Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10204
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPissinate, Kenia
dc.date.accessioned2023-12-21T18:59:00Z-
dc.date.available2023-12-21T18:59:00Z-
dc.date.issued2010-08-27
dc.identifier.citationPissinate, Kenia. Síntese e correlação entre a estrutura e a atividade leishmanicida de novas amidas estiril-substituídas. 2010. 160 f. Tese (Programa de Pós-Graduação em Química) - Universidade Federal Rural do Rio de Janeiro, Seropédica.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10204-
dc.description.abstractEste trabalho relata a preparação de 25 estiril-amidas das quais 8 são inéditas, obtidas através da reação de substituição nucleofílica, via formação do cloreto de ácido, dos ácidos estiril-substituídos com os nucleófilos benzilamina, fenetilamina, 3,4-dimetoxifenetilamina, 3,4-metilenodioxifenetilamina em bons rendimentos. Também foram obtidos derivados N-estiril-N,N’-diciclo-hexil-uréias, via reação de acoplamento com a DCC. Além disso, foram preparados 5 compostos derivados da piperina, amida alcaloidal majoritária de Piper nigrum, sendo 4 deles inéditos na literatura. As técnicas espectroscópicas de IV e RMN de 1H e 13C foram utilizadas para caracterizar os produtos obtidos. Averiguou-se a biodisponibilidade em meio aquoso para os ensaios in vitro das estiril-amidas substituídas em três tipos de veículos (SME, PVP e -CD). Foi realizado, também o estudo da atividade citotóxica das estiril-amidas substituídas frente à forma promastigota de Leishmania amazonensis e às células de macrófagos de camundongo, além da inibição enzimática frente a DNA topoisomerase II- Os ensaios leishmanicidas mostraram que a série estiril-5’-6’-dimetoxifenetilamidas foi a mais citotóxica, apresentando uma maior seletividade diante dos macrófagos. As séries das estiril-benzil e fenetil-amidas apresentaram correlações lineares entre os valores de logP e os % de inibição frente a L. amazonensis na concentração de 50M. Pôde-se observar que, de maneira geral, os veículos CD e PVP contribuíram para a biodisponibilização das amidas independentemente do efeito eletrônico do substituinte. As estiril-amidas, em sua grande maioria, inibiram a atividade enzimática da topoisomerase II-.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectestiril-amidaspor
dc.subjectatividade leishmanicidapor
dc.subjectDNA topoisomerase II-por
dc.subjectstyryl-amideseng
dc.subjectantileishmania activityeng
dc.subjectDNA-topoisomerase II-eng
dc.titleSíntese e correlação entre a estrutura e a atividade leishmanicida de novas amidas estiril-substituídaspor
dc.typeTesepor
dc.description.abstractOtherIn this work describes the preparation of styryl-25 amides of which eight are new. The amides were obtained in good yields, by nucleophilic substitution reaction through formation of acid chlorides, by reacting styryl-substituted acids with the nucleophiles benzylamine, phenethylamine, 1,3-benzodioxolphenethylamine and 3,4-dimethoxiphenethylamine. Derivatives N-styryl-N,N'-dicyclo-hexyl-ureas were also obtained by coupling reaction with DCC. In addition, five compounds derivated from piperine, amide alkaloidal majority of Piper nigrum, were prepared, 4 of them new. The spectroscopic techniques IV and RMN 1H and 13C were used to characterize the products obtained. The bioavailability in aqueous medium for in vitro tests of styryl-substituted amides in three types of vehicles (EMS, PVP and -CD) was tested. The cytotoxicity of styryl-substituted amides for the promastigote form of Leishmania amazonensis and mouse macrophage cells was studied, as well as the enzyme inhibition against DNA topoisomerase II-  The antileishmanial tests showed that the series-styryl 5'-6'-dimetoxifenetilamidas was the most cytotoxic, showing a higher selectivity for the macrophages. The series of styryl-benzyl and phenethyl-amide showed linear correlations between the logP values and % inhibition against L. amazonensis at a concentration of 50 M. It was observed that, in general, vehicles CD and PVP contributed to the bioavailability of amides regardless of the electronic effect of the substituent. The styryl-amides, for the most part, inhibited the enzymatic activity of topoisomerase II-.eng
dc.contributor.advisor1Lima, Aurea Echevarria Aznar Neves
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1879077396134052por
dc.contributor.advisor-co1Lima, Marco Edilson Freire de
dc.contributor.referee1Maciel, Maria Aparecida M.
