aumento dos níveis de transcritos para transportadores, exercendo influência significativa sobre os parâmetros cinéticos de absorção de nutrientes e metabolismo das plantas de arroz, afetando a produção de raízes e a produção de biomassa. O objetivo geral foi estudar o efeito de ácidos húmicos oriundos de vermicomposto sobre a expressão das H+-ATPases de membrana plasmática e expressão dos transportadores de N-NO3- e N-NH4+, sobre o metabolismo e cinética de absorção desses nutrientes e as mudanças nos parâmetros morfológicos das raízes, em plantas de arroz. A Tese foi dividida em quatro capítulos, onde o Capítulo I, apresenta a caracterização espectroscópica e elementar dos ácidos húmicos de vermicomposto extraído com água, KOH e NaOH. No Capítulo II, foi intitulado: a aplicação de ácidos húmicos de vermicomposto em plantas de arroz modifica a expressão gênica (OsAMTs, OsNTRs e OsAs), a absorção e o metabolismo do nitrogênio. No capítulo III foi estudado como os ácidos húmicos modificam a morfologia da raiz de plântulas de arroz. E no capítulo IV, o estudo dos efeitos dos ácidos húmicos e do baixo suprimento de nitrato, sobre a expressão e atividade das bombas de prótons e metabolismo de N em plântulas de arroz. Foi observado no Capítulo I, que os AHs extraídos com água são mais alifáticos e funcionalizados e menos aromáticos do que os extraídos com KOH. No Capítulo II, a indução prévia com AH em solução nutritiva promoveu aumento na afinidade por NO3- nas doses de 0,2 e 2,0 mM. Para NH4+, o AH promoveu estímulos na dose de 2,0 mM, aumentando o influxo líquido de NH4+. O AH aumenta a expressão dos transportadores de alta afinidade para NO3- e das isoformas de H+-ATPase (OsA1 a OsA8) melhorando a performance da planta em condições de baixo suprimento de N. No Capítulo III, foi observado que a dose de 150 mg L-1 de AH extraídos com água e 80 mg L-1 de AH extraídos com KOH promovem maior estímulo sobre o crescimento e mudanças profundas da morfologia radicular nas plântulas de arroz. No Capítulo IV, as plantas pré-tratadas com AH estavam adaptadas para absorver e metabolizar nitrato em baixas concentrações (200 μM) quando comparadas ao controle, promovendo uma maior eficiência no crescimento radicular, absorção e metabolismo de N.por
dc.description.sponsorshipFundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do RJ, FAPERJ, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectÁcidos húmicospor
dc.subjectTransportadores de nitratopor
dc.subjectMorfologia radicularpor
dc.subjectHumic acidseng
dc.subjectNitrate transporterseng
dc.subjectRoot morphologyeng
dc.titleEfeito dos Ácidos Húmicos Sobre as H+-ATPase, Transportadores de N-NO3- e N-NH4+, e Sobre o Crescimento em Arrozpor
dc.title.alternativeEffect of Humic Acids on H+-ATPase, N-NO3- e N-NH4+ Transporters, and On Rice Growth.eng
dc.typeTesepor
dc.description.abstractOtherMany studies have demonstrated of humic substances (SH) ability to affect the growth and development of several model and cultivated plants species in hydroponics, inert substrates and various types of soil. However, the main mechanisms responsible for the effects of SH on plant growth and development remain the focus of intense research. In general, three main hypotheses have been proposed to explain SH's actions on plant growth and development, the “nutritional hypothesis”; a hormonal-like effect; and the promotion of colloidal stress in the roots. In the present thesis we address the direct effect of humic acids (AHs) on plant nutrition. AHs can promote an improvement in plant nutrition by providing a stimulus for growth from increased proton pump activity leading to increased proton power, exerting significant influence on kinetic parameters of nutrient uptake and metabolism rice plant, affecting root and biomass production. The general objective was to study the effect of humic acids from vermicompost on the expression of plasma membrane H+-ATPases and expression of N-NO3- and N-NH4+ transporters, on the metabolism and kinetics of absorption of these nutrients and the changes in morphology of roots in rice plants. The thesis was divided into four chapters, where Chapter I presents a spectroscopic and elemental characterization of humic acids from vermicompost extracted with water, KOH and NaOH. In Chapter II, it was titled: the application of humic acids of vermicompost in rice plants modifies the gene expression (OsAMTs, OsNTRs and OsAs), nitrogen absorption and metabolism. In chapter III it was studied how the humic acids modify the morphology of the root rice seedlings. And in Chapter IV, the study of humic acids and the low supply of nitrate effects on the expression and activity of the proton pumps and N metabolism in rice seedlings. It was observed in chapter I that the humic acids extracted with water are more aliphatic and less aromatic, have a higher N content than those extracted with KOH. In Chapter II, previous induction with AH in nutrient solution promoted increase in NO3- affinity at 0.2 and 2.0 mM. For NH4+, vermicompost AH promoted stimuli only at the 2.0 mM dose, increasing the influx of NH4+ in relation to the control. The AH application increases the expression of the high affinity transporters for NO3- and H+-ATPase isoforms (OsA1 to OsA8), improving the plant performance under N low supply conditions. In Chapter III, multivariate analysis techniques were used to identify the treatment with 150 mg L-1 of AH extracted with water and 80 mg L-1 of AH extracted with KOH to promote greater growth stimulus and profound changes in root morphology in rice seedlings. In Chapter IV, under the cultivation conditions in which the plants were submitted, they were adapted to absorb and metabolize nitrate in low concentrations (200 μM) when compared to the control. This induced a greater efficiency in the root growth, N absorption and metabolism.eng
dc.contributor.advisor1Fernandes, Manlio Silvestre
dc.contributor.advisor1ID002180573-34por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6269004387821466por
dc.contributor.advisor-co1Santos, Leandro Azevedo
dc.contributor.referee1Façanha, Arnoldo Rocha
dc.contributor.referee2Berbara, Ricardo Luis Louro
dc.contributor.referee3Araújo, Ednaldo da Silva
dc.contributor.referee4Santos, André Marques dos
dc.creator.ID098383947-69por
dc.creator.Latteshttp://lattes.cnpq.br/6517289620714369por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesALVAREZ, I. A.; CASTRO, P. R. C. crescimento da parte aérea de cana crua e queimada. Scientia Agricola, v. 56, n. 4, p. 1069-1079, 1999. AGUIAR, N. O.; CANELLAS, L. P.; DOBBSS, L. B.; ZANDONADI, D. B.; OLIVARES, F. L.; FAÇANHA, A. R. Distribuição de massa molecular de ácidos húmicos e promoção do crescimento radicular. Revista Brasileira Ciência do Solo, v. 33, p. 1613-1623, 2009. AGUIAR, N. O.; NOVOTNY, E. H.; OLIVEIRA, A. L.; RUMJANEK, V. M.; OLIVARES, F. L.; CANELLAS, L. P. Prediction of humic acids bioactivity using spectroscopy and multivariate analysis. Journal of Geochemical Exploration, v. 129, p. 95-102, 2013. AGUIRRE, E.; LEMÉNAGER, D.; BACAICOA, E.; FUENTES, M.; BAIGORRI, R.; ZAMARREÑO, A. M.; GARCÍA-MINA, J. M. The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants. Plant Physiology and Biochemistry, v. 47, n. 3, p. 215-223, 2009. ALBUZIO, A.; FERRARI, G.; NARDI, S. Effects of humic substances on nitrate uptake and assimilation in barley seedlings, Canadian Journal of Soil Science, v. 66, n. 4, p. 731-736, 1986. AL-GHAZI, Y.; MULLER, B.; PINLOCHE, S.; TRANBARGER, T. J.; NACRY, P.; ROSSIGNOL, M.; TARDIEU, F.; DOUMAS, P. Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signaling. Plant, Cell & Environment, v. 26, p. 1053-1066, 2003. ANDREUX, F. Humus in world soils. In: PICCOLO, A. (Ed.). Humic Substances in Terrestrial Ecosystems, Amsterdam: Elsevier, 1996. p. 45-100. ARAKI, R.; HASEGAWA, H. Expression of rice (Oryza sativa L,) genes involved in high-affinity nitrate transport during the period of nitrate induction. Breeding Science, v. 56, p. 295-302, 2006. ARANCON, N. Q.; EDWARDS, C. A.; ATIYEH, R. M.; METZGER, J. D. Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresource Technology, v. 93, n. 2, p.139-144, 2004. ARSENAULT, J. L.; POULCUR, S.; MESSIER, C.; GUAY, R. WinRHlZO™, a root-measuring system with a unique overlap correction method. HortScience, v. 30, n. 4, p. 906-906, 1995. ASLI, S.; NEUMANN, P. M. Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant and Soil, v. 336, p. 313-322, 2010. ATIYEH.; R. M.; ARANCON, N.; EDWARDS, C. A.; METZGER, J. D. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource Technology, v. 75, n. 3, p. 175-180, 2000. 107 ATIYEH, R. M.; EDWARDS, C. A.; SUBLER, S.; METZGER, J. D. Pig manure vermicompost as a component of a horticultural bedding plant medium: Effects on physicochemical properties and plant growth. Bioresource Technology, v. 78, n. 1, p.11-20, 2001. ATIYEH, R. M.; ARANCON, N. Q.; EDWARDS, C. A.; METZGER, J. D. The influence of earthworm - processed pig manure on the growth and productivity of marigolds, Bioresource Technology, v. 81, n. 2, p. 103-108, 2002a. ATIYEH, R. M.; LEE, S.; EDWARDS, C. A.; ARANCON, N. Q.; METZGER, J. D. The influence of humic acids derived from earthworm - processed organic wastes on plant growth. Bioresource Technology, v. 84, n. 1, p. 7-14, 2002b. AYDIN, A.; KANT, C.; TURAN, M. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agricultural Research, v. 7, n. 7, p. 1073-1086, 2012. BARBER, S. A. Soil Nutrient Bioavailability. A Mechanistic Approach. New York: Wiley - Interscience, 1984. 384p. BARBER, S. A. Soil Nutrient Bioavailability. A Mechanistic Approach. 2nd ed.; New York, USA: Wiley, 1995. 384p. BARBER A. S. Growth requirements for nutrients in relation to demand at the root surface. In: HARLEY, J. L; RUSSELL, R. S. (Ed.). The Soil-Root Interface. London: Academic Press, 1979. p. 5-20. BALTSCHEFFSKY, M.; SCHULTZ, A.; BALTSCHEFFSKY, H. H+-proton-pumping inorganic pyrophosphatase: a tightly membrane-bound family. FEBS Letters, v.452, p.121–127, 1999. BERBARA, R. L.; GARCÍA, A. C. Humic substances and plant defense metabolism. In: AHMAD, P.; WANI, M. R. (Ed.). Physiological mechanisms and adaptation strategies in plants under changing environment, New York: Springer, 2014. p. 297-319. BÉRCZI, A.; MOLLER, I. M. Redox enzymes in the plant plasma membrane and their possible roles. Plant, Cell & Environment, v.3, n.12, p.1287-1302, 2000. BHALERAO, R. P.; EKLOF, J.; LJUNG, K.; MARCHANT, A.; BENNETT, M.; SANDBERG, G. Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. The Plant Journal, v. 29, n. 3, p. 325-332, 2002. BAXTER, I.; TCHIEU, J.; SUSSMAN, M. R.; BOUTRY, M.; PALMGREN, M. G.; GRIBSKOV, M.; HARPER, J. F.; AXELSEN, K. B. Genomic comparison of P-type ATPase ion pumpin Arabidopsis and rice. Plant Physiology, v. 132, p. 618-628, 2003. BLANCHET, R. M. The direct and indirect effect of humified, organic matter on the nutrition of vascular plants. Annales agronomiques, v. 9, n. 9, p. 499-532, 1958. 108 BOTTOMLEY, W. B. Some accessory factors in plant growth and nutrition. Proceedings of the Royal Society B, v. 88, n. 602, p. 237-247, 1914a. BOTTOMLEY, W. B. The significance of certain food substances for plant growth. Annals of Botany, v. 28, n. 111, p. 531-540, 1914b. BOTTOMLEY, W. B. Some effects of organic growth-promoting substances (auximones) on the growth of Lemna minor in mineral culture solutions. Proceedings of the Royal Society B, v. 89, n. 621, p. 481-507, 1917. BRIX, H; LORENZEN, B; MORRIS, J.T.; SCHIERUP, H-H.; SORRELL, B.K. Effects of oxygen and nitrate on ammonium uptake kinetics and adenylate pools in Phalaris arundinacea L and Glyceria máxima (Hartm) Holmb. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences, v. 102, p. 333-342, 1994. BRITTO, D. T.; KRONZUCKER, H. J. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology, v. 159, p. 567-584, 2002. CACCO, G.; DELL’AGNOLA, G. Plant growth regulator activity of soluble humic complexes. Canadian journal of soil science, v. 64, n. 2, p. 225-228, 1984. CACCO, G. ATTINA, E. GELSOMINO A. AND SIDARI, M. Effect of nitrate and humic substances of different molecular size on kinetic parameters of nitrate uptake in wheat seedlings. Journal of plant nutrition and soil science, v. 163, p. 313-320. 2000. CALDWELL, M. M. Plant architecture and resource competition. In: SCHULZE E. D.; ZWOLFER, H. (Ed.). Ecological Studies; Volume 61. New York, USA: Springer, 1987. p. 164-179. CANELLAS, L. P.; OLIVARES, F. L.; OKOROKOVA-FAÇANHA, A. L.; FAÇANHA, A. R. Humic acids isolated from earthworm compost enhance root elongation lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiology, v. 130, p. 1951-1957, 2002. CANELLAS, L. P.; ZANDONADI, D. B.; MEDICI, L. O.; PERES, L. E. P.; OLIVARES, F.L.; FAÇANHA, A.R. Bioatividade de substâncias húmicas – ação sobre o desenvolvimento e metabolismo das plantas, In: CANELLAS, L. P.; SANTOS, G. A. (Ed). Humosfera: tratado preliminar sobre a química das substancias húmicas, Campos Goytacazes: CCTA/UENF, 2005. p. 224-243. CANELLAS, L. P.; ZANDONADI, D. B.; OLIVARES, F. L.; FAÇANHA, A. R. Efeitos fisiológicos de substâncias húmicas – o estímulo às H+-ATPases. In: FERNANDES, M. S. (Ed). Nutrição Mineral de plantas, Viçosa: SBCS, 2006. p. 175-200. CANELLAS, L. P.; ZANDONADI, D. B.; BUSATO, J. G.; BALDOTTO, M. A.; SIMÕES, M. L; MARTIN-NETO, L.; FAÇANHA, A. R.; SPACCINI, R.; PICCOLO, A. Bioactivity and chemical characteristics of humic acids from tropical soils sequence. Soil Science, v. 173, n. 9, p. 624-637, 2008. 109 CANELLAS, L. P.; PICCOLO, A.; DOBBSS, L. B.; SPACCINI, R.; OLIVARES, F. L.; ZANDONADI, D.B.; FAÇANHA, A. R. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere, v. 78, p. 457-466, 2009. CASIMIRO, I.; MARCHANT, A.; BHALERAO, R. P.; BEECKMAN, T.; DHOOGE, S.; SWARUP, R.; GRAHAM, N.; INZÉ, D.; SANDBERG, G.; CASERO, P. BENNETT, M. Auxin Transport Promotes Arabidopsis Lateral Root Initiation. Plant Cell. v. 13, p. 843-852, 2001. CATALDO, D.; HARRON, M.; SCHARADER, L. E.; YOUNGS, V. L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylicacid. Communication in Soil Science and Plant Analysis, v. 6, p. 853-855, 1975. CESCO, S.; RÖMHELD, V.; VARANINI, Z.; PINTON, R. Solubilization of iron by water -extractable humic substances. Journal of Plant Nutrition and Soil Science, v. 163, n. 3, p. 285-290, 2000. CESCO, S.; NIKOLIC, M.; RÖMHELD, V.; VARANINI, Z.; PINTON, R. Uptake of Fe from soluble Fe-humate complexes by cucumber and barley plants. Plant and Soil, v. 241, n. 1, p. 121-128, 2002. CHEN, Y.; de NOBILI, M.; AVIAD, T. Stimulatory effects of humic substances on plant growth. In: MAGDOFF, F. R.; WEIL, R. R. (Ed.). Soil Organic Matter in Sustainable Agriculture, Boca Raton-FL: CRC Press, 2004a. p. 103-129. CHEN, Y.; CLAPP, C. E.; MAGEN, H. Mechanisms of plant growth stimulation by humic substances: the role of organo-iron complexes. Soil Science and Plant Nutrition, v. 50, n. 7, p. 1089-1095, 2004b. CLAPP, C. E.; CHEN, Y.; HAYES, M. H. B.; CHENG, H. H. Plant growth promoting activity of humic substances. In: SWIFT, R. S.; SPARKS, K. M. (Ed.). Understanding and Managing Organic Matter in Soils, Sediments, and Waters, St. Paul-MN: International Humic Science Society, 2001. p. 243-255. CLAASSEN, N.; BARBER, S. A. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant Physiology, v. 54, p. 564-568, 1974. CLAASSEN, N.; STEINGROBE, B. Mechanistic simulation models for a better understanding of nutrient uptake from soil. In: RENGEL, Z., (Ed.). Mineral Nutrition of Crops. Fundamental Mechanisms and Implications; New York: Haworth Press, 1999. p. 327-367. CLARK, L. J.; PRICE, A. H.; STEELE, K. A.; WHALLEY, W. R. Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice. Functional Plant Biology, v. 35, p. 1163-1171, 2008. CLELAND, R. E. Auxin and cell elongation. In: DAVIES, P. J. (Ed.) Plant hormones. Kluwer, Dordrecht, 1995. p. 214-21. 110 COLL, L.; POTVIN, C.; MESSIER, C.; DELAGRANGE, S. Root architecture and allocation patterns of eight native tropical species with different successional status used in open-grown mixed plantations in Panama. Trees, v. 22, n. 4, p. 585, 2008. COMETTI, N. N.; FURLANI, P. R.; RUIZ, H. A.; FERNANDES-FILHO, E. I. Soluções Nutritivas: formulação e aplicações. In: MANLIO, S. F. (Ed.). Nutrição Mineral de Plantas. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, 2006. p. 89-114. CONCHERI, G.; NARDI, S.; PICCOLO, A.; RASCIO, N.; DELL’AGNOLA, G. Effects of humic fractions on morphological changes related to invertase and peroxidase activities in wheat seedlings. In: SENESI, N.; MIANO, T. M. (Ed.). Humic Substances in the Global Environment and Implications on Human Health, Amsterdam: Elsevier Science, 1994. p. 257-262. CORDEIRO, F. C.; SANTA-CATARINA, C.; SILVEIRA, V.; de SOUZA, S. R. Humic acids Effects on catalase activity and the generation of reactive oxygen species in corn (Zea Mays). Bioscience, biotechnology, and biochemistry, v. 75, n. 1, p. 70-74, 2011. COZZOLINO, A.; CONTE, P.; PICCOLO, A. Conformational changes of humic substances induced by some hydroxy, keto and sulfonic acids. Soil Biology and Biochemistry, v. 33, n.4-5, p. 563-571, 2001. CUMMING, G. FIDLER, F.; VAUX, D. L. Error bars in experimental biology. The Journal of Cell Biology, v. 177, n. 1, p. 7-11, 2007. DECHORGNAT, J.; NGUYEN, C. T.; ARMENGAUD, P.; JOSSIER, M.; DIATLOFF, E.; FILLEUR, S.; DANIEL-VEDELE, F. From the soil to the seeds: the long journey of nitrate in plants. Journal of experimental botany, v. 62, n.4, p. 1349-1359, 2011. DELL’AGNOLA, G.; NARDI, S. Hormone-like effect of enhanced nitrate uptake induced by depolycondensed humic fractions obtained from Allolobophora rosea and A. caliginosa faeces. Biology and Fertility of Soils, v. 4, n. 3, p. 115-118, 1987. DOANE, T.A.; HORWÁTH, W.R. Spectrophotometric determination of nitrate with a single reagent. Analytical Letters, v. 36, n. 12, p. 2713-2722, 2003. DEN HERDER, G.; VAN ISTERDAEL, G.; BEECKMAN, T.; DE SMET, I. The roots of a new green revolution. Trends in plant science, v. 15, n. 11, p. 600-607, 2010. DICK, D. P.; NOVOTNY, E. H.; DIECKOW, J.; BAYER, C. Química da matéria orgânica do solo. In: MELO, V. D. F.; ALLEONI, L. R. F. Química e mineralogia do solo. Parte II, Viçosa, MG: SBCS, 2009. p. 1-68. DOBBSS, L. B.; CANELLAS, L. P.; OLIVARES, F. L.; AGUIAR, N. O.; PERES, L. E. P.; AZEVEDO, M.; SPACCINI, R.; PICCOLO, A.; FACANHA, A.R. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. Journal of Agricultural and Food Chemistry, v. 58, n. 6, p. 3681-3688, 2010. 111 DOBBSS, L. B.; MEDICI, L. O.; PERES, L. E. P.; PINO-NUNES, L. E.; RUMJANEK, V.M.; FACANHA, A. R.; CANELLAS, L. P. Changes in root development of Arabidopsis promoted by organic matter from oxisols. Annals of Applied Biology, v. 151, n. 2, p. 199-211, 2007. DONG, B.; RENGEL, Z.; GRAHAM, R. D. Root morphology of wheat genotypes differing in zinc efficiency. Journal of Plant Nutrition, v. 18, p. 2761-2773, 1995. DOUSSAN, C.; PAGÈS, L.; VERCAMBRE, G. Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption-model description. Annals of botany, v. 81, n. 2, p. 213-223, 1998. DREW, M. C.; SAKER, L. R.; BARBER, S. A.; JENKINS, W. Changes in the kinetics of phosphate and potassium absorption in nutrient-deficient barley roots measured by a solution-depletion technique. Planta, v. 160, n. 6, p. 490-499, 1984. DROZDOWICZ, Y. M; KISSINGER, J. C.; REA, P. A. AVP2, a sequence-divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis. Plant Physiology, v. 123, p. 353-362, 2000. DUAN, Y. H.; ZHANG, Y. L.; YE, L. T.; FAN, X. R.; XU, G. H.; SHEN, Q. R. Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Annals of Botany, v. 99, p. 1153-1160, 2007. DUBY, G.; BOUTRY, M. The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. Pflügers Archiv-European Journal of Physiology, v. 457, p. 645-655, 2009. ELGALA, A. M.; METWALLY, A. J.; KHALIL, R. A. The effect of humic acid and Na2EDDHA on the uptake of Cu, Fe and Zn by barley in sand culture. Plant and Soil, v. 49, p. 41-48, 1978. ENGELS, C.; NEUMANN, G.; GAHOONIA, T. S.; GEORGE, E.; SCHENK, M. Assessing the ability of roots for nutrient acquisition. In: SMIT, A. L.; BENGOUGH, A. G.; ENGELS, C.; VAN NOORDWIJK, M.; PELLERIN, S.; VAN DE GEIJN, S. C. (Ed.). Root methods: a handbook. Berlin Heidelberg: Springer, 2000. p. 403-459. ERTANI, A.; PIZZEGHELLO, D.; BAGLIERI, A.; CADILI, V.; TAMBONE, F.; GENNARI, M.; NARDI, S. Humic-like substances from agro-industrial residues affect growth and nitrogen assimilation in maize (Zea mays L.) plantlets. Journal of Geochemical Exploration, v. 129, p. 103-111, 2013. EPSTEIN, E.; BLOOM, A. Nutrição mineral de plantas: princípios e perspectivas. Londrina: Editora Planta. 2006, 380p. FACANHA, A. R.; DE MEIS, L. Inhibition of maize root H+-ATPase by fluoride and fluoroaluminate complexes. Plant Physiology, v. 108, n. 1, p. 241-246, 1995. FAÇANHA, A. R.; DE MEIS, L. Reversibility of H+-ATPase and H+-pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. Plant physiology, v. 116, n. 4, p. 1487-1495, 1998. 112 FAÇANHA, A. R.; FAÇANHA, A. L. O.; OLIVARES, F. L; GURID, F.; SANTOS, G. A.; VELLOSO, A. C. X.; RUMJANEK, V. M.; BRASIL, F.; SCHRIPSEMA, J.; BRAZ-FILHO, R.; OLIVEIRA, M. A.; CANELLAS, L. P. Bioatividade de ácidos húmicos: Efeito sobre o desenvolvimento radicular e sobre a bomba de prótons da membrana plasmática. Pesquisa Agropecuária Brasileira, v. 37, n. 9, p. 1301-1310, 2002. FANG, S.; CLARK, R.; LIAO, H. 3D quantification of plant root architecture in situ. In: MANCUSO, S. (Ed.). Measuring Roots. Berlin Heidelberg: Springer, 2012. p. 135-148. FAN, M. S.; ZHU, J. M.; RICHARDS, C.; BROWN, K. M.; LYNCH, J. P. Physiological roles for aerenchyma in phosphorus-stressed roots. Functional Plant Biology, v. 30, p. 493-506, 2003. FENG, H.; YAN, M.; FAN, X.; LI, B.; SHEN, Q.; MILLER, A. J.; XU, G. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. Journal of Experimental Botany, v. 62, n. 7, p. 2319-2332, 2011. FARNDEN, K. J. S.; ROBERTSON, J. G. Methods for studying enzyme involved in metabolism related to nitrogen. In: BERGSEN, F. J. (Ed.). Methods for Evaluating Biological Nitrogen Fixation, Chichester: John Wiley, 1980. p. 265-314. FELKER, P. Microdetermination of nitrogen in seed protein extracts with the salicyte-dichloroisocyanurate color reaction. Analalytical Chemistry, v. 49, p. 1980. 1977. FENDLER, J. H.; FENDLER, E. J. Catalysis in Micellar and Macromolecular Systems. New York: Academic Press, 1975. p. 19-41. FENG, H.; YAN, M.; FAN, X.; LI, B.; SHEN, Q.; MILLER, A. J.; XU, G. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. Journal of Experimental Botany, v. 62, p. 2319-2332, 2011. FERNANDES, M. S. N-carriers, light and temperature influences on the free amino acid pool composition of rice plants. Turrialba, v. 33, p. 297-301. 1983. FERNANDES, M. S. Efeitos de fontes e níveis de nitrogênio sobrea absorção e assimilação de N em arroz, Revista Brasileira de Fisiologia Vegetal, v. 2, n. 1, p. 1-6, 1990. FERNANDES, M. S. Effects of environmental stress on the relationship of free amino-N to fresh weight of rice plants, Journal of Plant Nutrition, v. 14, p. 1151-1164, 1991. FERNANDES, M. S.; ROSSIELLO, R. O. P. Mineral nitrogen in plant physiology and plant nutrition. Critical Reviews in Plant Sciences, v. 14, p. 111-148, 1995. FERNANDES, M. S.; SOUZA, S. R. Absorção de nutrientes. In: MANLIO, S. F. (Ed.). Nutrição Mineral de Plantas. Viçosa, MG: Sociedade Brasileira de Ciência do Solo. 2006. p. 215-252. FERRO, N.; GALLEGOS, A.; BULTINCK, P.; JACOBSEN, H-J.; CARBO-DORCA, R.; REINARD, T. Coulomb and overlap self-similarities: a comparative selectivity analysis of 113 structure-function relationships for auxin-like molecules. Journal of chemical information and modeling, v. 46, n. 4, p. 1751-1762, 2006. FITTER, A. H. The ecological significance of root system architecture: an economic approach. In: ATKINSON, D. (Ed.). Plant Root Growth: An Ecological Perspective, Oxford, London: Blackwell Scientific Publishers, 1991. p. 229-243. FORDE, B. G.; CLARKSON, D. T. Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. In: Advances in botanical research. Academic Press. Volume 30, 1999. p. 1-90. FUGLSANG, A. T.; PAEZ-VALENCIA, J.; GAXIOLA, R. A. Plant proton pumps: regulatory circuits involving H+-ATPase and H+-PPase. In: GEISLER, M.; VENEMA, K. (Ed.). Transporters and pumps in plant signaling. Berlin, Heidelberg: Springer, 2011. p. 39-64. GAO, J.; LIU, J.; LI, B.; LI, Z. Isolation and purification of functional total RNA from blue-grained wheat endosperm tissues containing high levels of starches and flavonoids. Plant Molecular Biology Reporter, v. 19, p. 185a-185i, 2001. GARCÍA, A. C.; BERBARA, R. L. L.; FARÍAS, L. P.; IZQUIERDO, F. G.; HERNÁNDEZ, O. L.; CAMPOS, R. H.; CASTRO, R. N. Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. African Journal of Biotechnology, v. 11, n. 13, p. 3125-3134, 2012. GARCÍA, A. C.; SANTOS, L. A.; IZQUIERDO, F. G.; SPERANDIO, M. V. L.; CASTRO, R. N.; BERBARA, R. L. L. Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecological Engineering, v. 47, p. 203-208, 2012. GARCÍA, A. C.; SANTOS, L. A.; IZQUIERDO, F. G.; RUMJANEK, V. M.; CASTRO, R. N.; DOS SANTOS, F. S.; SOUZA, L. G. A.; BERBARA, R. L. L. Potentialities of vermicompost humic acids to alleviate water stress in rice plants (Oryza sativa L.). Journal of Geochemical Exploration, v. 136, p. 48-54, 2014. GAUR, V. S.; SINGH, U. S.; GUPTA, A. K.; KUMAR, A. Understanding the differential nitrogen sensing mechanism in rice genotypes through expression analysis of high and low affinity ammonium transporter genes. Molecular biology reports, v. 39, p. 2233-2241, 2012. GILL, S. S.; TUTEJA, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, v. 48, n. 12, 909-930, 2010. GILROY, S.; JONES, D. L. Through form to function: root hair development and nutrient uptake. Trends in plant science, v. 5, n. 2, p. 1360-1385, 2000. GLASS, A. D.; SHAFF, J. E.; KOCHIAN, L. V. Studies of the uptake of nitrate in barley: IV. Electrophysiology. Plant Physiology, v. 99, n. 2, p. 456-463, 1992. GLASS, A. D. M.; SIDDIQI, M. Y. Nitrogen absorption by plant roots. In: SRIVASTAVA; H. S.; SINGH, R. P. (Ed.). Nitrogen Nutrition in Higher Plants, New Delhi: Associated Publishing Co., 1995. p. 21-56. 114 GLASS, A. D. Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Critical reviews in plant sciences, v. 22, n.5, p. 453-470, 2003. GAXIOLA, R.; LI, J.; UNDURRAGA, S.; DANG, L.; ALLEN, G.; ALPER, S.; FINK, G. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proceedings of the National Academy of Sciences, v. 98, p. 1444-11449, 2001. GOWDA, V. R.; HENRY, A.; YAMAUCHI, A.; SHASHIDHAR, H.E.; SERRAJ, R. Root biology and genetic improvement for drought avoidance in rice. Field Crops Res., v. 122, p. 1-13, 2011. GRASSO, M.; D’ORAZIO, V.; SENESI, N. Spectroscopic characterization of soil organic matter fractions from rhizosphere and bulk soils cultivated for tomato and artichoke. In: Proceedings, São Pedro-Brazil: IHSS, (12th Meeting of the International Humic Substances Society), 2004. p. 368-371. GUMINSKI, S. Present-day views on physiological effects induced in plant organisms by humic compounds. Soviet Soil Science-USSR, v. 9, 1250-1256, 1968. HARADA, J.; YAMAZAKI, K. Morphology and development of roots. In: MATSUO, T.; HOSHIKAWA, K., (Ed.). Science of the Rice Plant. Morphology. Volume 1. Tokyo: Food and Agriculture Policy Research Centre, 1993. p. 133-161. HARPER, J. F.; MANNEY, L.; SUSSMAN, M. R. The plasma membrane H+-ATPase gene family in Arabidopsis: genomic sequence of AHA10 whichis expressed primarily in developing seeds. Molecular and General Genetics MGG, v. 244, n. 6, p. 572-587, 1994. HENZLER, T.; STEUDLE, E. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. Journal of Experimental Botany, v. 51, n. 353, p. 2053-2066, 2000. HERNANDO, V.; ORTEGA, B.C.; FORTUN, C. Study of the action of two types of humic acid on the maize plant. In: Soil Organic Matter Studies, Oxford: Pergamon Press, (Report of IAEA Meeting Vienna, vol. 2). 1977. HOAGLAND, D. R.; ARNON, D. L. The water culture methods for growing plants without soil. Berkeley: California Agriculture Experiment Station (Bulletin 347), 1950. 32 p. HOCHHOLDINGER, F.; TUBEROSA, R. Genetic and genomic dissection of maize root development and architecture. Current Opinion in Plant Biology, v. 12, n. 2, p. 172-177, 2009. IHSS (International Humic Substances Society). Isolation of IHSS Soil Fulvic and Humic Acids. URL http://www. humicsubstances.org [acessado em 17/Junho/2013] INGRAM, K. T.; BUENO, F. D.; NAMUCO, O. S.; YAMBAO, E. B.; BEYROUTY, C. A. Rice root traits for drought resistance and their genetic variation. In: Rice Roots: Nutrient and Water Use. KIRK, G. J. D. (Ed.). International Rice Research Institute: Manila, Philippines, 1994. p. 67-77. 115 IYER-PASCUZZI, A. S.; SYMONOVA, O.; MILEYKO, Y.; HAO, Y.; BELCHER, H.; HARER, J.; WEITZ, J. S.; BENFEY, P. N. Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiology, v. 152, n. 3, p. 1148-1157, 2010. JANNIN, L.; ARKOUN, M.; OURRY, A.; LAÎNÉ, P.; GOUX, D.; GARNICA, M.; FUENTES, M.; SAN FRANCISCO, S.; BAIGORRI, R.; CRUZ, F.; HOUDUSSE, F.; GARCIA-MINA, J. M.; YVIN, J. C.; ETIENNE, P. Microarray analysis of humic acid effects on Brassica napus growth: Involvement of N, C and S metabolisms. Plant and Soil, v. 359, n. 1-2, p. 297-319, 2012. JAMPEETONG, A.; BRIX, H. Effects of NH4+ concentration on growth, morphology and NH4+ uptake kinetics of Salvinia natans. Ecological Engineering, v. 35, p. 695-702, 2009. JAYMAN, T.C.Z.; SIVASUBRAMANIAN, S. Release of bound iron and aluminum from soils by the root exudates of tea (Camelia sinensis) plants. Journal of the Science of Food and Agriculture, v. 26, n. 12, p.1895, 1975. JIANG, L.; PHILLIPS, T. E.; HAMM, C. A.; DROZDOWICZ, Y. M.; REA, P. A.; MAESHIMA, M.; ROGERS, S. W.; ROGERS, J. C. The protein storage vacuole: a unique compound organelle. Journal of Cell Biology, v. 155, n. 6, p. 991-1002, 2001. JINDO, K.; MARTIM, S. A.; NAVARRO, E. C.; PÉREZ-ALFOCEA, F.; HERNANDEZ, T.; GARCIA, C.; AGUIAR, N. O.; CANELLAS, L.P. Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant and Soil, v. 353, p. 209-220, 2012. KRAMER, E. M. Auxin-regulated cell polarity: an inside job? Trends in plant science, v. 14, n. 5, p. 242-247, 2009. KÖGEL-KNABNER, I.; ZECH, W.; HATCHER, P. G. Chemical structural studies of forest soil humic acids: aromatic carbon fraction. Soil Science Society of America Journal, v. 55, n. 1, p. 241-247, 1991. KOTUR, Z.; MACKENZIE, N.; RAMESH, S.; TYERMAN, S. D.; KAISER, B. N.; GLASS, A. D. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1. New Phytologist, v. 194, n. 3, p. 724-731, 2012. KRONZUCKER, H. J.; SIDDIQI, M. Y.; GLASS, A. D. Compartmentation and flux characteristics of ammonium in spruce. Planta, v. 196, n. 4, p. 691-698, 1995. LAMBERS, H.; SHANE, M. W.; CRAMER, M. D.; PEARSE, S. J.; VENEKLAAS, E. J. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of botany, v. 98, p. 693-713, 2006. LANE, D. R.; BASSIRIRAD, H. Differential responses of tallgrass prairie species to nitrogen loading and varying ratios of NO3– to NH4+. Functional Plant Biology, v. 29, n. 10, p. 1227-1235, 2002. 116 LARIGAUDERIE, A.; RICHARDS, J. H. Root proliferation characteristics of seven perennial arid-land grasses in nutrient-enriched microsites. Oecologia, v. 99, p. 102-111, 1994. LASKOWSKI, M. J.; WILLIAMS, M. E.; NUSBAUM, H. C.; SUSSEX, I. M.; Formation of lateral-root-meristems is a 2-stage process. Development, v. 121, p. 3303-3310, 1995. LEITA, L.; de NOBILI, M.; CATALANO, L.; MOIRA, A; FONDA, E.; VLAIC, G. Complexation of iron-cyanide by humic substances. In: SWIFT, R. S.; SPARKS, K. M. (Ed.). Understanding and Managing Organic Matter in Soils, Sediments and Waters, St. Paul-MN: International Humic Science Society, 2001. p. 477-482. LI, B.; WEI, A.; SONG, C.; LI, N.; ZHANG, J. R. Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnology Journal, v. 6, p. 146-159, 2008. LIMA, W. L. Metabolismo do nitrogênio e atividade de bomba de prótons em raízes transgênicas com ácidos húmico e simbiose micorrízica arbuscular. 2008. 156f. Tese. (Doutorado em Agronomia, Ciências do Solo). Instituto de Agronomia. Departamento de Solos. Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. 2008. LIVAK, K. J.; CHMITTGEN, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, v. 25, p. 402-408, 2001. LEINWEBER, P.; FRÜND, R.; REUTER, G. A 13C‐NMR study on the formation of soil organic matter from grass residues. Zeitschrift fuÈr PflanzenernaÈhrung und Bodenkunde, v. 156, n. 5, p. 415-420, 1993. LOFFREDO, E.; PALAZZO, A. J.; SENESI, N.; CLAPP, C. E.; BASHORE, T. L. Germination and early growth of slickspot peppergrass (Lepidium papilliferum) as affected by desert soil humic acids. Soil Science, v. 175, p. 186-193, 2010. LÓPEZ-BUCIO, J.; HERNÁNDEZ-ABREU, E.; SÁNCHEZ-CALDERÓN, L.; NIETO-JACOBO, M. F.; SIMPSON, J.; HERRERA-ESTRELLA, L. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant physiology, v. 129, n. 1, p. 244-256, 2002. LOQUE, D.; LALONDE, S.; LOOGER, L. L.; WIREN, N.; FROMMER, W.B. A cytosolic trans-activation domain essential for ammonium uptake. Nature, v. 446, p. 195-198, 2007. LÜTHJE, S.; DÖRING, O.; HEUER, S.; LÜTHEN, H.; BÖTTGER, M. Oxidoreductases in plant plasma membranes. Biochimica et biophysica acta, v. 1331, n. 1, p. 81-102, 1997. LYNCH, J. Root architecture and plant productivity. Plant physiology, v. 109, p. 7-13, 1995. LYNCH, J. P. Roots of the second green revolution. Australian Journal of Botany, v. 55, p. 493-512, 2007. 117 MAATHUIS, F. J. M. Physiological functions of mineral macronutrients. Current opinion in plant biology, v. 12, n. 6, p. 250-258, 2009. MAESHIMA, M.; YOSHIDA, S. Purification and properties of the V-PPases from mung bean. Journal of Biological Chemistry, v. 264, p. 20068-20073, 1989. MAESHIMA, M. Vacuolar H+-pyrophosphatase. Biochimica et Biophysica Acta, v. 1465, p.37-51, 2000. MAESHIMA, M. Tonoplast transporters: organization and function. Annual review of plant biology, v. 52, n. 1, p. 469-497, 2001. MAGGIONI, A.; VARANINI, Z.; NARDI, S.; PINTON, R. Action of soil humic matter on plant roots: stimulation of ion uptake and effects on (Mg2++ K+) ATPase activity. Science of the Total Environment, v. 62, p. 355-363, 1987. MALAGOLI, M.; DAL CANAL, A.; QUAGGIOTTI, S.; PEGORARO, P.; BOTTACIN, A. Differences in nitrate and ammonium uptake between Scots pine and European larch. Plant and Soil, v. 221, n. 1, p. 1-3, 2000. MARSCHNER, H. Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Research, v. 56, n. 1-2, p. 203-207, 1998. MARSCHNER, P. M. Mineral Nutrition of Higher Plants. San Diego: Academic Press, 2012. 651p. MATERECHERA, S.A.; ALSTON, A. M.; KIRBY, J. M.; DEXTER, A. R. Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant and Soil, v. 144, p. 297-303, 1992. MESSIAS, R. A. Avaliação estrutural de ácidos húmicos de vermicomposto e turfa por diferentes técnicas de caracterização. 119 f. 2004. Tese (Doutorado em Ciências – Química Analítica) - Universidade de São Paulo, São Carlos, 2004. MILLER, M. H.; ASHTON, G. C. The Influence of fertilizer placement and rate of nitrogen on fertilizer phosphorus utilization by oats as studied using a central composite design. Canadian Journal of Soil Science, v. 40, n. 2, p. 157-167, 1960. MILLER, A. J.; SMITH, S. J. Nitrate transport and compartmentation in cereal root cells. Journal of Experimental Botany, v. 47, n. 7, p. 843-854, 1996. MITSUDA, N.; ENAMI, K.; NAKATA, M.; TAKEYASU, K.; SATO, M. H. Novel type Arabidopsis thaliana H+-PPase is localized to the golgi apparatus. FEBS Letters, v.488, p. 29-33, 2001a. MØLLER, J. V.; JUUL, B.; LE MAIRE, M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, v. 1286, n. 1, p. 1-51, 1996. 118 MORA, V.; BACAICOA, E.; ZAMARREÑO, A. M.; AGUIRRE, E.; GARNICA, M.; FUENTES, M.; GARCÍA-MINA, J. M. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins-polyamines and mineral nutrients. Journal of plant physiology, v. 167, n. 8, p. 633-642, 2010. MORA, V.; BAIGORRI, R. BACAICOA, E.; ZAMARREÑO, A. M.; GARCÍA-MINA, J. M. The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environmental and Experimental Botany, v. 76, p. 24-32, 2012. MORI, I. C.; SCHROEDER, J. I. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiology, v.135, n. 2, p. 702-708, 2004. MORIAU, L. Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiniana plumbaginifolia reveals the major transport functions of this enzyme. The Plant Journal, v. 19, n. 1, p. 31-41, 1999. MORSOMME, P.; BOUTRY, M. The plant plasma membrane H+-ATPase: Structure, function and regulation. Biochimica et Biophysica Acta (BBA)-Biomembranes, v. 1465, n. 1, p. 1-16, 2000. MORSOMME, P.; D’EXAERDE, A.D.; DEMEESTER, S.; THINES, D.; GOFFEAU, A.; BOUTRY, M. Single point mutations in various domains of a plant plasma membrane H+- ATPase expressed inSaccharomyces cerevisiaeincrease H+- pumping and permit yeast growth at low pH. The EMBO Journal, v. 15, n. 20, p. 5513-5526, 1996. MUSCOLO, A.; FELICI, M.; CONCHERI, G.; NARDI, S. Effect of humic substances on peroxidase and esterase patterns during growth of leaf explants of Nicotiana plumbaginifolia. Biology and Fertility of Soils, v. 15, n. 2, p. 127-131, 1993. MUSCOLO, A.; PANUCCIO, M. R.; ABENAVOLI, M. R.; CONCHERI, G.; NARDI, S. Effect of molecular complexity and acidity of earthworm faeces humic fractions on glutamate dehydrogenase, glutamine synthetase and phosphoenolpyruvate carboxylase in Daucus carota II cells. Biology and Fertility of Soils, v. 22, p. 83-88, 1996. MUSCOLO, A.; CUTRUPI, S.; NARDI, S. IAA detection in humic substances. Soil Biology and Biochemistry, v. 30, n. 8-9, p. 1199-1201, 1998. MUSCOLO, A.; BOVALO, F.; GIONFRIDDO, F.; NARDI, S. Earthworm humic matter produces auxin-like effects on Daucus carotacell growth and nitrate metabolism. Soil Biology and Biochemistry, v. 31, n. 9, p. 1303-1311, 1999. MUSCOLO, A.; PANUCCIO, M. R.; SIDARI, M. NARDI, S. Effect of two different humic substances on some glycolytic enzymes in callus culture of Pinus Laricio. Humic Substances in the Environment, v. 2, n. 1-4, p. 19-24, 2000. 119 MUSCOLO, A.; PANUCCIO, M. R.; SIDARI, M.; NARDI, S. The effects of humic substances on Pinus callusare reversed by 2,4 - dichlorophenoxy acetic acid. Journal of chemical ecology, v. 31, n. 3, p. 577-590, 2005. MUSCOLO, A.; SIDARI, M.; FRANCIOSO, O.; TUGNOLI, V.; NARDI, S. The auxin-likeactivity of humic substances is related to membrane interactions in carrot cell cultures. Journal of chemical ecology, v.33, n.1, p.115-129, 2007a. MUSCOLO, A.; SIDARI, M.; ATTINÀ, E.; FRANCIOSO, O.; TUGNOLI, V.; NARDI, S. Biological activity of humic substances is related to their chemical structure. Soil Science Society of America Journal, v. 71, n. 1, p. 75-85, 2007b. MUSCOLO, A.; SIDARI, M.; NARDI, S. Humic substance: Relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration, v. 129, p. 57-63, 2013. MYLONAS, V. A.; MCCANTS, C.B. Effects of humic and fulvic acids on growth of tobacco, 2. Tobacco growth and ion uptake. Journal of Plant Nutrition, v. 2, n. 3, p. 377-393, 1980. NANNIPIERI, P.; GREGO, S.; DELL´AGNOLA, G.; NARDI, S. Proprietà biochimiche e fisilologiche della sostanza orgânica, In: NANNIPIERI, P. (Ed.). Ciclo della sostanza organica del suolo, Bologna: Pátron Editore, 1993. p. 67-78. NARDI, S.; CONCHERI, G.; DELL’AGNOLA, G.; SCRIMIN, P. Nitrate uptake and ATPase activity in oat seedlings in the presence of two humic fractions. Soil Biology and Biochemistry, v. 23, p. 833-836, 1991. NARDI, S.; PANUCCIO, M. R.; ABENAVOLI, M. R.; MUSCOLO, A. Auxin-like effect of humic substances extracted from faeces of Allolobophora caliginosa and A. rosea. Soil Biology and Biochemistry, v. 26, p. 1341-1346, 1994. NARDI, S.; CONCHERI, G.; DELL’AGNOLA, G. Biological activity of humus. In: PICCOLO, A. (Ed.). Humic Substances in Terrestrial Ecosystems. Netherlands: Elsevier, 1996. p. 361-406. NARDI, S.; PIZZEGHELLO, D.; REMIERO, F.; MUSCOLO, A. Biological activity of humic substances extracted from soils under different vegetation cover. Communications in soil science and plant analysis, v. 30, n. 5-6, p. 621-634, 1999. NARDI, S.; PIZZEGHELLO, D.; REMIERO, F.; RASCIO, N. Chemical and biochemical properties of humic substances isolated from forest soils and plant growth. Soil Science Society of America Journal, v. 64, n. 2, p. 639-645, 2000. NARDI, S.; PIZZEGHELLO, D.; MUSCOLO, A.; VIANELLO, A. