Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10025
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRocha, Francine Yuriko Otsuka
dc.date.accessioned2023-12-21T18:56:05Z-
dc.date.available2023-12-21T18:56:05Z-
dc.date.issued2020-02-20
dc.identifier.citationROCHA, Francine Yuriko Otsuka. Bactérias endofíticas do gênero Bacillus de cana-de-açúcar: Isolamento, caracterização e potencial entomopatogênico contra Telchin licus licus (Drury) (Lepidoptera:Castniidae) em laboratório. 2020. 102 f Tese (Doutorado em Fitotecnia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10025-
dc.description.abstractTelchin licus licus (broca gigante) é uma praga que atinge a cultura da cana-de-açúcar, podendo ocasionar perdas elevadas na produção quando incidente na área de cultivo. Essa praga possui uma maior ocorrência na região Nordeste do Brasil e seu controle é bastante difícil. O uso de bactérias do gênero Bacillus, principalmente B. thuringiensis (Bt) tem se mostrado eficiente no controle de pragas das ordens Lepidoptera, Coleoptera, Diptera, Hemiptera e Hymenoptera. Desta forma, este trabalho teve como objetivo isolar, caracterizar estirpes endofíticas do gênero Bacillus de áreas produtoras de cana-de-açúcar e avaliar o potencial entomopatogênico contra larvas da broca gigante em condições de laboratório. Para tanto foram coletadas lagartas deste inseto, colmos e raízes de cana-de-açúcar de três usinas produtoras do estado de Alagoas para o isolamento de bactérias. Todas as amostras obtidas passaram pelo processo de pasteurização por duas vezes, tendo como resultados 425 isolados bacterianos (108 do líquido do apoplasto, 48 do trato digestivo da broca gigante, 94 das raízes e 175 da região central dos entrenós). Os isolados bacterianos foram caracterizados fenotipicamente através da coloração de Gram. A característica de Gram-positiva foi evidenciada para 161 dos 425 isolados (46 Gram-positivos originários do líquido do apoplasto, 19 do trato digestivo, 50 das raízes e 46 da região central dos entrenós). A caracterização taxonômica das bactérias, utilizando o método de amplificação da região 16S RNAr, mostrou que os isolados pertenciam em sua maioria ao gênero Bacillus, seguido dos gêneros Paenibacillus, Lysinibacillus e Terribacillus. As análises filogenéticas indicaram que 11,5% dos isolados foram filogeneticamente agrupados com a espécie B. megaterium, seguido de 10,8% para a espécie B. safensis, 10% para a espécie B. cereus, 8,9% para B. oleronius, 7% para B. amyloliquefaciens e 6% dos isolados para B. pacificus. A construção da árvore filogenética utilizando o programa MEGA v.7.0, permitiu dividir os isolados bacterianos em 18 grupos. Análises das regiões BOX foram realizadas de modo a separar os grupos bacterianos e determinar o grau de diversidade entre os isolados. Genes conservados (housekeeping) e genes cry foram amplificados através da técnica de PCR, respectivamente para a identificação das espécies de Bacillus e caracterização das bactérias quanto ao tipo de toxina produzida. Os agrupamentos com os genes conservados mostraram correspondência de sete isolados (FORCN075, FORCN076, FORCN089, FORCN090, FORNC091, FORCN092 e FORCN093) com a espécie B. thuringiensis serovar berliner. A partir da amplificação dos genes cry, foram identificados seis isolados (FORCN007, FORCN012, FORCN014, FORCN087, FORCN092 e FORCN096) contendo o gene cry2. O potencial de controle das espécies bacterianas contra lagartas da broca gigante foi avaliado em bioensaios utilizando as bactérias pertencentes ao grupo das espécies filogeneticamente próximas de B. thuringiensis, B. cereus e B. wiedmanni, além das estirpes de B. thuringiensis subsp. kurstaki estirpe S76 e a estirpe comercial HD-1. As bactérias FORCN014 (isolado do líquido do apoplasto) e FORCN066 (isolado a partir de raízes) apresentaram resultados interessantes nos bioensaios realizados, já que garantiram percentual de controle de 42,9% e 57,1%, respectivamente, no bioensaio 1. No bioensaio 2 o percentual de controle foi de 37,5% (FORCN014) e 50%(FORCN066) enquanto que no bioensaio 3 ambos os isolados tiveram percentual de controle de 50% das lagartas da broca gigante.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectControle biológicopor
dc.subjectBroca gigantepor
dc.subjectSaccharum officinarum L.por
dc.subjectBiological controlpor
dc.subjectGiant borerpor
dc.titleBactérias endofíticas do gênero Bacillus de cana-de-açúcar: Isolamento, caracterização e potencial entomopatogênico contra Telchin licus licus (Drury) (Lepidoptera:Castniidae) em laboratóriopor
dc.title.alternativeEndophytic bacteria of the Bacillus genus in sugarcane: Isolation, characterization and entomopathogenic potential against Telchin licus licus (Drury) (Lepidoptera: Castniidae) in laboratoryeng
dc.typeTesepor
dc.description.abstractOtherTelchin licus licus (giant borer) is a pest that affects the sugarcane crop and can cause high yield losses when incident on the crop area. This pest has a greater occurrence in the Northeast region of Brazil and its control is quite difficult. The use of bacteria of the genus Bacillus, mainly Bacillus thuringiensis (Bt) has been shown to be efficient in the control of pests of the orders Lepidoptera, Coleoptera, Diptera, Hemiptera and Hymenoptera. Thus, this work aimed to isolate and characterize endophytic strains of the Bacillus genus from sugarcane producing areas and evaluate the entomopathogenic potential against larvae of the giant borer in laboratory conditions. For this purpose, larvae of this insect, stalks and roots of sugarcane were collected from three producing areas in the State of Alagoas for the isolation of bacteria. All samples obtained were pasteurized twice, resulting in 425 bacterial isolates (108 from the apoplast fluid, 48 from the digestive tract of the giant borer, 94 from the roots