Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/10238
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Trindade, Joana D'Arc da Silva | |
dc.date.accessioned | 2023-12-21T18:59:20Z | - |
dc.date.available | 2023-12-21T18:59:20Z | - |
dc.date.issued | 2019-10-17 | |
dc.identifier.citation | TRINDADE, Joana D’Arc da Silva. Estudos no reposicionamento do fármaco nimesulida para o tratamento da doença de Chagas: preparação de derivados, avaliação da atividade tripanocida e investigações sobre prováveis mecanismos de ação. 2019. 179 f. Tese. (Tese em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/10238 | - |
dc.description.abstract | O tratamento da doença de Chagas é feito apenas por dois medicamentos, o nifurtimox (1) e o benznidazol (2). Contudo, além destes fármacos não serem eficazes em todas as fases da infecção, apresentam severos efeitos colaterais, o que justifica a busca de novas alternativas para o tratamento desta grave enfermidade. Dados da literatura descrevem a interferência de fármacos anti-inflamatórios não-esteroidais no processo de infecção por tripomastigotas de Trypanosoma cruzi, sobre células de mamíferos. O mecanismo de ação destes fármacos ocorre sobre as isoformas da enzima ciclo-oxigenase, importantes para o estabelecimento da infecção do parasito. Adicionalmente, são bem conhecidos os efeitos tóxicos de compostos nitro-aromáticos, sendo o T. cruzi bastante afetado pela ação dessas moléculas em seu equilíbrio redox. De posse destas informações, propusemos neste trabalho a investigação da atividade tripanocida do fármaco nimesulida (3), anti-inflamatório nãoesteroidal, que possui em sua estrutura o grupamento toxicofórico nitro-aromático. A abordagem de reposicionamento de fármacos, como a que apresentamos aqui visando à possível atividade tripanocida da nimesulida (3), é um recurso importante na descoberta de fármacos aplicáveis ao tratamento de doenças negligenciadas. Outra estratégia, desenvolvida em paralelo, envolveu o emprego da hibridação molecular na preparação de dois derivados da nimesulida (3) com a amida natural piperina (5). Os resultados obtidos nas avaliações biológicas realizadas evidenciaram a atividade antiparasitária da nimesulida (3) sobre as diferentes formas evolutivas do parasito. Além disso, dos dois híbridos moleculares construídos, o híbrido H1, no qual foi preservada a porção nitro aromática, apresentou ação tripanocida, enquanto que o híbrido H2 perdeu significativamente a atividade com a retirada do grupo nitro de sua estrutura, o que permitiu apontar para o grupo nitro presente na nimesulida (3) e no híbrido H1 como porção farmacofórica para a atividade tripanocida estudada, validando as hipóteses deste estudo. Os resultados obtidos na avaliação das alterações ultra-estruturais em epimastigotas de T. cruzi tratados com nimesulida mostram a desorganização da estrutura das mitocôndrias, corroborando a possível interferência do fármaco no equilíbrio redox do parasito. | por |
dc.description.sponsorship | CAPES | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Trypanosoma cruzi | por |
dc.subject | Anti-inflamatórios não-esteroidas | por |
dc.subject | Nitro-aromáticos | por |
dc.subject | Fármacos antiparasitários | por |
dc.subject | Piperina | por |
dc.subject | Hibridação molecular | por |
dc.subject | Trypanosoma cruzi | eng |
dc.subject | Non-steroidal antiinflanmatory drugs | eng |
dc.subject | Nitroaromatics | eng |
dc.subject | Antiparasitic drugs | eng |
dc.subject | Piperine | eng |
dc.subject | Molecular hybridization | eng |
dc.title | Estudos no reposicionamento do fármaco nimesulida para o tratamento da doença de Chagas: preparação de derivados, avaliação da atividade tripanocida e investigações sobre prováveis mecanismos de ação. | por |