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, v. 34, n. 11, p. 1527-1536, 2002. NARDI, S.; VACCARO, S.; PIZZEGHELLO, D.; MUSCOLO, A.; BAIANO, S.; PICCOLO, A. Effetto di differenti frazioni di sostanze umiche sul metabolismo glicolitico e respiratorio in 120 foglie di plantule di mais ( Zea mays L.). In: VI Congresso Sezione Italiana dell’International Humic Substances Society, Perugia, Italy, 2005. p. 61-63. NARDI, S.; CARLETTI, P.; PIZZEGHELLO, D.; MUSCOLO, A. Biological activities of humic substances, In: SENESI, N.; XING, B.; HUANG, P.M. (Ed.). Volume 2 - Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems, PART I, Fundamentals and impact of mineral-organic-biota interactions on the formation, transformation, turnover, and storage of natural nonliving organic matter (NOM), New Jersey: John Wiley & Sons, Hoboken, 2009. p. 305-339. NOBRE, C. P.; HUERTAS, O. C. T.; TARDIN, J. R. F.; SAGGIN JÚNIOR, O. J.; FONSECA, H. M. A. C.; BERBARA, R. L. L. Biostimulation of inoculation with Glomus proliferum and application of humic acid in the in vitro growth of Lunularia cruciata. Acta Botanica Brasilica, v. 27, n. 4, p. 773-778, 2013. NGUYEN, H.T.; BABU, R.C.; BLUM, A. Breeding for drought resistance in rice: physiological and molecular genetics considerations. Crop Science, v. 37, p. 1426-1434, 1997. NOVOTNY, E. H.; MANTOVANI, E. C.; BONAGAMBA, T. J.; DE AZEVEDO, E. R.; CRUZ, J. C.; BENITES, V. D. M. Aplicação de novas técnicas de ressonância magnética nuclear no estado sólido como metodologia para o estudo da matéria orgânica ambiental-quantificação de estruturas aromáticas condensadas. Embrapa Milho e Sorgo. Sete Lagoas: Embrapa Milho e Sorgo, (Embrapa Milho e Sorgo. Boletim de Pesquisa e Desenvolvimento 1), 2004. 22 p. O'DONNELL, R. W. The auxin-like effects of humic preparations from leonardite. Soil Science, v. 116, n. 2, p. 106-112, 1973. OKAMOTO, M.; KUMAR, A.; LI, W.; WANG, Y.; SIDDIQI, M. Y.; CRAWFORD, N. M.; GLASS, A. D. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant physiology, v. 140, n. 3, p. 1036-1046, 2006. OJWANG’, L. M.; COOK, R. L. Environmental Conditions That Influence the Ability of Humic Acids to Induce Permeability in Model Biomembranes. Environmental science & technology, v. 47, n. 15, p. 8280-8287, 2013. ORLOV, D. S.; AMMOSOVA, Y. A. M.; GLEBOVA, G. I. Molecular parameters of humic acids. Geoderma, v. 13, p. 211-229, 1975. ORLOV, R. Humic acids of soils. Washington-DC: USDA, The National Science Foundation, 1985. 378p. PACHECO-VILLALOBOS, D.; HARDTKE, C. S. Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value. Philosophical Transactions of the Royal Society of London B: Biological Sciences, v. 367, n. 1595, p. 1552-1558, 2012. PAUL, E. A. Soil microbiology, ecology and biochemistry. Fourth edition. San Diego, CA-Academic press. 2014. 121 PALMGREN, M. G. Proton gradients and plant growth: role of the plasma membrane H+- ATPase. Advances in Botanical Research, v. 28, n. 1, p. 1-70, 1998. PALMGREN, M. G.; HARPER, J. F. Pumping with plant P-type ATPases. Journal of Experimental Botany, p. 883-893, 1999. PALMGREN, M. G.; BÆKGAARD, L.; LÓPEZ-MARQUÉS, R. L.; FUGLSANG, A. T. Plasma membrane ATPases. In: MURPHY, A. S.; PEER, W.; SCHULZ, B. (Ed.). The Plant Plasma Membrane. Plant Cell Monographs. Heidelberg, Germany: Springer Verlag, 2011. p. 177-192. PANDEYA, S. B.; SINGH, A. K.; DHAR, P. Influence of fulvic acid on transport of iron in soils and uptake by paddy seedlings. Plant and Soil, v. 198, p. 117-125, 1998. PASSERA, C.; NICOLAO, L.; FERRETTI, M.; RASCIO, N.; GHISI, R. Effect of humic substances of enzyme-activities of sulfate assimilation and chloroplast ultrastructure of maize leaves. Photosynthetica, v. 25, n. 1, p. 39-45, 1991. PEDERSEN, P.L.; CARAFOLI, E. Ion motive ATPases. Trends in Biochemical Sciences, v.12, p.146–150, 1987. PEI, Z. M.; MURATA, Y.; BENNING, G.; THOMINE, S.; KLÜSENER, B.; ALLEN, G. J.; GRILL, E.; SCHROEDER, J. I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, v. 406, n. 6797, p. 731, 2000. PERES, L. E.; MERCIER, H.; KERBAUY, G. B.; ZAFFARI, G. R. Níveis endógenos de AIA, citocininas e ABA em uma orquídea acaule e uma bromélia sem raiz, determinados por HPLC e ELISA. Revista Brasileira de Fisiologia Vegetal, v. 9, n. 3, p. 169-176, 1997. PICCOLO, A.; NARDI, S.; CONCHERI, G. Structural characteristics of humic substances as related to nitrate uptake and growth regulation in plant systems. Soil Biology and Biochemistry, v. 24, n. 4, p. 373-380, 1992. PICCOLO, A.; CELANO, G.; PIETRAMELLARA, G. Effects of fractions of coal-derived humic substances on seed-germination and growth of seedlings (Lactuga sativa and Lycopersicon esculentum). Biology and Fertility of Soils, v. 16, n. 1, p. 11-15, 1993. PICCOLO, A.; NARDI, S.; CONCHERI, G. Macromolecular changes of soil humic substances induced by interactions with organic acids. European Journal of Soil Science, v. 47, n. 3, p. 319-328,1996a. PICCOLO, A.; NARDI, S.; CONCHERI, G. Micelle-like conformation of humic substances as revealed by size-exclusion chromatography. Chemosphere, v. 33, p. 595-600, 1996b. PICCOLO, A.; CONTE, P. Molecular size of humic substances, Supramolecular associations versus macromolecular polymers. Advances in Environmental Research, v. 3, n. 4, p. 508-521, 1999. 122 PICCOLO, A.; CONTE, P.; COZZOLINO, A. Effects of mineral and monocarboxylic acids on the association of dissolved humic substances. European Journal of Soil Science, v. 50, p. 687-694, 1999. PICCOLO, A. The supramolecular structure of humic substances. Soil Science, v. 166, n. 11, p. 810-832, 2001. PICCOLO, A.; COZZOLINO, A.; CONTE, P.; SPACCINI, R. Polymerization of humic substances by an enzyme catalyzed oxidative coupling. Naturwissenschaften, v. 87, p. 391-394, 2000. PICCOLO, A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Advances in Agronomy, v. 75, p. 57-134, 2002. PINTON, R.; VARANINI, Z.; VIZZOTTO, G.; MAGGIONI, A. Soil humic substances affect transport properties of tonoplast vesicles isolated from oat roots. Plant and Soil, v. 142, p.203-210, 1992. PINTON, R.; CESCO, S.; SANTI, S.; VARANINI, Z. Effect of soil humic substances on surface redox activity of oat roots. Journal of plant nutrition, v. 18, n. 10, p. 2111-2120, 1995. PINTON, R.; CESCO, S.; SANTI, S.; VARANINI, Z. Soil humic substances stimulate proton release by intact oat seedling roots. Journal of plant nutrition, v. 20, n. 7-8, p. 857-869, 1997. PINTON, R.; CESCO, S.; de NOBILI, M.; SANTI, S.; VARANINI, Z. Water and pyrophosphate-extractable humic substances fractions as a source of iron for Fe-deficient cucumber plants. Biology and Fertility of Soils, v. 26, p.23-27, 1998. PINTON, R.; CESCO, S.; IACOLETTI, G.; ASTOLFI, S.; VARANINI, Z. Modulation of NO3- uptake by water-extractable humic substances: Involvement of root plasma membrane H+-ATPase. Plant and Soil, v. 215, p. 155-161, 1999a. PINTON, R.; CESCO, S.; SANTI, S.; AGNOLON, F.; VARANINI, Z. Water extractable humic substances enhance iron deficiency responses by Fe deficient cucumber plants. Plant and Soil, v. 210, p. 145-157, 1999b. PINTON, R.; CESCO, S.; VARANINI, Z. Role of humic substances in the rhizosphere. In: SENESI, N.; XING, B.; HUANG, P. M. (Ed.). Volume 2 - Biophysico-chemical processes involving natural nonliving organic matter in environmental systems, PART I, Fundamentals and impact of mineral-organic-biota interactions on the formation, transformation, turnover, and storage of natural nonliving organic matter (NOM), New Jersey: John Wiley & Sons, Hoboken, 2009. p. 341-366. PIZZEGHELLO, D.; NICOLINI, G.; NARDI, S. Hormone-like activity of humic substances in Fagus sylvaticae L. forests. New Phytologist, v. 151, n. 3, p. 647-657, 2001. PIZZEGHELLO, D.; NICOLINI, G.; NARDI, S. Hormone-like activities of humic substances in different forest ecosystems. New Phytologist, v. 155, n. 3, p. 393-402, 2002. 123 PIZZEGHELLO, D.; TREVISAN, S.; QUAGGIOTTI, S.; REPERTI, B.; PALME, K.; NARDI, S. Effetto di sostanze umiche sullo sviluppo della radice in Arabidopsis thaliana. In: XXIV Convegno Nazionale della Societ à Italiana di Chimica Agraria, Alghero-Italy, 2006. p.92. PRÁT, S.; POSPÍŠIL, F. Humic acids with 14C. Biologia Plantarum, v. 1, n. 1, p. 71-80, 1959. PRESTON, C. M.; NEWMAN, R. H.; ROTHER, P. Using 13C CPMAS NMR to assess effects of cultivation on the organic matter of particle size fractions in a grassland soil. Soil Science, v. 157, n. 1, p. 26-35, 1994. PRIMO, D. C.; MENEZES, R. C.; SILVA, T. O. Substâncias húmicas da matéria orgânica do solo: uma revisão de técnicas analíticas e estudos no nordeste brasileiro. Scientia Plena, v. 7, n. 5, p. 1-13, 2011. QUAGGIOTTI, S.; RUPERT, B.; PIZZEGHELLO, D.; FRANCIOSO, O.; TUGNOLI, V.; NARDI, S. Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). Journal of Experimental Botany, v. 55, p. 803-813, 2004. QUAN, L. J.; ZHANG, B.; SHI, W. W.; LI, H. Y. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology, v.50, n.1, p.2-18, 2008. R DEVELOPMENT CORE TEAM, R: A Language and Environment for Statistical Computing. Vienna, Austria, R Development Core Team. 2013. RANATHUNGE, K.; EL-KEREAMY, A.; GIDDA, S.; BI, Y-M.; ROTHSTEIN, S.J. OsAMT1.1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions. Journal of Experimental Botany. v. 65, n. 4, p. 965-979, 2014. RATAJCZAK, R.; HINZ, G.; ROBINSON, D.G. Localization of pyrophosphatase in membranes ofcauliflower inflorescence cells. Planta, v. 208, p. 205-211, 1999. RAUTHAN, B. S.; SCHNITZER, M. Effect of soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativum) plants. Plant and Soil, v.63, p.491-495, 1981. RAVEN, J. A.; SMITH, F. A. Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytologist, v. 76, p. 415-431, 1976. REGENT INSTRUMENTS. WinRHIZO arabidopsis 2012b manual. Québec-Canada: Régent Instruments Inc., 2012. 142p. RÖMHELD, V.; NEUMANN, G. The rhizsosphere: Contributions of the soil – root interface to sustainable soil Systems. In: UPHOFF, N.; BALL, A. S.; FERNANDES, E.; HERREN H.; HUSSON O.; LAING M.; PALM C.; PRETTY J.; SANCHEZ P.; SANGINGA N.; THIES J. (Ed.). Biological Approaches to Sustainable soil Systems. New York: Taylor & Francis, 2006. p. 91-107. 124 ROSE M.T.; PATTI A.F.; LITTLE, K.R.; BROWN, A.L.; JACKSON W.R.; CAVAGNARO, T.R. A Meta-Analysis and Review of Plant-Growth Response to Humic Substances: Practical Implications for Agriculture. Advances in Agronomy, v.124, p. 37-89, 2014. RUIZ, H. A. Estimativa dos parâmetros cinéticos Km e Vmax por uma aproximação gráfico-matemática. Revista Ceres, v. 32, p. 79-84, 1985. RUSSELL, L.; STOKES, A. R.; MACDONALD, H.; MUSCOLO, A.; NARDI, S. Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant and Soil, v. 283, p. 175-185, 2006. SAMAL, D.; SADANA, U. S.; GILL, A. A. S. Mechanistic approach to study manganese influx and its depletion in the rhizosphere of wheat and raya. Communications in soil science and plant analysis, v. 34, n. 19-20, p. 3033-3044, 2003. SAMSON, G.; VISSER, S.S. Surface-active effects of humic acids on potato cell membrane properties. Biology and Fertility of Soils, v. 21, p. 343-347, 1989. SANTI, S.; LOCCI, G.; PINTON, R.; CESCO, S.; VARANINI, Z. Plasma membrane H+-ATPase in maize roots induced for NO3- uptake. Plant Physiology, v. 109, n. 4, p.1 277-1283, 1995. SANTI, S.; LOCCI, G.; MONTE, R.; PINTON, R.; VARANINI, Z. Induction of nitrate uptake in maize roots: expression of a putative high affinity nitrate transporter and plasma membrane H+-ATPase isoforms. Journal of Experimental Botany, v. 54, n. 389, p. 1851-1864, 2003. SANTOS, G. de A.; CAMARGO, F. A. O. (Ed). Fundamentos da matéria orgânica do solo: Ecossistemas tropicais e subtropicais. Porto Alegre: Gênesis; 1999, 508p. SANTOS, L. A.; BUCHER, C. A.; SOUZA, S. R.; FERNANDES, M. S. Metabolismo de nitrogênio em arroz sob níveis decrescentes de nitrato, Agronomia, v. 39, n. 1-2, p. 28-33, 2005. SANTOS, L. A.; BUCHER, C. A.; SOUZA, S. R.; FERNANDES, M. S. Effects of nitrogen stress on proton-pumping and nitrogen metabolism in rice. Journal of plant Nutrition, v. 32, p. 549-564, 2009. SANTOS, L. A.; SANTOS, W. A.; SPERANDIO, M. V. L.; BUCHER, C. A.; SOUZA, S. R.; FERNANDES, M. S. Nitrate uptake kinetics and metabolic parameters in two rice varieties grown in high and low nitrate. Journal of plant Nutrition, v. 34, n. 7, p. 988-1002, 2011. SARAFIAN, V.; KIM, Y.; POOLE, R.J.; REA, P.A. Molecular cloning and sequence of cDNA encoding the pyrophosphateenergized vacuolar membrane proton pump of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, v. 89, n. 5, p. 1775-1779, 1992. SCHIAVON, M.; ERTANI, A.; NARDI, S. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. Journal of Agricultural and Food Chemistry, v. 56, n. 24, p. 11800-11808, 2008. 125 SCHIAVON, M.; PIZZEGHELLO, D.; MUSCOLO, A.; VACCARO, S.; FRANCIOSO, O.; NARDI, S. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). Journal of chemical ecology, v. 36, n. 6, p. 662-669, 2010. SCHMIDT, W.; SCHIKORA, A. Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiology, v.125, p. 2078-2084, 2001. SCHMIDT, W.; SANTI, S.; PINTON, R.; VARANINI, Z. Water-extractable humic substances alter root development and epidermal cell pattern in Arabidopsis. Plant and soil, v. 300, n. 1-2, p. 259-267, 2007. SCHMIDT, M. W.; TORN, M. S.; ABIVEN, S.; DITTMAR, T.; GUGGENBERGER, G.; JANSSENS, I. A.; NANNIPIERI, P. Persistence of soil organic matter as an ecosystem property. Nature, v. 478, n. 7367, p. 49-56., 2011. SEUFFERHELD, M. J.; KIM, K. M.; WHITFIELD, J.; VALERIO, A.; CAETANO-ANOLLÉS, G. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome. Biology direct, v. 6, n. 1, p. 50, 2011. SERRAJ, R.; KRISHNAMURTHY, L.; KASHIWAGI, J. W.; KUMAR, J.; CHANDRA, S.; CROUCH, J. H. Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crops Research, v. 88, n. 2-3, p. 115-127, 2004. SIDDIQI, M. Y.; GLASS, A. D. M.; RUTH, T. J.; RUFTY, J. R. T. W. Studies of the uptake of nitrate in barley. I. Kinetics of 13NO3- influx. Plant Physiology, v. 93, p. 1426-1432, 1990. SKAGGS, T. H.; SHOUSE, P. J. Roots and root function: introduction. Vadose Zone Journal, v. 7, n. 3, p. 1008-1009, 2008; SILVA, F. L. I. M.; FERNANDES, M. S.; MAGALHÃES, J. R. Study of ionic balance affecting nutrient uptake by corn. Pesquisa Agropecuaria Brasileira, v. 22, p. 331, 1987. SIMPSON, A. J.; KINGERY, W. L.; HAYES, M. H.; SPRAUL, M.; HUMPFER, E.; DVORTSAK, P.; KERSSEBAUM, R.; GODEJOHANN, M.; HOFMANN, M. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften, v.89, n.2, p. 84-88, 2002. SCHWERTMANN, U. Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide. Nature, v. 212, p. 645-646, 1966. SEQUI, P.; GUIDI, G.; PETRUZZELLI, G. Influence of metals on solubility of soil organic matter. Geoderma, v. 13, p. 153-161, 1975. SLADKÝ, Z. The effect of extracted humus substances on growth of tomato plants. Biologia Plantarum, v.1, p.142-150, 1959. SLADKÝ, Z.; TICHÝ, V. Applications of humus substances to over ground organs of plants. Biologia Plantarum, v.1, p.9-15, 1959. 126 SONDERGAARD, T.E.; SCHULZ, A.; PALMGREN, M.G. Energization of transport processesin plants. Roles of the plasma membrane H+-ATPase. Plant Physiology, v. 136, p.2475-2482, 2004. SONG, G.; NOVOTNY, E.H.; SIMPSON, A.J.; CLAPP, C.E.; HAYES, M.H.B. Sequential exhaustive extraction of a Mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. European journal of soil Science, v. 59, n. 3, p. 505-516, 2008. SONODA, Y.; IKEDA, A.; SAIKI, S.; VON WIRÉN, N.; YAMAYA, T.; YAMAGUCHI, J. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiology, v. 44, p. 726-734, 2003. SORGONA, A.; LUPINI, A.; MERCATI, F.; DI DIO, L.; SUNSERI, F.; ABENAVOLI, M. R. Nitrate uptake along the maize primary root: an integrated physiological and molecular approach. Plant, cell & environment, v. 34, n. 7, p. 1127-1140, 2011. SOUSA, S.M.; CLARK, R.T.; MENDES, F.F.; DE OLIVEIRA, A.C.; DE VASCONCELOS, M.J.V.; PARENTONI, S.N.; MAGALHÃES, J.V. A role for root morphology and related candidate genes in P acquisition efficiency in maize. Functional Plant Biology, v. 39, n. 11, p. 925-935, 2012. SOUZA, S. R.; FERNANDES, M. S. Nitrogênio. In: FERNANDES, M.S. (Ed.). Nutrição Mineral de plantas, Vicosa: SBCS, 2006. p. 215-252. SPACCINI, R.; PICCOLO, A. Molecular characterisation of compost at increasing stages of maturity. II: Thermochemolysis-GC-MS and 13C-CPMAS-NMR spectroscopy. Journal of Agricultural and Food Chemistry, v. 55, p. 2303-2311, 2007. SPERANDIO, M. V. L.; SANTOS, L. A.; BUCHER, C. A.; FERNANDES, M. S.; DE SOUZA, S. R. Isoforms of plasma membrane H+-ATPase in rice root and shoot are differentially induced by starvation and resupply of NO3- or NH4+. Plant Science, v. 180, n. 2, p. 251-258, 2011. SPERANDIO, M. V. L.; SANTOS, L. A.; DE ARAÚJO, O. J. L.; BRAGA, R. P.; COELHO, C. P.; DE MATOS NOGUEIRA, E.; FERNANDES, M. S.; DE SOUZA, S. R. Response of nitrate transporters and PM H+-ATPase expression to nitrogen flush on two upland rice varieties contrasting in nitrate uptake kinetics. Australian Journal of Crop Science, v. 8, n. 4, p. 568, 2014. STEVENSON, F. J. Humus chemistry: Genesis, composition, reactions. 