and 175 from the central region of the internodes). Bacterial isolates were phenotypically characterized by Gram staining. The Gram-positive characteristic was evidenced for 161 of the 425 isolates (46 Gram-positive originating from the apoplast fluid, 19 from the digestive tract, 50 from the roots and 46 from the central region of the internodes). The taxonomic characterization of the bacteria, using the 16S RNAr region amplification method, showed that the isolates belonged mostly to the genus Bacillus, followed by the Paenibacillus, Lysinibacillus and Terribacillus genera. Phylogenetic analyzes indicated that 11.5% of the isolates were phylogenetically grouped with B. megaterium species, followed by 10.8% for B. safensis, 10% for B. cereus, 8.9% for B. oleronius, 7% for B. amyloliquefaciens and 6% of the isolates for B. pacificus. The construction of the phylogenetic tree using the MEGA v.7.0 program allowed the bacterial isolates to be clustered in 18 groups. Analyzes of the BOX regions were performed in order to separate the bacterial groups and determine the degree of diversity between the isolates. Conserved genes (housekeeping) and cry genes were amplified through the PCR technique, respectively for the identification of Bacillus species and characterization of bacteria regarding the type of toxin produced. The clusters with the conserved genes showed correspondence of seven isolates (FORCN075, FORCN076, FORCN089, FORCN090, FORNC091, FORCN092 and FORCN093) with B. thuringiensis serovar berliner. From the amplification of the cry genes, six isolates (FORCN007, FORCN012, FORCN014, FORCN087, FORCN092 and FORCN096) were identified containing the cry2 gene. The potential of control of bacterial species against larvae of the giant borer was evaluated in bioassays using bacteria belonging to the group of species phylogenetically close to B. thuringiensis, B. cereus and B. wiedmanni, in addition to the strains of B. thuringiensis subsp. kurstaki strain S76 and the commercial strain HD-1. The bacteria FORCN014 (isolated from apoplast fluid) and FORCN066 (isolated from roots) showed interesting results in the bioassays performed, since they guaranteed a control percentage of 42.9% and 57.1%, respectively, in bioassay 1. In the bioassay 2 the control percentage was 37.5% (FORCN014) and 50% (FORCN066) and in bioassay 3 both isolates showed a control percentage of 50% of the giant borer larvae.eng
dc.contributor.advisor1Baldani, José Ivo
dc.contributor.advisor1ID538.864.458-87por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8391182235603982por
dc.contributor.referee1Baldani, José Ivo
dc.contributor.referee2Negrisoli Júnior, Aldomário Santos
dc.contributor.referee3Jesus, Ederson da Conceição
dc.contributor.referee4Menezes, Elen de Lima Aguiar
dc.contributor.referee5Coelho, Márcia Reed Rodrigues
dc.creator.ID128.973.147-02por
dc.creator.Latteshttp://lattes.cnpq.br/3529653746163686por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesABBOTT, Walter S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol, v. 18, n. 2, p. 265-267, 1925. AGAISSE, Herve; LERECLUS, Didier. Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant. Journal of bacteriology, v. 176, n. 15, p. 4734-4741, 1994. AGROFIT. Sistema de Agrotóxicos Fitossanitários. Consulta de ingrediente ativo. 2020. Disponível em: <http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons>. Acesso em: 3 de mar. de 2020. DE ALMEIDA, Luiz Carlos; DIAS FILHO, Manoel Martins; ARRIGONI, Enrico De Beni. PRIMEIRA OCORRÊNCIA DE Telchin licus (DRURY, 1773), A BROGA GIGANTE DA CANA-DE-AÇUCAR, NO ESTADO DE SÃO PAULO. BRAZILIAN JOURNAL OF AGRICULTURE-Revista de Agricultura, v. 82, n. 2, p. 223-226, 2015. DE ALMEIDA, Luiz Carlos; ARRIGONI, Enrico De Beni. Parâmetros biológicos da broca gigante da cana-de-açúcar, Telchin licus (DRURY, 1773). Brazilian Journal of Agriculture- Revista de Agricultura, v. 84, n.1, p. 56-61, 2009. ALTSCHUL, Stephen F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic acids research, v. 25, n. 17, p. 3389-3402, 1997. ARANDA, Eduardo et al. Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of invertebrate pathology, v. 68, n. 3, p. 203-212, 1996. ARANTES, Olivia; LERECLUS, Didier. Construction of cloning vectors for Bacillus thuringiensis. Gene, v. 108, n. 1, p. 115-119, 1991. ARGÔLO-FILHO, Ronaldo Costa; LOGUERCIO, Leandro Lopes. Bacillus thuringiensis is an environmental pathogen and host-specificity has developed as an adaptation to humangenerated ecological niches. Insects, v. 5, n. 1, p. 62-91, 2014. ARONSON, Arthur I.; BECKMAN, W.; DUNN, P. Bacillus thuringiensis and related insect pathogens. Microbiological reviews, v. 50, n. 1, p. 1-24, 1986. AZEVEDO, João Lúcio et al. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology, v. 3, n. 1, p. 15-16, 2000. AZIZOGLU, Ugur et al. Expression of cry1Ab gene from a novel Bacillus thuringiensis strain SY49-1 active on pest insects. Brazilian journal of microbiology, v. 47, n. 3, p. 597-602, 2016. AZIZOGLU, Ugur. An overview of the microbial insecticide: Bacillus thuringiensis. EC Microbiology, ECO.01, p. 28-30, 2017. BAEK, Inwoo et al. Comparative genomic and phylogenomic analyses clarify relationships within and between Bacillus cereus and Bacillus thuringiensis: proposal for the recognition of two Bacillus thuringiensis genomovars. Frontiers in microbiology, v. 10, p. 1978, 2019. BALDANI, Vera Lucia Divan. Especificidade na infecção de raízes de milho, trigo e arroz por Azospirillun spp. UFRRJ, 1980. 