dc.contributor.referee2Lima, Débora Decote Ricardo de
dc.contributor.referee3Oliveira, Mácia Cristina de
dc.contributor.referee4Lima, Célio Freire de
dc.contributor.referee5Castro, Rosane Nora
dc.creator.Latteshttp://lattes.cnpq.br/8512959642500378por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesAKENDENGUE, B., NGOU-MILAMA, E., LAURENS, A., HOCQUEMILLER, R., Recent advances in the fight against leishmaniasis with natural products. Parasite, v. 6 n.1, p. 3–8, 1999. ANDERSEN, K. E.; LUNDT, B. F.; JORGENSEN, A. S.; BRAESTRUP,C. Oxadiazoles as bioisosteric transformations of carboxylic functionalities. European Journal of Medicinal Chemistry, v. 31, p. 417–425, 1996. avaliação citotóxica. 1999. 168p. Dissertação de Mestrado - UFRRJ, Seropédica. BARRETO-JUNIOR, C. B.; Abordagem para a Síntese de Amidas Naturais Bioativas e seus Análogos. 2005. 178p. Dissertação de Mestrado – UFRRJ, Seropédica, RJ BASEL, Y.; HASSNER, A. Activation of carboxylic acids as their active esters by means of tert-butyl 3-(3,4-dihydrobenzotriazine-4-on)yl carbonate. Tetrahedron Letters, v. 43, p. 2529–2533, 2002. BERMAN, J.D. et al. Efficacy and safety of liposomal amphotericin B (AmBisome) for visceral leishmaniasis in endemic developing countries. Bull. World Health Organ. 76, 25–32, 1998. BHATTACHARYA, G.; HERMAN, J.; DELFIN, D.; SALEM, M.;BARSZCZ, T.; MOLLET, M.; RICCIO, G.; BRUN, R.; WERBOVETZ, K. Synthesis and Antitubulin Activity of N1- and N4-Substituted 3,5-Dinitro Sulfanilamides against African Trypanosomes and Leishmania. Journal Medicinal Chemistry, v. 47, p.1823–1832, 2004. BODIWALA, R.S.; SINGH, G.; SINGH, R.; DEY, C.S.; SHARMA, S.S.; BHUTANI, K.K.; SINGH, I.P. Antileishmanial amides and lignans from Piper cubeba and Piper retrofractum Hardik. Journal of Natural Medicines, v. 61, p. 418–421, 2007. BRUCKNER, R. Advanced Organic Chemistry, Reaction Mechanisms; Harcourt/Academic: San Diego, p. 239, 2002. CARVALHO, P.B.; FERREIRA, E.I. Review Leishmaniasis phytotherapy. Nature’s leadership against an ancient disease. Fitoterapia, v. 72, p. 599-618, 2001. CHAMPOUX, J.J. DNA topoisomerases: structure, function, and mechanism. Annual Review Biochemistry, v. 70, p. 369–413, 2001. CHAN, L.C.; COX, B.G.; Kinetics of Amide Formation through Carbodiimide/N-Hydroxybenzotriazole (HOBt) Couplings. Journal of Organic Chemistry, v. 72, p. 8863-8869, 2007. CHAPPUIS, F.; SUNDAR, S; HAILU, A.; GHALIB, H.; RIJAL, S.; PEELING, R.W.; ALVAR, J.; BOELAERT, M. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nature Reviews Microbiology, v. 5, p. 873-882, 2007. 152 CHEN, C.,; CHEN, F.; WU, A.; HSU, H.; KANG, J.; CHENG, H. Effect of hydroxypropyl-β-cyclodextrin on the solubility, photostability and in-vitro permeability of alkannin/shikonin enantiomers. International Journal of Pharmaceutics, v. 141, p 171-178, 1996. CONCEIÇÃO, A. P. S. Piperina: modificações estruturais, síntese de análogos e avaliação citotóxica. 