2nd ed. New York: John Wiley & Sons Inc, 1994. 496p. STEEL, R.; TORRY, J.; DICKEY, D. Principles and Procedures of Statistics: A Biometrical Approach. Third Edition, 1997. 178p. SUTTON, R.; SPOSITO, G. Molecular structure in soil humic substances: The new view. Environmental Science & Technology, v. 39, n. 23, p. 9009-9015, 2005. 127 SWIFT, R. S. Organic matter characterization. In: SPARKS, D. L. (Ed.). Methods of Soil Analysis. Part 3. Chemical Methods. Madison, WI: Soil Science Society of America,. 1996. p. 1018-1020. TAN, K. H. Humic Matter in Soil and the Environment: principles and controversies. Boca Raton, FL: CRC Press. 2014. 495p. TOMASI, N.; MONTE, R.; RIZZARDO, C.; VENUTI, S.; ZAMBONI, A.; CESCO, S.; PINTON, R.; VARANINI, Z. Effects of water-extratable humic substances on molecular physiology of nitrate uptake in two maize inbred lines with different nitrogen use efficiency. In: Proceedings of the International Plant Nutrition Colloquium XVI. 2009. p. 1-5. TREVISAN, S.; PIZZEGHELLO, D.; RUPERTI, B.; FRANCIOSO, O.; SASSI, A.; PALME, K.; QUAGGIOTTI, S.; NARDI, S. Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biology, v. 12, p. 604-614, 2010. TREVISAN, S.; BOTTON, A.; VACCARO, S.; VEZZARO, A.; QUAGGIOTTI, S.; NARDI, S. Humic substances affect Arabidopsis physiology altering the expression of genes involved in primary metabolism, growth and development. Environmental and Experimental Botany, v. 74, p. 45-55, 2011. TURANO, F.J.; DASHNER, R.; UPADHYAYA, A.; CALDWELL, C.R. Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings. Plant Physiology, v.112, p.1357-1364, 1996. VAN DE VENTER, H.A.; FURTER, M.; DEKKER, J.; CRONJE, I. J. Stimulation of seedling root growth by coal-derived sodium humate. Plant and Soil, v. 138, p. 17-21, 1991. VARANINI, Z.; PINTON, R.; DE BIASI, M.G.; ASTOLFI, S.; MAGGIONI, A. Low molecular weight humic substances stimulated H+-ATPase activity of plasma membrane vesicles isolated from oat (Avena sativa L.) roots. Plant and Soil, v. 153, p. 61-69, 1993. VARANINI, Z.; PINTON, R. Humic substances and plant nutrition. In: LÜTTGE, U. (Ed.). Progress in Botany, v.56. Berlin:Springer, 1995. p. 97-117. VARANINI, Z.; PINTON, R. Direct versus indirect effects of soil humic substances on plant growth and nutrition. In: PINTON, R.; VARANINI, Z.; NANNIPIERI, P. (Ed.). The Rizosphere, Basel:Marcel Dekker, 2001. p.141-158. VASCONCELOS, A.C.F.; ZHANG, X.; ERVIN, E.H.; CASTRO, J.K. Enzymatic antioxidant responses to biostimulants in maize and soybean subjected to drought. Scientia Agricola, v.66, n.3, p.395-402, 2009. VAUGHAN, D. The stimulation of invertase development in aseptic storage tissue slices by humic acids. Soil Biology and Biochemistry, v.1, n.1, p.15-28, 1967a. VAUGHAN, D. Effect of humic acid on the development of invertase activity in slices of beet root tissues washed under aseptic conditions. Humus et Planta, v.4, p.268-271, 1967b. 128 VAUGHAN, D.; BAKER, C.D.; WILLOUGHBY, L.G. Some aspects of humic acid on two different biological systems. Plant and Soil, v.40, p.429-434, 1974a. VAUGHAN, D.; CHESHIRE, M.V.; MUNDIE, C.M. Uptake by beet root tissue and biological activity of 14C-labelled fractions of soil organic matter. Biochemical Society Transactions, v.2, n.1, p.126-129, 1974b. VAUGHAN, D.; LINEHAN, D.J. The growth of wheat plants in humic acid solutions under axenic conditions. Plant and Soil, v.44, p.445-449, 1976. VAUGHAN, D.; MALCOM, R.E. Influence of humic substances on growth and physiological processes. In: VAUGHAN, D.; MALCOM, R.E. (Ed.). Soil organic matter and biological activity, Dordrecht: Martinus Nijhoff/Junk W, 1985. p.37-76. VAUGHAN, D.; ORD, B.G. Uptake and incorporation of 14C-labelled soil organic matter by roots of Pisum sativum L. Journal of Experimental Botany, v.32, n.4, p.679-687, 1981. VIANELLO, A.; MACRÌ, F. Generation of superoxide anion and hydrogen peroxide at the surface of plant cells. Journal of Bioenergetics and Biomembranes, v.23, n.3, p.409-423, 1991. VISSER, S.A. Effect of humic substances on mitochondrial respiration and oxidative phosphorylation. Science of the Total Environment, v.62, p.347-354, 1987. VITART, V.; BAXTER, I.; DOERNER, P.; HARPER, J. F. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. The Plant Journal, v.27, n.3, p.191-201, 2001. VON WIRÉN, N.; GAZZARRINI, S.; GOJON, A.; FROMMER, W.B. The molecular physiology of ammonium uptake and retrieval. Current Opinion in Plant Biology, v.3, p.254-261, 2000. XU, G.; FAN, X.; MILLER, A. J. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, v.63, p.153-182, 2012. YAMAUCHI, A.; KONO, Y.; TATSUMI, J. Comparison of root system structures of 13 species of cereals. Japanese Journal of Crop Science, v. 56, n. 4, p.618-631, 1987. YAMAUCHI, Y.; PARDALES, J.R.; KONO, Y. Root system structure and its relation to stress tolerance. In: ITO, O.; KATAYAMA, K.; JOHANSEN, C.; KUMAR-RAO, J.V.D.K.; ADU-GYAMIF, J.; REGO, T. J. (Ed.). Roots and Nitrogen in Cropping Systems of the Semi-Arid Tropics. Tsukuba, Japan: JIRCAS Publication, 1996. p.211-234. YAMBAO, E.B.; INGRAM, K.T.; REAL, J.G. Root xylem influence on the water relations and drought resistance of rice. Journal of Experimental Botany, v. 43, n. 7, p.925-932, 1992. YAN, F.; ZHU, Y.; MÜLLER, C.; ZÖRB, C.; SCHUBERT, S. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant physiology, v.129, n.1, p.50-63, 2002. 129 YAN, M.; FAN, X.; FENG, H.; MILLER, A.J.; SHEN, Q.; XU, G. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant, Cell & Environment, v. 34, n. 8, p.1360-1372, 2011. YEMM, E.W.; COCKING, E.C. The determination of amino-acid with ninhydrin, Analytical Biochemistry, v.80, p.209-213, 1955. YEMM, E.W.; WILLIS, A.J. The estimation of carbohydrate in plants extracts by anthrone, Biochemistry, v.57, p.508-514, 1954. YOSHIDA, S.; BHATTACHARJEE, D.P.; CABUSLAY, G.S. Relationship between plant type and root growth in rice. Soil Science and Plant Nutrition, v. 28, n. 4, p.473-482, 1982. YUE, G.; SUI, Z.; GAO, Q.; ZHANG, J. Molecular cloning and characterization of a novel H+-translocating pyrophosphatase gene in Zea mays. DNA Sequence, v.19, n.2, p.79-86, 2008. WANG, H.; INUKAI, Y.; YAMAUCHI, A. Root development and nutrient uptake. Critical Reviews in Plant Sciences, v. 25, n. 3, p.279-301, 2006. ZANDONADI, D.B.; CANELLAS, L.P.; FACANHA, A.R. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+-pumps activation. Planta, v.225, p.1583-1595, 2007. ZANDONADI, D.B.; SANTOS, M.P.; DOBBSS, L.B.; OLIVARES, F.L.; CANELLAS, L.P.; BINZEL, M.L.; OKOROKOVA-FAÇANHA, A.L.; FAÇANHA, A.R. Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta, v.231, n.5, p.1025-1036, 2010. ZANDONADI, D. B.; SANTOS, M. P.; BUSATO, J. G.; PERES, L. E. P.; FAÇANHA, A. R.. Plant physiology as affected by humified organic matter. Theoretical and Experimental Plant Physiology, v.25, n.1, p.13-25, 2013. ZHAO, F. Y.; ZHANG, X. J.; LI, P. H.; ZHAO, Y. X.; ZHANG, H. Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Molecular Breeding, v.17, n.4, p.341-353, 2006.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/63526/2014%20-%20Orlando%20Carlos%20Huertas%20Tavares.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4270
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-12-16T22:49:54Z No. of bitstreams: 1 2014 - Orlando Carlos Huertas Tavares.pdf: 3286211 bytes, checksum: 64cec41c8666401e289cc839b80a8887 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-12-16T22:49:54Z (GMT). No. of bitstreams: 1 2014 - Orlando Carlos Huertas Tavares.pdf: 3286211 bytes, checksum: 64cec41c8666401e289cc839b80a8887 (MD5) Previous issue date: 2014-09-30eng
Appears in Collections:Doutorado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2014 - Orlando Carlos Huertas Tavares.pdf2014 - Orlando Carlos Huertas Tavares3.21 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.