dc.title.alternative | Studies in the repositioning of the drug nimesulide for the treatment of Chagas disease: synthesis of derivatives, evaluation of the tripanocidal activity and investigation on the probable mechanisms of action. | eng |
dc.type | Tese | por |
dc.description.abstractOther | Chagas disease is treated only by two drugs, nifurtimox (1) and benznidazole (2). However, in addition to these drugs not being effective in all stages of infection, they have severe side effects, which justifies the search for new alternatives for the treatment of this serious disease. Literature data describe the interference of non-steroidal anti-inflammatory drugs on Trypanosoma cruzi trypomastigote infection process on mammalian cells. The mechanism of action of these drugs occurs on the isoforms of the enzyme cyclooxygenase, important for the establishment of parasite infection. Additionally, the toxic effects of nitroaromatic compounds are well known, and T. cruzi is greatly affected by the action of these molecules in its redox equilibrium. With this information, we proposed in this work the investigation of the trypanocidal activity of the nimesulide (3), non-steroidal antiinflammatory drug, which has in its structure the nitro-aromatic toxicophoric group. The drug repositioning approach, as presented here aiming at the possible trypanocidal activity of nimesulide (3), is an important resource in the discovery of drugs applicable to the treatment of neglected diseases. Another strategy, developed in parallel, involved the use of molecular hybridization in the preparation of two nimesulide derivatives (3) withing the structure of natural amide piperine. The results obtained from the biological evaluations carried out indicated antiparasitic activity of nimesulide (3) on the different evolutionary forms of the parasite. In addition, of the two molecular hybrids constructed, the hybrid H1, in which the aromatic nitro portion was preserved, presented trypanocidal action, while the hybrid H2 significantly lost activity with the removal of the nitro group from its structure. This set of results allowed us to point to the nitro portion present both in the structures of nimesulide (3) and its hybrid H1 as pharmacophoric group for the trypanocidal activity validating the hypothesis of this study. The results obtained in the evaluation of ultrastructural changes in T. cruzi epimastigotes treated with nimesulide show the disorganization of the mitochondrial structure, corroborating the possible interference of the drug on the redox equilibrium of the parasite. | eng |
dc.contributor.advisor1 | Lima, Marco Edilson Freire de | |
dc.contributor.advisor1ID | https://orcid.org/0000-0003-0563-3483 | por |
dc.contributor.advisor1ID | 880.202.667-04 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/8392420706762318 | por |
dc.contributor.advisor-co1 | Lima, Debora Decote Ricardo de | |
dc.contributor.advisor-co1ID | https://orcid.org/0000-0001-8761-7641 | por |
dc.contributor.advisor-co1ID | 875.362.007-06 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/3572066508469025 | por |
dc.contributor.referee1 | Lima, Marco Edilson Freire de | |
dc.contributor.referee1ID | https://orcid.org/0000-0003-0563-3483 | por |
dc.contributor.referee1ID | 880.202.667-04 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/8392420706762318 | por |
dc.contributor.referee2 | Kratz, Jadel Müller | |
dc.contributor.referee2ID | https://orcid.org/0000-0002-7681-8234 | por |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/5657186266877840 | por |
dc.contributor.referee3 | Almeida, Wanda Pereira | |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/3903296396671088 | por |