168p. Dissertação de Mestrado - UFRRJ, Seropédica, 1999. COUCEIRO, J. N. S. S.; DA-SILVA, P. M.; SANTOS, M. G. M.; RIBEIRO, T. S.; DE LIMA, M. E. F. Natural Piperine as a New Alternative Against Influenza Viruses. Virus Reviews and Research, v. 10, n. 1, p. 27-32, 2005. CRAGG, G. M.; NEWMAN, d. J. Plants As a Source of Anti-Cancer Agents. Journal of Ethnopharmacology, v. 100, p. 72-79, 2005 CREF, BJ, JONES TC, BADAR R, SAMPAIO D, TEIXEIRA R, JOHNSON W.D.J. Malnutrition as a risk factor for severe visceral leishmaniasis. J Infect Dis 1987;156:1030–3. In: P. Desjeux / Comp. Immun. Microbiol. Infect. Dis, v. 27, p. 305–318, 2004. CROFT, S.L. COOMBS, G.H. Leishmaniasis: current chemotherapy and recent advances in the search for novel drugs. Trends in Parasitology, v.19, n.11, 2003. CROFT, S.L.; BARRETT, M.P.; URBINA, J.A. Chemotherapy of trypanosomiases and leishmaniasis. Trends in Parasitology, v.21, n. 11, 2005. CROFT, S.L.; SEIFERT, K.; DUCHÊNE, M. Antiprotozoal activities of phospholipid analogues. Molecular and Biochemical Parasitology, v.126, n. 2, p 165-172, 2003. CROFT, S.L.; SUNDAR, S.; FAIRLAMB, A.H. Drug Resistance in Leishmaniasis. Clinical Microbiology Reviews, v.19, p. 111 – 126, 2006. DA SILVA, E. F., M. M. CANTO-CAVALHEIRO, V. R. BRAZ, L. CYSNE-FINKELSTEIN, L. L. LEON, AND A. ECHEVARRIA. Synthesis and biological evaluation of new 1,3,4-thiadiazolium-2-phenylamine derivatives against Leishmania amazonensis promastigotes and amastigotes. European Journal of Medicinal Chemistry, v. 37, p. 979–984, 2002. DALLA-VECCHIA, R. ; NASCIMENTO, M.G.; SOLDI, V. Aplicações Sintéticas de Lipases Imobilizadas em Polímeros. Quimica Nova, v. 27, n. 4, p. 623-630, 2004 DAS, A.; DASGUPTA, A.; SHARMA, S.; GHOSH, M.; SENGUPTA, T.; BANDOPADHYAY, S.; MAJUMDER, H.K.; Characterisation of the gene encoding type II DNA topoisomerase from Leishmania donovani: a key molecular target in antileishmanial therap. Nucleic Acids Researsh, v. 29, p. 1844–1851, 2001. DATE, A.A.; JOSHI, M.D.; PATRAVALE, V.B. Parasitic diseases: Liposomes and polymeric nanoparticles versus lipid nanoparticles. Advanced Drug Delivery Reviews, v. 59, n. 6, p. 505–521, 2007. 153 DE SOUZA, W. Basic Cell Biology of Trypanosoma Cruzi. Current Pharmaceutical Design, v. 8, n. 4, p. 269-285, 2002 DEL VALLE, E.M.M. Cyclodextrins and their uses: a review. Process Biochemistry, v. 39, p 1033-1046 , 2004. DELLAGRECA, M.; PREVITERA, L.; PURCARO, R.; ZARRELLI. A. Cinnamic acid amides and lignanamides from Aptenia cordifolia. Tetrahedron, v. 62, p. 2877–2882, 2006. DEMICHELI, C., OCHOA, R., DA SILVA, J.B.B., DE MELO, A.L., FALCÃO, C.A.M., ROSSI-BERGMANN, B., SINISTERRA, R.D., FRÉZARD, F. Oral delivery of meglumine antimoniate-beta-cyclodextrin complex for treatment of leishmaniasis. Antimicrobial Agents Chemotheraty, v. 48, p. 100– 103. 2004. DENIS, J. N.; GREENE, A. E. J., GUENARD, D.; GUERITTE-VOEGELEIN, F.; MANGATAL, L.; POTIER, P., Highly efficient, practical approach to natural taxol. Journal of the American Chemical Society, v. 110, p. 5917, 1988. DESJEUX, P. Leishmaniasis: current situation and new Perspectives. Comparative Immunology, Microbiology & Infectious Diseases, v. 27, p. 305–318, 2004. DESJEUX, P. Leishmaniasis: public health aspects and control. Clinics in Dermatology, v.14, n. 5, p. 417-423, 1996. DESJEUX, P. The increase in risk factors for the leishmaniasis Worldwide. Transactions of the Royal Society of Tropical Medicine and Hygiene, v.95, p. 239–43; 2001. EI-ARINI, S.K.; LEUENBERGER, H. Modelling of drug release from polymer matrices: Effect of drug loading. International Journal of