116p. Tese de Doutorado. Tese Mestrado. DE BARJAC, H.; FRACHON, E. Classification of Bacillus thuringiensis strains. Entomophaga, v. 35, n. 2, p. 233-240, 1990. BEL, Yolanda et al. Toxicity and binding studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A proteins in the soybean pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Appl. Environ. Microbiol., v. 83, n. 11, p. e00326-17, 2017. BEN-DOV, Eitan et al. Extended screening by PCR for seven cry-group genes from fieldcollected strains of Bacillus thuringiensis. Appl. Environ. Microbiol., v. 63, n. 12, p. 4883- 4890, 1997. BENEDINI, M. S.; CONDE, A. J. Broca gigante nova praga da cana-de-açúcar na região centro-sul. Revista Coplana, Guariba, n. 24, p. 24-25, set. 2008. Disponível em: <https://www.yumpu.com/pt/document/read/12748638/broca-gigante-coplana>. Acesso em: 8 jan. 2009. BENSIDHOUM, Leila et al. Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. European journal of soil biology, v. 75, p. 38-46, 2016. BIERNE, Hélène; NIELSEN-LEROUX, Christina. Is there a transgenerational inheritance of host resistance against pathogens? Lessons from the Galleria mellonella-Bacillus thuringiensis interaction model. Virulence, v. 8, n. 8, p. 1471-1474, 2017. BIOSANI. Bio-inseticidas de Bacillus thuringiensis. Disponível em: <https://document.onl/documents/bio-insecticidas-de-bacillus-thu-os-bio-insecticidasem- p-base-de-bt-so-compostos.html>. Acesso em: 5 de jan. de 2018. BOBROWSKI, Vera Lucia et al. Genes de Bacillus thuringiensis: uma estratégia para conferir resistência a insetos em plantas. Ciência Rural, v. 33, n. 5, p. 843-850, 2003. BOONMEE, Kesorn; THAMMASITTIRONG, Sutticha Na-Ranong; THAMMASITTIRONG, Anon. Molecular characterization of lepidopteran-specific toxin genes in Bacillus thuringiensis strains from Thailand. 3 Biotech, v. 9, n. 4, p. 117, 2019. BRAVO, Alejandra et al. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl. Environ. Microbiol., v. 64, n. 12, p. 4965-4972, 1998. BRAVO, A. et al. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab poreforming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochimica et Biophysica Acta (BBA)-Biomembranes, v. 1667, n. 1, p. 38- 46, 2004. BRAVO, Alejandra; GILL, Sarjeet S.; SOBERÓN, Mario. Bacillus thuringiensis: Mechanisms and use. In: GILBERT, Lawrence I. Comprehensive Molecular Insect Science. Elsevier BV, Amsterdam, v. 6, p. 175–206, 2005. BRAVO, Alejandra; GILL, Sarjeet S.; SOBERON, Mario. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, v. 49, n. 4, p. 423-435, 2007. BRAVO, Alejandra; SOBERÓN, Mario. How to cope with insect resistance to Bt toxins?. Trends in biotechnology, v. 26, n. 10, p. 573-579, 2008. BRAVO, Alejandra et al. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect biochemistry and molecular biology, v. 41, n. 7, p. 423-431, 2011. BRAVO, Alejandra et al. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial biotechnology, v. 6, n. 1, p. 17-26, 2013. BRODERICK, Nichole A. et al. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol., v. 70, n. 1, p. 293-300, 2004. CACCIA, Silvia et al. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proceedings of the National Academy of Sciences, v. 113, n. 34, p. 9486-9491, 2016. CALVO-GARRIDO, Carlos et al. Microbial antagonism toward Botrytis bunch rot of grapes in multiple field tests using one Bacillus ginsengihumi strain and formulated biological control products. Frontiers in plant science, v. 10, 2019. CANA ONLINE. Broca gigante se alastra pelos canaviais do centro-sul. 2015. Disponível em: <http://www.canaonline.com.br/conteudo/broca-gigante-se-alastra-pelos-canaviaisdo- centro-sul.html#.V4JV2EvBFQs>. Acesso em: 10 de jul. de 2016. CANUTO, Débora Maria Ferreira et al. Resistência de diferentes cultivares de cana-de-açúcar a broca gigante sob cultivo orgânico no agreste alagoano. In: XII REUNIÃO SULBRASILEIRA SOBRE PRAGAS DE SOLO. PRAGAS SOLO-SUL. PIRACICABA-SP: FEALQ, 2011. v. 1. p. 160-162. CASTILLO, Hernández FD et al. Biological control of root pathogens by plantgrowth promoting Bacillus spp. In: SOLONESKI, S. Weed and pest control-conventional and new challenges, p. 79-103, 2013. DE CASTRO, Diana L. Martínez et al. Identification of Bacillus thuringiensis Cry1AbMod binding-proteins from Spodoptera frugiperda. Peptides, v. 98, p. 99-105, 2017. CHARLES, J.-F.; DE BARJAC, H. Action des cristauxde Bacillus thuringiensis var israelensis sur l'intestin moyen des larves de Aedes aegypti L., en microscopie électronique. In: Annales de l'Institut Pasteur/Microbiologie. Elsevier Masson, 1983. p. 197-218. CHERIF, Ameur et al. Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting. Canadian journal of microbiology, v. 53, n. 3, p. 343-350, 2007. CLAUS, Dieter. A standardized Gram staining procedure. 1992. Disponível em: >http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.848&rep=rep1&type=pd f<. Acesso em: 27 de jan. de 2016. CONAB. ACOMPANHAMENTO DA SAFRA BRASILEIRA DE CANA-DE-AÇÚCAR. v. 6 - Safra 2019/20, n.3- Terceiro levantamento, dezembro de 2019. Disponível em: >https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar<. Acesso em: 12 de jan. de 2020. COSTA, Emerson Luís Nunes et al. Artrópodes e bactérias entomopatogênicos. In Biotecnologia Ciência e Desenvolvimento. Edição especial: Ecotoxicologia de Bacillus thuringiensis. Ano XI, n.38, p. 4-13, 2010. COSTA, Poliene Martins. Caracterização da comunidade bacteriana associada ao trato intestinal de Spodoptera frugiperda provenientes de diferentes dietas. 2016. Tese de Doutorado. Universidade de São Paulo. COY, Richard Murphey; HELD, David W.; KLOEPPER, Joseph W. Rhizobacterial colonization of bermudagrass by Bacillus spp. in a Marvyn loamy sand soil. Applied Soil Ecology, v. 141, p. 10-17, 2019. CRAVEIRO, Kilvia Inês Chaves. Evolução in vitro e seleção de variantes cry para o controle da broca-gigante da cana-de-açúcar. 2009. XVII, 83 f., il. Tese (Doutorado em Biologia Molecular). Universidade de Brasília, Brasília, 2009. CRAVEIRO, Kilvia IC et al. Variant Cry1Ia toxins generated by DNA shuffling are active against sugarcane giant borer. Journal of biotechnology, v. 145, n. 3, p. 215-221, 2010. CRICKMORE, Neil. et al. Bacillus thuringiensis toxin nomenclature. 