Pharmaceutics, v.121, n. 2, p. 141-148, 1995. EPSTEIN, W. W.; NETZ, D. F.; SEIDEL, J. L. Isolation of Piperine fron Black Pepper. Journal of Chemical Education, v. 70, n. 7, p. 598-599, 1993 ESTEVES-SOUZA, A.; PISSINATE,K.; NASCIMENTO,M.G.; GRYNBERG, N. G.; ECHEVARRIA, A. Synthesis, cytotoxicity, and DNA-topoisomerase inhibitory activity of new symmetric ureas and thioureas. Bioorganic & Medicinal Chemistry, v.14, p. 492–499, 2006. FERREIRA, W.S.; FREIRE-DE-LIMA, L.; SARAIVA, V.B.; ALISSON-SILVA, F.; MENDONÇA-PREVIATO, L.; PREVIATO, J.O.; ECHEVARRIA, A.; LIMA, M.E.F. Novel 1,3,4-thiadiazolium-2-phenylamine chlorides derived from natural piperine as trypanocidal agents: Chemical and biological studies. Bioorganic & Medicinal Chemistry, v. 16, n. 6, p. 2984-299, 2008. FOURNET, A.; BARRIOS, A.A.; MUNOZ, V.; HOCQUEMILLER, R.; CAVE, A.; BRUNETON, J. 2-Substituted Quinoline Alkaloids as Potential Antileishmanial Drugs. Antimicrobial Agents and Chemotherapy, v.37, n.4, p. 859-863, 1993. 154 FRAGOSO. S.P.; GOLDENBERG, S. Cloning and characterization of the gene encoding Trypanosoma cruzi DNA topoisomerase II. Molecular and Biochemical Parasitology, v. 55, pp. 127–134, 1992. FREIRE DE LIMA, L ; RIBEIRO, TS ; ROCHA, GM ; BRANDÃO, B ; ROMEIRO, A; MENDONÇA PREVIATO, L ; PREVIATO, J. O ; LIMA, M. E. F. ; CARVALHO, TMU ; HEISE, N . The toxic effects of piperine against Trypanosoma cruzi: ultrastructural alterations and reversible blockage of cytokinesis in epimastigote forms. Parasitology Research, v. 102, p. 1059-1067, 2008 FRÉZARD, F.; SCHETTINI, D. A.; ROCHA, O. G. F.; DEMICHELI, C. Lipossomas: ropriedades físicoquímicas e farmacológicas, aplicações na quimioterapia à base de antimônio. Quimica Nova, v. 28, p.511- 518, 2005. FUNNASA. Manual de Controle da Leishmaniose Tegumentar Americana/Organização: Gerência Técnica de Doenças Transmitidas por Vetores e Antropozoonoses. - Coordenação de Vigilância Epidemilógica - Centro Nacional de Epidemiologia - Brasília - p62, 2000. GANTIER JC, FOURNET A, MUNOS MH, HOCQUEMILLER R. Planta Medica, v. 62, p.285, 1996 GARETH, T. Química Medicinal: uma introdução. Rio de Janeiro. Ed: Guanabara Koogan, 2003. GENESTRA, M.; ECHEVARRIA, A.; CYSNE-FINKELSTEIN, L.; VIGNÓLIO-ALVES, L.; LEON, L.L. Effect of amidine derivatives on nitric oxide production by Leishmania amazonensis promastigotes and axenic amastigotes. Nitric Oxide, v. 8, n.1, p. 1-6, 2003. GEORGE, T.G.; JOHNSAMUEL, J.; DELFÍN, D.A.; YAKOVICH, A.; MUKHERJEE, M.; PHELPS, M.A.; DALTON, J.T.; SACKETT, D.L.; KAISER, M.; BRUN, R.; WERBOVETZ, K.A. Antikinetoplastid antimitotic activity and metabolic stability of dinitroaniline sulfonamides and benzamides. Bioorganic and Medicinal Chemistry, v. 14, n.16, p 5699-5710, 2006 GOMES, F. E. S., ANJOS, G. C.; DANTAS, T. N. C.; *MACIEL, M. A. M.; ESTEVES, A.; ECHEVARRIA, A. Obtenção de Nanoformulações do Tipo Microemulsão Objetivando a Biodisponibilização de Anacardium occidentale e sua Eficiência como Agente Antioxidante. Revista Fitos, v. 2, 3,82-88, 2006. GOTOR, V., BRIEVA, R., REVOLLEDO, F. A simple procedure for the preparation of chiral amides. Tetrahedron Letters, v. 29, p. 6973-6974, 1988. HAN, S-Y.; KIM, Y-A. Recent development of peptide coupling reagents in organic synthesis. Tetrahedron, v. 60, p. 2447–2467, 2004. HANSON, P.; JONES,J R.; TAYLOR, A.B.; WALTON, P.H.; TIMMS, A.W.; Sandmeyer reactions. Part 7.1 An investigation into the reduction steps of Sandmeyer 155 hydroxylation and chlorination reactions, Journal of the Chemical Society. Perkin Transaction II, v. 2, p. 1135–1150, 2002. HANSON, P.; ROWELL, S.C.; WALTON, P.H.; TIMMS, A.W. Promotion of Sandmeyer hydroxylation (homolytic hydroxydediazoniation) and hydrodediazoniation by chelation of the copper catalyst: bidentate ligands. Organic and Biomolecular Chemistry, v.2, p.1838, 2004. HE, H.; ZATORSKA, D.; KIM, J.; AGUIRRE, J.; LLAUGER, L.; SHE, Y.; WU, N.; IMMORMINO, R. M.; GEWIRTH, D.T.; CHIOSIS, G. Identification of Potent Water Soluble Purine-Scaffold Inhibitors of the Heat Shock Protein 90. Journal of Medicinal Chemistry, v.49, p. 381-390, 2006. HEGARTY,A.F.; MCCORMACK, M.T.; BRADY, K.; FERGUSON, G.; ROBERTS, P.J. Competing Acyl Transfer and Intramolecular 0 + N Acyl Group Migration from an lsolable O-Acylisourea Journal of the Chemical Society, Perkin Transactions 2, n.7, p. 867, 1979. HERWALDT,B. Leishmaniasis. The Lancet, v. 354, n. 9185, p. 1191-1199, 1999. ISHIHARA, K.; OHARA, S.; YAMAMOTO, H. 3,4,5-Trifluorobenzeneboronic Acid as an Extremely Active Amidation Catalyst, Journal of Organic Chemistry, v.61, p. 4196–4197, 1996 KANG, S.; BACK, K. Enriched production of N-hydroxycinnamic acid amides and biogenic amines in pepper (Capsicum annuum) flowers. Scientia Horticulturae, n. 108, p. 337–341, 2006. KAPIL, A. Piperine - A Potent Inhibitor of Leishmania-Donovani Promastigotes In- Vitro. Planta Medica, v. 59, n. 5, p. 474, 1993. KING, R.R.; CALHOUN, L.A. Characterization of cross-linked hydroxycinnamic acid amides isolated from potato common scab lesions. Phytochemistry, v. 66, p. 2468–2473, 2005. LAJIDE, L.; ESCOUBAS, P.; MIZUTANI, J. Termite antifeedant activity in x ylopia aethiopica. Phytochemistry, v. 40, n. 4, p. 1105-1112, 1995. LEE, C.; KIM, J.; LEE, J.; LEE, S.; KHO, Y. Two New Constituents of Isodon excisus and Their Evaluation in an Apoptosis Inhibition Assay. Journal of Natural Products, v. 64, p. 659-660, 2001. MALTEZOU, H.C. Drug Resistance in Visceral Leishmaniasis. Journal of Biomedicine and Biotechnology, Article ID 617521, p. 1-8, 2010. MARTINS, P. S.; OCHOA, R.; PIMENTA, A.M.C.; FERREIRA, L.A.M.; MELO, A.L.; SILVA, J.B.B.; SINISTERRA, R.D.; DEMICHELI, C.; FRÉZARD, F. Mode of action of β-cyclodextrin as an absorption enhancer of the water-soluble drug meglumine antimoniate. International Journal of Pharmaceutics, v. 325, n. 1-2, p. 39-47, 2006. 156 MELLO, H. Síntese, parâmetros lipofílicos, eletrônicos e correlações de estrutura x atividade antileishmania de 1H-Pirazolo[3,4b]-piridinas. Tese (Doutorado em Química Orgânica) UFRRJ, Seropádica, 2000. MONTALBETTI, C. A. G. N.; FALQUE V. Amide bond formation and peptide coupling. Tetrahedron, v. 61, n. 46, p. 10827-10852, 2005. MOSMANN, T. Rapid Colorimetric Assay for Cellular Grow and Survival: Application to Proliferation and Cytotoxicity Assays. Jounal of Immunol Methods, v. 65, p. 55, 1983. MUÑOZ, V.; MORETTI, C.; SAUVAIN, M.; CARON, C.; PORZEL, A.; MASSIOT, G.; RICHARD, B.; LE MEN-OLIVIER, L. Isolation of Bis-Indole Alkaloids with Antileishmanial and Antibacterial Activities from Perschiera van heurkii (Syn. Tabernaemontana van heurkii). Planta Medica, v. 60, p.455-459, 1994. NARASIMHAN, B.; BELSARE, D.; PHARANDE D.; MOURYA, V.; DHAKE, A. Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. European Journal of Medicinal Chemistry, 39, 827–834, 2004 NEGREL, J., POLLET, B., LAPIERRE, C., Ether-linked ferulic acid amides in natural and ound periderms of potato tuber. Phytochemistry, v. 43, p. 1195–1199, 1996. NESTERENKO, V.; PUTT, K. S.; HERGENROTHER, P. J. Identification from a Combinatorial Library of a Small Molecule that Selectively Induces Apoptosis in Cancer Cells. Journal of the American Chemical Society. 125, 14672-14673, 2003 OKOMBI ,S.; RIVAL, D.; BONNET, S. ; MARIOTTE, A. ; PERRIERB, E. ; BOUMENDJE, A.. Analogues of N-hydroxycinnamoylphenalkylamides as inhibitors of human melanocyte-tyrosinase. Bioorganic & Medicinal Chemistry Letters, 16, 2252–2255, 2006 PALATNIK-DE-SOUSA, C. B. Vaccines for leishmaniasis in the fore coming 25 years Vaccine, v. 26, p. 1709-1724, 2008. PALIT P.; PAIRA, P.; HAZRA, A.; BANERJEE, S.; GUPTA, AD.; DASTIDAR, SG.; MONDAL, N.B.; Phase transfer catalyzed synthesis of bis-quinolines: Antileishmanial activity in experimental visceral leishmaniasis and in vitro antibacterial evaluation European Journal of Medicinal Chemistry, v.44, n.2, p. 845-853, 2009. PARK, J. B.; SCHOENE, N. Synthesis and Characterization of N-Coumaroyltyramine as a Potent Phytochemical Which Arrests Human Transformed Cells via Inhibiting Protein Tyrosine Kinases. Biochemical and Biophysical Research Communications 292, 1104–1110, 2002 PARK, J. B.; SHOENE, N. N-Caffeoyltyramine arrests growth of U937 and Jurkat cells by inhibiting protein tyrosine phosphorylation and inducing caspase-3. Cancer Letters, 202, 161–171, 2003 157 PARMAR, V. S.; JAIN, S. C.; BISHT, K. S.; JAIN, R.; TANEJA, P.; JHA, A.; TYAGI, O. D.; PRASAD, A. K.; WENGEL, J.; OLSEN, C. E.; BOLL, P. M. Phytochemistry of the Genus Piper. Phytochemistry, v. 46, n. 4, p. 597-673, 1997 PATERSON, I.; ANDERSON, E. A. The Renaissance of Natural Products as Drug Candidates. Science, v. 310, n. 5747, p. 451-453, 2005 PEARSON, A. J., ROUSH, W. R. Handbook of Reagents for Organic Synthesis: Activating Agents and Protecting Groups, Eds.; Wiley: New York, p 333, 1999. PERREUX, L.; Loupy, A.; Volatron, F. Solvent-free preparation of amides from acids and primary amines under microwave irradiation. Tetrahedron, v. 58, n. 11, p. 2155, 2002. PESSOA, S.B.; MARTINS, A.V. Parasitologia Médica, 10ª Ed., Ed. Guanabara Koogan, Rio de Janeiro, 1990. PINTO-DA-SILVA, H.L.; FAMPA, P.; SOARES, D.C.; OLIVEIRA, S.M.P.; SOUTO-PADRON, T.; SARAIVA, E.M. The 3A1-La monoclonal antibody reveals key features of Leishmania (L) amazonensis metacyclic promastigotes and inhibits procyclics attachment to the sand fly midgut. International Journal for Parasitology, v. 35, n. 7, p. 757-764, 2005. PISSINATE, K. Atividade Citotóxica de Piper nigrum e Struthanthus marginatus. Estudo Preliminar da Correlação Entre a Citotoxicidade e Hidrofobicidade da Piperina e Derivados Sintéticos. 2006. 