2018. Disponível em: >http://www.lifesci.susx.ac.uk/home/Neil_Crickmore/Bt<. Acesso em: 17 de jan. de 2018. DAI, Shu-mei; GILL, Sarjeet S. In vitro and in vivo proteolysis of the Bacillus thuringiensis subsp. israelensis CryIVD protein by Culex quinquefasciatus larval midgut proteases. Insect biochemistry and molecular biology, v. 23, n. 2, p. 273-283, 1993. DAVID, Aditi et al. Coproduction of protease and mannanase from Bacillus nealsonii PN-11 in solid state fermentation and their combined application as detergent additives. International journal of biological macromolecules, v. 108, p. 1176-1184, 2018. DILLON, Rod J.; DILLON, V. M. The gut bacteria of insects: nonpathogenic interactions. Annual Reviews in Entomology, v. 49, n. 1, p. 71-92, 2004. DÖBEREINER, Johanna; BALDANI, Vera Lúcia Divan; BALDANI, José Ivo. Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa-CNPAB, 60p, 1995. DOLEY, Prabhali; JHA, Dhruva Kumar. Antimicrobial activity of bacterial endophytes from medicinal endemic plant Garcinia lancifolia Roxb. Ann. Plant Sci, v. 4, n. 12, p. 1243-1247, 2016. DONG, Zhongmin et al. A nitrogen-fixing endophyte of sugarcane stems (a new role for the apoplast). Plant Physiology, v. 105, n. 4, p. 1139-1147, 1994. DOSS, Victor A. et al. Cloning and expression of the vegetative insecticidal protein (vip3V) gene of Bacillus thuringiensis in Escherichia coli. Protein expression and purification, v. 26, n. 1, p. 82-88, 2002. DU, Cheng; NICKERSON, Kenneth W. Bacillus thuringiensis HD-73 spores have surfacelocalized Cry1Ac toxin: physiological and pathogenic consequences. Appl. Environ. Microbiol., v. 62, n. 10, p. 3722-3726, 1996. DUBOVSKIY, Ivan M. et al. Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis. Virulence, v. 7, n. 8, p. 860-870, 2016. DULMAGE, Howard T. Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. Journal of Invertebrate Pathology, v. 15, n. 2, p. 232-239, 1970. EDWARDS, David L.; PAYNE, Jewel; SOARES, George G. Novel isolates of Bacillus thuringiensis having activity against nematodes. U.S. Patent n. 5,093,120, 3 mar. 1992. ENGEL, Philipp; MORAN, Nancy A. The gut microbiota of insects–diversity in structure and function. FEMS microbiology reviews, v. 37, n. 5, p. 699-735, 2013. ESKI, Ardahan et al. Biodiversity and pathogenicity of bacteria associated with the gut microbiota of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Microbial pathogenesis, v. 121, p. 350-358, 2018. FEITELSON, Jerald S.; PAYNE, Jewel; KIM, Leo. Bacillus thuringiensis: insects and beyond. Nature Biotechnology, v. 10, p. 271–275, 1992. FERNANDEZ-LUNA, Maria Teresa et al. Toxicity of Bacillus thuringiensis-Derived Pesticidal Proteins Cry1Ab and Cry1Ba against Asian Citrus Psyllid, Diaphorina citri (Hemiptera). Toxins, v. 11, n. 3, p. 173, 2019. FIGUEIRÊDO, MARIA DE F. et al. Seleção de isolados de Beauveria bassiana (Bals.) Vuill. e Metarhizium anisopliae (Metsch.) Sorok. contra a broca gigante da cana-de-açúcar Castnia licus (Drury) (Lepidoptera: Castniidae). Neotropical entomology, v. 31, n. 3, p. 397-403, 2002. FIUZA, Lídia M. Mecanismo de Ação de Bacillus thuringiensis. In: Biotecnologia Ciência e Desenvolvimento. Edição especial: Ecotoxicologia de Bacillus thuringiensis. Ano XI, n.38, 2010. p. 32-35. FLÓREZ, Laura V. et al. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Natural Product Reports, v. 32, n. 7, p. 904-936, 2015. FONSECA, Fernando Campos de Assis. Aplicação de estratégias moleculares visando o controle da broca-gigante da cana-de-açúcar (Telchin licus licus, Drury 1770) (Lepidoptera: Castiniidae). Tese (Doutorado) - Departamento de Biologia Celular, Universidade de Brasília, Brasília-DF, 2013. FRANCIS, Isolde; HOLSTERS, Marcelle; VEREECKE, Danny. The Gram‐positive side of plant–microbe interactions. Environmental Microbiology, v. 12, n. 1, p. 1-12, 2010. FURUSHITA, Manabu et al. Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Appl. Environ. Microbiol., v. 69, n. 9, p. 5336- 5342, 2003. GAHAN, Linda J. et al. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS genetics, v. 6, n. 12, 2010. GAO, Zhenfeng et al. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological control, v. 105, p. 27-39, 2017. GARCIA, J. F. Manual de identificação de pragas da cana. Campinas - SP. 2013. Disponível em: >https://www.fmcagricola.com.br/Home/DetalhesColetaneas/30<. Acesso em: 7 de fev. de 2018. GITAHY, Patrícia de Medeiros. Seleção e caracterização de uma estirpe de Bacillus thuringiensis com atividade entomopatogênica para a broca da cana-de-açúcar Diatraea saccharalis. Dissertação de Mestrado, Uiversidade Federal do Rio de Janeiro, Rio de Janeiro, 135p., 2000. GITAHY, Patrícia de Medeiros et al. A Brazilian Bacillus thuringiensis strain highly active to sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae). Brazilian Journal of Microbiology, v. 38, n. 3, p. 531-537, 2007. GÖKTÜRK, Temel; TOZLU, Göksel. The Effect of Pyrethrum and Bacillus thuringiensis Biopesticides on Diprion pini L. and Neodiprion sertifer (Geoffr.) (Hymenoptera: Diprionidae) Larvae. Pakistan Journal of Zoology, v. 51, n. 3, 2019. GÓMEZ, I. et al. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides, v. 28, n. 1, p. 169-173, 2007. GRAM, Christian. Ueber die isolirte Farbung der Schizomyceten in Schnitt-und Trockenpraparaten. Fortschritte der Medicin, v. 2, p. 185-189, 1884. GUINEBRETIÈRE, Marie‐Hélène et al. Ecological diversification in the Bacillus cereus group. Environmental Microbiology, v. 10, n. 4, p. 851-865, 2008. HABIB, M. E. M.; ANDRADE, C. F. S. Bactérias entomopatogênicas. Controle microbiano de insetos, v. 2, p. 383-446, 1998. HAMMER, Tobin J.; MCMILLAN, W. Owen; FIERER, Noah. Metamorphosis of a butterflyassociated bacterial community. PloS one, v. 9, n. 1, 2014. HAMMER, Tobin J. et al. Caterpillars lack a resident gut microbiome. Proceedings of the National Academy of Sciences, v. 114, n. 36, p. 9641-9646, 2017. HANSEN, Bjarne Munk; SALAMITOU, Sylvie. Virulence of Bacillus thuringiensis. In: Entomopathogenic bacteria: From laboratory to field application. Springer, Dordrecht, p. 41-64, 2000. HARVEY, William R. Physiology of V-ATPases. Journal of Experimental Biology, v. 172, n. 1, p. 1-17, 1992. HELGASON, Erlendur et al. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis— one species on the basis of genetic evidence. Appl. Environ. Microbiol., v. 66, n. 6, p. 2627- 2630, 2000. HERNANDEZ-MARTINEZ, Patricia et al. Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua. PLoS One, v. 5, n. 9, 2010. HÖFTE, Herman; WHITELEY, H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiology and Molecular Biology Reviews, v. 53, n. 2, p. 242-255, 1989. HOLLENSTEINER, Jacqueline et al. Bacillus thuringiensis and Bacillus weihenstephanensis inhibit the growth of phytopathogenic Verticillium species. Frontiers in microbiology, v. 7, p. 2171, 2017. HOSSAIN, Mohammad Tofajjal; CHUNG, Young Ryun. Endophytic Bacillus Species Induce Systemic Resistance to Plant Diseases. In: Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol. Springer, Cham, 2019. p. 151-160. IBARGUTXI, María A. et al. Use of Bacillus thuringiensis toxins for control of the cotton pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol., v. 72, n. 1, p. 437-442, 2006. JENSEN, Gert B. et al. The aggregation-mediated conjugation system of Bacillus thuringiensis subsp. israelensis: host range and kinetics of transfer. Current microbiology, v. 33, n. 4, p. 228-236, 1996. KARTHIK, M. et al. Endophytic bacteria associated with banana cultivars and their inoculation effect on plant growth. The Journal of Horticultural Science and Biotechnology, v. 92, n. 6, p. 568-576, 2017. KEITA, Mamadou Bhoye et al. Non-contiguous finished genome sequence and description of Bacillus massiliogorillae sp. nov. Standards in genomic sciences, v. 9, n. 1, p. 93, 2013. KIKUCHI, Yoshitomo et al. Symbiont-mediated insecticide resistance. Proceedings of the National Academy of Sciences, v. 109, n. 22, p. 8618-8622, 2012. KIM, Leo. Advanced Engineered Pesticides: Technology and Engineering. New York: Marcel Dekker Inc., 448 p, 1993. KNOWLES, Barbara H.; ELLAR, David J. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochimica et Biophysica Acta (BBA)-General Subjects, v. 924, n. 3, p. 509-518, 1987. KNOWLES, Barbara H. Mechanism of action of Bacillus thuringiensis insecticidal δ- endotoxins. In: Advances in insect physiology. Academic Press, 1994. p. 275-308. KOCH, Michael S. et al. The food and environmental safety of Bt crops. Frontiers in plant science, v. 6, p. 283, 2015. KOLSTØ, Anne-Brit; TOURASSE, Nicolas J.; ØKSTAD, Ole Andreas. What sets Bacillus anthracis apart from other Bacillus species?. Annual review of microbiology, v. 63, p. 451- 476, 2009. KUMAR, Sudhir; STECHER, Glen; TAMURA, Koichiro. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, v. 33, n. 7, p. 1870-1874, 2016. LANNA-FILHO, Roberto; SOUZA, Ricardo M.; ALVES, Eduardo. Induced resistance in tomato plants promoted by two endophytic bacilli against bacterial speck. Tropical Plant Pathology, v. 42, n. 2, p. 96-108, 2017. LATEEF, Agbaje; ADELERE, Isiaka Adedayo; GUEGUIM-KANA, Evariste Bosco. The biology and potential biotechnological applications of Bacillus safensis. Biologia, v. 70, n. 4, p. 411-419, 2015. LECADET, M.‐M. et al. Updating the H‐antigen classification of Bacillus thuringiensis. Journal of Applied Microbiology, v. 86, n. 4, p. 660-672, 1999. LERECLUS, D.; DELECLUSE, A.; LECADET, M. M. Diversity of Bacillus thuringiensis toxins and genes. In: ENWISTLE, P. F., CORY, J. S., BAILEY, M. J., HIGGS, S. Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice. John Wiley & Sons, New York, p. 37-69, 1993. LERECLUS, D. et al. Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. International journal of medical microbiology, v. 290, n. 4-5, p. 295-299, 2000. LEUCONA, Roberto Eduardo. Técnicas empleadas con hongos entomopatógenos, p. 143- 157. In: Microorganismos patógenos empleados en el control microbiano de insectos plaga. Buenos Aires,1996. p.143-157. LIU, Yang et al. Genomic insights into the taxonomic status of the Bacillus cereus group. Scientific reports, v. 5, n. 1, p. 1-11, 2015. LIU, Yang et al. Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. International journal of systematic and evolutionary microbiology, v. 66, n. 3, p. 1193- 1199, 2016. LIU, Di et al. Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil. Brazilian journal of microbiology, v. 48, n. 4, p. 656-670, 2017. LODEWYCKX, Cindy et al. Endophytic bacteria and their potential applications. Critical reviews in plant sciences, v. 21, n. 6, p. 583-606, 2002. LOGAN, Niall A., VOS, Paul. Genus I. Bacillus Cohn 1872. In: VOS, Paul et al. (Ed.). Bergey's manual of systematic bacteriology: Volume 3: The Firmicutes. Springer Science & Business Media, 2011. p. 21-127. LUPSKI, James R.; WEINSTOCK, GEORGE M. Short, interspersed repetitive DNA sequences in prokaryotic genomes. Journal of bacteriology, v. 174, n. 14, p. 4525, 1992. LÜTHY, Peter; WOLFERSBERGER, Michael G. Pathogenesis of Bacillus thuringiensis toxins. In: Entomopathogenic bacteria: from laboratory to field application. Springer, Dordrecht, 2000. p. 167-180. DE MAAGD, Ruud A.; BRAVO, Alejandra; CRICKMORE, Neil. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. TRENDS in Genetics, v. 17, n. 4, p. 193-199, 2001. DE MAAGD, Ruud A. et al. Structure, diversity, and evolution of protein toxins from sporeforming entomopathogenic bacteria. Annual review of genetics, v. 37, 2003. MADIGAN, Michael T. et al. Evolução e Sistemática Microbianas. In: Microbiologia de Brock-14ª Edição. Artmed Editora, 2016. p. 347-378. MAGNANI, G. S. et al. Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res, v. 9, n. 1, p. 250-258, 2010. MAKART, Lionel et al. Horizontal transfer of chromosomal markers mediated by the large conjugative plasmid pXO16 from Bacillus thuringiensis serovar israelensis. Plasmid, v. 91, p. 76-81, 2017. MARTÍNEZ-ZAVALA, Sheila A. et al. Chitinases of Bacillus thuringiensis: Phylogeny, Modular Structure, and Applied Potentials. Frontiers in Microbiology, v. 10, p. 3032, 2020. MELATTI, V. M. et al. Selection of Bacillus thuringiensis strains toxic against cotton aphid, Aphis gossypii glover (Hemiptera: Aphididae). Embrapa Recursos Genéticos e Biotecnologia-Artigo em periódico indexado (ALICE), 2010. MELO, L.H.V.; et al. Evaluation of the endophytic colonization ability of Bacillus thuringiensis in sugarcane plants. In: 3° Congresso Brasileiro de Biotecnologia, 2010, Fortaleza. v. 1. MENDONÇA, A. F. A broca gigante Castnia licus Drury, 1770 [sic] (Lepidoptera: Castniidae) no Brasil. Saccharum, São Paulo, v. 5, n. 20, p. 53-60, 1982. MENDONÇA, A. F.; VIVEIROS, A. J. A.; SAMPAIO, F. F. A broca gigante da cana-deaçúcar, Castnia licus Drury, 1770 (Lep.: Castniidae). Pragas da cana-de-açúcar. Insetos & Cia, Maceió, p. 133-167, 1996. MILANO, Heloíze de Souza. Identificação de microrganismos do trato digestivo de pragas de cana-de-açúcar com atividade enzimática para degradação de substratos lignocelulósicos e potencial para bioconversão de D-xilose em xilitol. Dissertação de Mestrado, Universidade de São Paulo, Piracicaba, 112p. 2012. MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO (MAPA) Mercado de biodefensivos cresce mais de 70% no Brasil em um ano. 2019. Disponível em: >http://www.agricultura.gov.br/noticias/feffmercado-de-biodefensivos-cresce-em-maisde- 50-no-brasil<. Acesso em: 05 de jan. de 2020. MONNERAT, Rose Gomes; BRAVO, Alejandra. Proteínas bioinseticidas produzidas pela bactéria Bacillus thuringiensis: modo de ação e resistência. Controle Biológico. Jaguariúna: Embrapa Meio Ambiente, v. 3, p. 163-200, 2000. MONNERAT, Rose et al. Isolamento e caracterização de estirpes de Bacillus thuringiensis endofíticas de algodão. Embrapa Recursos Genéticos e Biotecnologia, 2003. MONNERAT, Rose Gomes, PRAÇA, Lílian Botelho. Bacillus thuringiensis e Bacillus sphaericus. In: OLIVEIRA-FILHO, Eduardo Cyrino; MONNERAT, Rose Gomes. Fundamentos para a regulação de semioquímicos, inimigos naturais e agentes microbiológicos de controle de pragas. Embrapa Cerrados, 2006. MONNERAT, Rose Gomes et al. Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants. Microbial biotechnology, v. 2, n. 4, p. 512-520, 2009. MORAES, Simeão S.; DUARTE, Marcelo. Morfologia externa comparada das três espécies do complexo Telchin licus (Drury) (Lepidoptera, Castniidae) com uma sinonímia. Revista Brasileira de Entomologia, v. 53, n. 2, p. 245-265, 2009. MUÑÓZ-GARAY, Carlos et al. Characterization of the mechanism of action of the genetically modified Cry1AbMod toxin that is active against Cry1Ab-resistant insects. Biochimica et Biophysica Acta (BBA)-Biomembranes, v. 1788, n. 10, p. 2229-2237, 2009. MUSHTAQ, Rubina et al. Activity of Bacillus thuringiensis Cry1Ie2, Cry2Ac7, Vip3Aa11 and Cry7Ab3 proteins against Anticarsia gemmatalis, Chrysodeixis includens and Ceratoma trifurcata. Journal of invertebrate pathology, v. 150, p. 70-72, 2017. NEGRISOLI JUNIOR, A. S. et al. Manejo da broca-gigante da cana-de-açúcar (Telchin licus) (Drury) (Lepidoptera: Castniidae) no nordeste do Brasil. Embrapa Tabuleiros Costeiros- Documentos (INFOTECA-E), 2015. NIKOLIĆ, Ivan et al. Biological control of Pseudomonas syringae pv. aptata on sugar beet with Bacillus pumilus SS‐10.7 and Bacillus amyloliquefaciens (SS‐12.6 and SS‐38.4) strains. Journal of applied microbiology, v. 126, n. 1, p. 165-176, 2019. NISHIITSUTSUJI-UWO, Junko; OHSAWA, Ayako; NISHIMURA, Masaji S. Factors affecting the insecticidal activity of δ-endotoxin of Bacillus thuringiensis. Journal of Invertebrate Pathology, v. 29, n. 2, p. 162-169, 1977. NOVA CANA. A produção de cana-de-açucar no Brasil (e no mundo). 2008. Disponível em: >https://www.novacana.com/cana/producao-cana-de-acucar-brasil-e-mundo/<. Acesso em: 20 de jun. de 2016. NOVA CANA. Açúcar: Exportação. 2019. Disponível em: >https://www.novacana.com/n/acucar/exportacao/brasil-deve-registrar-menorexportacao- acucar-decada-2019-031219<. Acesso em: 7 de jan. de 2020. NOVA CANA. Açúcar: Exportação. 2019. Disponível em: >https://www.novacana.com/n/etanol/mercado/exportacao/exportacao-brasileira-etanolsobe- 23-novembro-181-06-milhoes-litros-031219<. Acesso em: 7 de jan. de 2020. OHBA, Michio; MIZUKI, Eiichi; UEMORI, Akiko. Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer research, v. 29, n. 1, p. 427-433, 2009. OKUMURA, S. et al. Parasporin nomenclature. 2010. Disponível em >http://parasporin.fitc.pref.fukuoka.jp/<. Acesso em: 13 de jan. de 2018. ORFANÓ, Alessandra da Silva et al. Avaliação do papel da microbiota intestinal do Aedes aegypti no desenvolvimento esporogônico do Plasmodium gallinaceum. Dissertação de Mestrado, 62p., 2012. OROZCO-FLORES, Alonso A. et al. Regulation by gut bacteria of immune response, Bacillus thuringiensis susceptibility and hemolin expression in Plodia interpunctella. Journal of insect physiology, v. 98, p. 275-283, 2017. PALAZZINI, Juan et al. Biocontrol of Fusarium graminearum sensu stricto, reduction of deoxynivalenol accumulation and phytohormone induction by two selected antagonists. Toxins, v. 10, n. 2, p. 88, 2018. PALMA, Leopoldo et al. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins, v. 6, n. 12, p. 3296-3325, 2014. PANIAGUA VOIROL, Luis R. et al. Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host. Frontiers in microbiology, v. 9, p. 556, 2018. PARAMASIVA, Inakarla; SHARMA, Hari C.; KRISHNAYYA, Pulipaka Venkata. Antibiotics influence the toxicity of the delta endotoxins of Bacillus thuringiensis towards the cotton bollworm, Helicoverpa armigera. BMC microbiology, v. 14, n. 1, p. 200, 2014. PARDO-LOPEZ, Liliana; SOBERON, Mario; BRAVO, Alejandra. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS microbiology reviews, v. 37, n. 1, p. 3-22, 2013. PARKER, Michael W.; FEIL, Susanne C. Pore-forming protein toxins: from structure to function. Progress in biophysics and molecular biology, v. 88, n. 1, p. 91-142, 2005. PARRA, J. R. P.; MIHSFELDT, L. H. Comparison of artificial diets for rearing the sugarcane borer. Advances in insect rearing for research and pest management, p. 195-209, 1992. PARRA, José Roberto Postali. Controle biológico no Brasil: parasitóides e predadores. Editora Manole Ltda, São Paulo, 6 ed., 635p., 2002. PÉREZ, V. J. Genética y Biologia Molecular de Bacillus thuringiensis. In: BRAVO, A., CERON, J. Bacillus thuringiensis en el control biológico. Bogotá: Colômbia, p. 207-232, 2004. PINTO, Laura M. N. et al. Toxinas de Bacillus thuringiensis. In: Biotecnologia Ciência e Desenvolvimento. Edição especial: Ecotoxicologia de Bacillus thuringiensis. Ano XI, n.38, 2010. p. 24-31. POLANCZYK, R.; ALVES, S. Bacillus thuringiensis: uma breve revisão. Agrociencia-Sitio en Reparación, v. 7, n. 2, p. 1-9, 2003. PORTUGAL, Leivi et al. Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway. Insect biochemistry and molecular biology, v. 80, p. 21-31, 2017. PRAÇA, Lílian Botelho et al. Estirpes de Bacillus thuringiensis efetivas contra insetos das ordens Lepidoptera, Coleoptera e Diptera. Pesquisa Agropecuária Brasileira, v. 39, n. 1, p. 11-16, 2004. PRAÇA, L. B. et al. Bacillus thuringiensis Berliner (EUBACTERIALES: BACILLACEAE): aspectos gerais, modo de ação e utilização. Embrapa Recursos Genéticos e Biotecnologia- Documentos (INFOTECA-E), 2007. QUECINE, Maria Carolina et al. Control of Diatraea saccharalis by the endophytic Pantoea agglomerans 33.1 expressing cry1Ac7. Archives of microbiology, v. 196, n. 4, p. 227-234, 2014. RAYMOND, Ben et al. A mid‐gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Environmental microbiology, v. 11, n. 10, p. 2556-2563, 2009. RAYMOND, Ben et al. Bacillus thuringiensis: an impotent pathogen?. Trends in microbiology, v. 18, n. 5, p. 189-194, 2010. REYES-RAMIREZ, Arturo; IBARRA, Jorge E. Fingerprinting of Bacillus thuringiensis type strains and isolates by using Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR analysis. Appl. Environ. Microbiol., v. 71, n. 3, p. 1346-1355, 2005. RICIETO, Ana Paula Scaramal et al. Effect of vegetation on the presence and genetic diversity of Bacillus thuringiensis in soil. Canadian journal of microbiology, v. 59, n. 1, p. 28-33, 2013. RICIETTO, Ana Paula Scaramal et al. Susceptibility of Grapholita molesta (Busck, 1916) to formulations of Bacillus thuringiensis, individual toxins and their mixtures. Journal of invertebrate pathology, v. 141, p. 1-5, 2016. ROCHA, Francine Yuriko Otsuka et al. Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. Lycopersici. Applied soil ecology, v. 120, p. 8-19, 2017. ROSSETTO, R., SANTIAGO, A. D. Pragas no colmo. 2013. Disponível em: >http://www.agencia.cnptia.embrapa.br/gestor/cana-deacucar/ arvore/CONTAG01_131_272200817517.html<. Acesso em: 20 de jun. de 2016. SAEED, Shafqat; SAYYED, Ali H.; AHMAD, Ijaz. Effect of host plants on life-history traits of Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Pest Science, v. 83, n. 2, p. 165- 172, 2010. SALEM, Hassan et al. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proceedings of the Royal Society B: Biological Sciences, v. 282, n. 1804, p. 20142957, 2015. SANAHUJA, Georgina et al. Bacillus thuringiensis: a century of research, development and commercial applications. Plant biotechnology journal, v. 9, n. 3, p. 283-300, 2011. SCHELLENBERGER, Ute et al. A selective insecticidal protein from Pseudomonas for controlling corn rootworms. Science, v. 354, n. 6312, p. 634-637, 2016. SCHNEPF, E. et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev., v. 62, n. 3, p. 775-806, 1998. SHABBIR, Muhammad Zeeshan et al. Characterization of the Cry1Ah resistance in Asian corn borer and its cross-resistance to other Bacillus thuringiensis toxins. Scientific reports, v. 8, n. 1, p. 1-9, 2018. SHAHZAD, Raheem et al. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato. PeerJ, v. 5, p. e3107, 2017. SHAO, Yongqi et al. Symbiont-derived antimicrobials contribute to the control of the Lepidopteran gut microbiota. Cell chemical biology, v. 24, n. 1, p. 66-75, 2017. SCHULTZ, N.; REIS, V. M.; URQUIAGA, S. Resposta da cana-de-açúcar à adubação nitrogenada: fontes nitrogenadas, formas de aplicação, épocas de aplicação e efeito varietal. Embrapa Agrobiologia-Documentos (INFOTECA-E), 2015. SINGH, Poonam C. et al. Biological Control of Fusarium sp. NBRI-PMSF12 Pathogenic to Cultivated Betelvine by Bacillus sp. NBRI-W9, a Potential Biological Control Agent. Journal of Plant Growth Regulation, v. 36, n. 1, p. 106-117, 2017. DA SILVA, S. Ferreira; DIAS, JMC de S.; MONNERAT, R. G. Comparação entre três métodos de isolamento de bacilos entomopatogênicos. Embrapa Recursos Genéticos e Biotecnologia-Circular Técnica (INFOTECA-E), 2002. SOBERON, M.; GILL, S. S.; BRAVO, A. Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells?. Cellular and molecular life sciences, v. 66, n. 8, p. 1337-1349, 2009. DE SOUZA, M. Teixeira; LECADET, M. M.; LERECLUS, D. Full expression of the cryIIIA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription. Journal of bacteriology, v. 175, n. 10, p. 2952-2960, 1993. SOUZA, Suzane A. et al. Endophytic bacterial diversity in banana'Prata Anã'(Musa spp.) roots. Genetics and molecular biology, v. 36, n. 2, p. 252-264, 2013. SUBBANNA, A. R. N. S., KHAN, M. S., SHIVASHANKARA, H. Characterization of antifungal Paenibacillus illinoisensis strain UKCH21 and its chitinolytic properties. African Journal of Microbiology Research, 10 (34), p. 1380-1387, 2016. SUMAN, Archna; YADAV, Ajar Nath; VERMA, Priyanka. Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, 2016. p. 117-143. TEJERA-HERNÁNDEZ, Berto; ROJAS-BADÍA, Marcia M.; HEYDRICH-PÉREZ, Mayra. Potencialidades del género Bacillus en la promoción del crecimiento vegetal y el control biológico de hongos fitopatógenos. Revista CENIC. Ciencias Biológicas, v. 42, n. 3, p. 131- 138, 2011. THAMMASITTIRONG, Anon; ATTATHOM, Tipvadee. PCR-based method for the detection of cry genes in local isolates of Bacillus thuringiensis from Thailand. Journal of invertebrate pathology, v. 98, n. 2, p. 121-126, 2008. THOMAS, Wendy E.; ELLAR, David J. Bacillus thuringiensis var israelensis crystal deltaendotoxin: effects on insect and mammalian cells in vitro and in vivo. Journal of Cell Science, v. 60, n. 1, p. 181-197, 1983. THORSEN, Line et al. Characteristics and phylogeny of Bacillus cereus strains isolated from Maari, a traditional West African food condiment. International journal of food microbiology, v. 196, p. 70-78, 2015. TINDALL, Brian J. et al. Notes on the characterization of prokaryote strains for taxonomic purposes. International journal of systematic and evolutionary microbiology, v. 60, n. 1, p. 249-266, 2010. TORRES-QUINTERO, Mary-Carmen et al. Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity. Scientific reports, v. 8, n. 1, p. 1-12, 2018. VAN DEN BOSCH, Tijs J.M.; WELTE, Cornelia U. Detoxifying symbionts in agriculturally important pest insects. Microbial Biotechnology, v. 10, n. 3, p. 531-540, 2017. VELÁZQUEZ, Encarna et al. Genetic diversity of endophytic bacteria which could be find in the apoplastic sap of the medullary parenchym of the stem of healthy sugarcane plants. Journal of basic microbiology, v. 48, n. 2, p. 118-124, 2008. VERSALOVIC, James et al. Genomic fingerprinting of bacteria using repetitive sequencebased polymerase chain reaction. Methods in molecular and cellular biology, v. 5, n. 1, p. 25-40, 1994. VIVEIROS, A. J. A. (1989). Efeito do dano da broca gigante, Castnia licus Drury, 1770 (Lepidoptera, Castniidae) sobre algumas características agroindustriais da cana-de-açúcar no estado de Alagoas, Brasil. 1989. 93f. Dissertação de Mestrado. Universidade Federal de Pernambuco, Recife, 1989. WADT, Lucila. Comportamento reprodutivo da broca gigante da cana-de-açúcar, Telchin licus (Drury, 1773) (Lepidoptera: Castniidae), como base para seu controle. Dissertação de Mestrado. Universidade de São Paulo, 77p. 2012. WANG, Rong-Fu; CAO, Wei-Wen; CERNIGLIA, Carl E. Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation. International Journal of Systematic and Evolutionary Microbiology, v. 46, n. 1, p. 341- 343, 1996. WANG, Jinhong et al. Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. Journal of Invertebrate Pathology, v. 82, n. 1, p. 63-71, 2003. WANG, Kui et al. Systematic characterization of Bacillus genetic stock center Bacillus thuringiensis strains using multi-locus sequence typing. Journal of invertebrate pathology, v. 155, p. 5-13, 2018. WANG, Zhen et al. Diversity of sugarcane root‐associated endophytic Bacillus and their activities in enhancing plant growth. Journal of Applied Microbiology, v. 128, n. 3, p. 814- 827, 2020. WEI, Shuai et al. Differentiation of Bacillus thuringiensis from Bacillus cereus group using unique marker based on real-time PCR. Frontiers in microbiology, v. 10, p. 883, 2019. WEISER, J. Impact of Bacillus thuringiensis on applied entomology in eastern Europe and in the Soviet Union. In: KRIEG, A., HUGER, A. M. Mitteilungen aus der Biologischen Bundesanstalt fuer Land-und Forstwirtschaft Berlin-Dahlem (Germany, FR), v. 233, p. 37-50, 1986. WHITELEY, H. R.; SCHNEPF, H. Ernest. The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annual Reviews in Microbiology, v. 40, n. 1, p. 549- 576, 1986. WOLFERSBERGER, MICHAEL G. V-ATPase-energized epithelia and biological insect control. Journal of experimental biology, v. 172, n. 1, p. 377-386, 1992. WHO. International programme on chemical safety (IPCS): microbial pest control agent Bacillus thuringiensis. Environmental Health Criteria, v. 217, p. 1-105, 1999. XIA, Xiaofeng et al. Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Frontiers in microbiology, v. 8, p. 663, 2017. XU, Zhenshang et al. Paenibacillus panacisoli enhances growth of Lactobacillus spp. by producing xylooligosaccharides in corn stover ensilages. Carbohydrate polymers, v. 184, p. 435-444, 2018. ZHANG, Xuebin et al. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proceedings of the National Academy of Sciences, v. 103, n. 26, p. 9897-9902, 2006. ZHOU, Zishan et al. Insecticidal specificity of Cry1Ah to Helicoverpa armigera is determined by binding of APN1 via domain II loops 2 and 3. Appl. Environ. Microbiol., v. 83, n. 4, p. e02864-16, 2017. ZORZETTI, Janaina et al. Isolation and characterization of Bacillus thuringiensis strains active against Elasmopalpus lignosellus (Zeller, 1848) (Lepidoptera, Pyralidae). Acta Scientiarum. Agronomy, v. 39, n. 4, p. 417-425, 2017.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/71320/2020%20-%20Francine%20Yuriko%20Otsuka%20Rocha.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6118
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-12-08T17:21:00Z No. of bitstreams: 1 2020 - Francine Yuriko Otsuka Rocha.pdf: 3350774 bytes, checksum: c6462e3b4855356e95b4fe4fed8eb2f9 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-12-08T17:21:00Z (GMT). No. of bitstreams: 1 2020 - Francine Yuriko Otsuka Rocha.pdf: 3350774 bytes, checksum: c6462e3b4855356e95b4fe4fed8eb2f9 (MD5) Previous issue date: 2020-02-20eng
Appears in Collections:Doutorado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Francine Yuriko Otsuka Rocha.pdf3.27 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.