93p. Dissertação de Mestrado – UFRRJ, Seropédica, RJ RAAY B, MEDDA S, MUKHOPADHYAY S, BASU MK. Targeting of piperine intercalated in mannose-coated liposomes in experimental leishmaniasis. Indian Journal of Biochemistry & Biophysics, v.36, p. 248-251, 1999. RIBEIRO, T. S.; FREIRE-DE-LIMA, L.; PREVIATO, J. O.; ENDONCAPREVIATO, L.; HEISE, N.; DE LIMA, M. E. F. Toxic Effects of Natural Piperine and Its Derivatives on Epimastigotes and Amastigotes of Trypanosoma cruzi. Bioorganic & Medicinal Chemistry Letters, v. 14, n. 13, p. 3555-3558, 2004. RODRIGUES, R. F., DA SILVA, E. F., ECHEVARRIA A., R. FAJARDO-BONIN, V. F. AMARAL, L. L. LEON, AND M. M. CANTO-CAVALHEIRO. A comparative study of mesoionic compounds in Leishmania sp and toxicity evaluation. European Journal of Medicinal Chemintry, v. 42, p. 1039–1043, 2007. ROY, A.K., GUILLORY, J.K. The effect of cyclodextrins on the aqueous stability of cyclopentolate hydrochloride. International Journal of Pharmaceutics, v. 138, n. 1, p 37-43, 1996. SAITOH, K.; SHIINA, I.; MUKAIYAMA. O,O′-Di(2-pyridyl) Thiocarbonate as an Efficient Reagent for the Preparation of Carboxylic Esters from Highly Hindered Alcohols. Chemistry Letters, v. 27, n. 7, p 679, 1998. 158 SCHETTINI, D. A.; RIBEIRO, R. R.; DEMICHELI, C.; ROCHA, O. G. F.; MELO, M.; MICHALICK, M. S. M.; FRÉZARD, F. Improved targeting of antimony to the bone marrow of dogs using liposomes of reduced size. Internation Journal of Pharmaceutics, v. 315, n. 1-2, p.140- 147, 2006. SEMLER, U.; GROSS, G. G. Distribution of Piperine in Vegetative Parts of Piper Nigrum. Phytochemistry, v. 27, n. 5, p. 1566-1567, 1988. SERENO, D.; ALEGRE,A.M.; SILVESTRE,R.; VERGNES, B.; OUAISSI, A. In Vitro Antileishmanial Activity of Nicotinamide. Antimicrobial Agents and Chemotherapy, 49, pp 808 – 812, 2005. SHAABANI, A.; SOLEIMANI, E.; REZAYAN, A. H. A novel approach for the synthesis of aryl amides. Tetrahedron Letters, 48, 6137–6141, 2007. SHEEHAN, J. C.; HESS, G. P. A New Method of Forming Peptide Bonds Journal American of the Chemical Society, v. 77, p. 1067–1068, 1955. SHIINA, I.; KUBOTA, M.; IBUKA, R. A novel and efficient macrolactonization of ω-hydroxycarboxylic acids using 2-methyl-6-nitrobenzoic anhydride (MNBA) Tetrahedron Letters, v. 43, n. 42, p. 7535-7539, 2002. SHIMADA,Y.; TANIGUCHI, N.; MATSUHISA, A.; AKANE, H.; KAWANO, N.; SUZUKI, T.; TOBE, T.; KAKEFUDA, A.; YATSU, T.; TAHARA, A.; TOMURA, Y.; KUSAYAMA, T.; WADA, K.; TSUKADA, J.; ORITA, M.; TSUNODA, T.; TANAKA, A. Synthesis and biological activity of novel 4,4-difluorobenzazepine derivatives as non-peptide antagonists of the arginine vasopressin V1A receptor. Bioorganic & Medicinal Chemistry, v 14, n. 6, p 1827-1837, 2006. SHIMIZU, K.; KUBO, I.; NIHEI, K. Oxidation products of quercetin catalyzed by mushroom tyrosinase. Bioorganic & Medicinal Chemistry, V.12, n. 20, p. 5343-5347, 2004. SHIOIRI, T.; NINOMIYA, K.; YAMADA, S. Y. Diphenylphosphoryl azide. New convenient reagent for a modified Curtius reaction and for peptide synthesis. Journal American of the Chemical Society, v.94, p 6203–6205, 1972. SIMONELLI, A.P., METHA, S.C., HIGUCHI, W.I. Dissolution rates of high energy polyvinylpirrolidone _PVP.–sulfathiazole coprecipitates. Journal of Pharmacology. Scienci, 58, 538–549. 1969. SOARES-BEZERRA, R. J.; LEON, L.; GENESTRA, M. Recentes avanços da quimioterapia das leishmanioses: moléculas intracelulares como alvo de fármacos. Revista Brasileira de Ciências Farmacêuticas, v. 40, n. 2, 2004. SZEJTLI, J.Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, v. 98, n. 5, p. 1743–1754, 1998. 159 TEMPONE, A.G.; BORBOREMA, S.E.T.; ANDRADE HF.; GUALDA, N.C.A.; YOGI, Á.; CARVALHO, C.S.; BACHIEGA, D.; LUPO, F.N.; BONOTTO, S.V.; FISCHER, D.C.H. Antiprotozoal activity of Brazilian plant extracts from isoquinoline alkaloid-producing families. Phytomedicine, v. 12, n. 5, p. 382-390, 2005. TESH, R. B. Control of zoonotic visceral leishmaniasis. Is it time to change strategies? American Journal of Topical Medicinal and Hygiene, v. 52, p.287-92; 1995. Citado em: CHAPPUIS, F.; SUNDAR, S; HAILU, A.; GHALIB, H.; RIJAL, S.; PEELING, R.W.; ALVAR, J.; BOELAERT, M. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nature Reviews Microbiology 5, 873-882, 2007 TUCCINARDI,T.; BERTINI, S.; MARTINELLI, A.; MINUTOLO,F.; ORTORE,G.; PROTA, G.P.G.; RAPPOSELLI,S.; CARLSON, K.E.; KATZENELLENBOGEN, J.A.; MACCHIA, M. Synthesis of Anthranylaldoxime Derivatives as Estrogen Receptor Ligands and Computational Prediction of Binding Modes. JournaL of Medicinal Chemistry, v. 49, p. 5001-5012, 2006. WANG, E-J.; LIAN, Z-X.; CAI, J.; The crystal structure of the 1:1 inclusion complex of β-cyclodextrin with benzamide. Carbohydrate Research, v.342, n. 5, p. 767-771, 2007. WANG, J.C. Cellular roles of DNA topoisomerases: a molecular perspective, Nat. Rev., Mol. Cell Biol. v.3, p. 430–440, 2002. WATKINS, B. M. Drugs for the control of parasitic diseases: current status and development. Trends in Parasitology, v.19, n. 11, 2003. WHO. Intensified control of neglected diseases: report of an international workshop, Berlin, 10–12 December, 2003. Geneva, World Health Organization, 2004 (WHO/CDS/CPE/CEE/2004.45). WHO. The disease and its epidemiology. Acessado em 02/2010: http://www.who.int/leishmaniasis/disease_epidemiology/en/index.html , 2010) WHO/CDS/CSR/ISR/2000. LEISHMANIASIS AND LEISHMANIA/HIV CO-INFECTION. Acessado em 04/2010: http://www.who.int/csr/resources/publications/surveillance/Leishmaniasis.pdf WHO/TDR. A human rights-based approach to neglected tropical diseases. Acessado em de 01/2010: (http://apps.who.int/tdr/publications/tdr-research-publications/human-rights/pdf/human-rights.pdf) World Health Organization-TDR. The TDR fifteenth program report. Research Progress 1999—2000. New and Improved Tools; 2003. Acessado em www.who.int/tdr/research/progress9900/tools/vdr.htm. ZHANG, H.-L.; BAI, T.-C.; YAN, G.-B.; HU, J. Solubility of silybin in aqueous poly(vinylpyrrolidone) solution. Fluid Phase Equilibria, v. 238, n. 2, p.186-192, 2005.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/62889/2010%20-%20Kenia%20Pissinate.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4118
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-11-14T00:48:54Z No. of bitstreams: 1 2010 - Kenia Pissinate.pdf: 4192902 bytes, checksum: 99b6a52fb130544ee85462c7c45b626d (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-11-14T00:48:54Z (GMT). No. of bitstreams: 1 2010 - Kenia Pissinate.pdf: 4192902 bytes, checksum: 99b6a52fb130544ee85462c7c45b626d (MD5) Previous issue date: 2010-08-27eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2010 - Kenia Pissinate.pdf2010 - Kenia Pissinate4.09 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.