dc.contributor.referee4 | Soares, Deivid Costa | |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/7894147147292742 | por |
dc.contributor.referee5 | Silva, Lúcia Helena Pinto da | |
dc.contributor.referee5Lattes | http://lattes.cnpq.br/0013386072339397 | por |
dc.creator.ID | https://orcid.org/0000-0002-3619-0534 | por |
dc.creator.ID | 06.711.187-2 | por |
dc.creator.ID | 843.688.107-91 | por |
dc.creator.Lattes | http://lattes.cnpq.br/9830352129562935 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Ciências Exatas | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Química | por |
dc.relation.references | ABRAMSON, S.B. e WEISSMAN, G. The mechanisms of action of nonsteroidal antiinflammatory drugs. Arthritis Rheum vol. 32:1-9. 1989. AGUSTI, R.; COUTO, A. S.; CAMPETELLA, O. E.; FRASCH, A. C. C.; LEDERKREMER, R.M. The trans-sialidase of Trypanosoma cruzi is anchored by two diferente lipids. Glycobiology, 7, 731-735, 1997. ALLARAKHIA, M. Open-source approaches for the repurposing of existing or failed candidate drugs: learning from and applying the lessons across diseases. Drug design, development and therapy, 7, 753-766, 2013. ALSFORD, S.; ECKERT, S.; BAKER, N.; GLOVER, L.; SANCHEZ-FLORES, A.; LEUNG, K.F.; TURNER, D.J.; FIELD, M.C.; BERRIMAN, M.; HORN, D. Hightthroughput decoding of antitripanosomal drug efficacy and resistance. Nature, 482, 232- 236, 2012. ALVES, C. R.; ALBUQUERQUE-CUNHA, J. M.; MELLO, C. B.; GARCIA, E. S.; NOGUEIRA, N.F.; BOURGUINGNON, S.C.; DE SOUZA, W.; AZAMBUJA, P.; GONZALEZ, M.S. Trypanosoma cruzi: attachment to perimicrovillar membrane glycoproteins of Rhodnius prolixus. Experimental Parasitology, 116 (1), 44-52, 2007. ANDRADE, Z. A. The pathology of Chagas disease in man. Annales des Societes Belges de Medecine Tropicale, 65 (1), 15-30, 1985. ANÔNIMO. Reunião de Pesquisa Aplicada em doença de Chagas. Validade do conceito de forma indeterminada. Revista da Sociedade Brasileira de Medicina Tropical, 18, 46, 1985. ARAÚJO, C.R.M.; FILHO, C.A.L.; SANTOS, V.L.A.; MAIA, G.L.A.; GONSALVES, A.A. Desenvolvimento de fármacos por hibridação molecular: uma aula prática de química medicinal usando comprimidos de paracetamol e sulfadiazina e a ferramenta virtual scifinder®. Química. Nova, XY (00), 1-6, 2015. ARAÚJO, S. M.; ANDÓ, M. H.; CASSAROTTI, D. J.; D’ARCE MOTA, D.C.G.; BORGES, S.M.R.; GOMES, M.L. Programa ACHEI: Atenção ao Chagásico com Educação Integral no Município de Maringá e Região Noroeste do Paraná, Brasil. Revista da Sociedade Brasileira de Medicina Tropical, 33, 565-572, 2000. ARAÚJO, S. M.; MOTA, D. C. G. D.; BORGES, S. M. R. Educação e Apoio Psicossocial ao Paciente Chagásico. Sociedade Iberoamericana de Información Científica, 2002. Acesso em 24-08-2019. Disponível em: http://www.siicsalud.com. ARIYANAYAGAM, M.R. & FAIRLAMB, A.H. Entamoeba histolytica lacks Trypanothione metabolism. Molecular and Biochemical Parasitology, 103, 61-69, 1999. ARROWSMITH, J. & HARRISON, R. Drug repositioning: the business case and current strategies to repurpose shelved candidates and marketed drugs. In: BARRAT, M.J.; FRAIL, 117 D.E. Drug repositioning: bringing new life to shelved assets and existing drugs. Hoboken, US: Wiley, 2012. ProQuest ebrary.web. Capítulo 1, 9-88, 2016. ARSLAN, A.; OZCICEK, A.; SULEYMAN, B.; COBAN, T.A.; CIMEN, F.K.; NALKIRAN, H.S.; KUZUCU, M.; ALTURNER, D.; CETIN, N.; SULEYMAN, H.. Effects of nimesulide on the small intestine mucositis induced by methotrexate in rats. Experimental Animals, 65, 329- 336, 2016. ASHBURN.T.T. & THOR, K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery, 3, 673-683, 2004. ATAL, C. K.; ZUTSHI, U.; RAO, P. G. Scientific evidence on the role of ayurvedic herbals on bioavailability of drugs. Journal of Ethnopharmacology, 4 (2), 229-232, 1981. ATAL, C. K.; DUBEY, R. K.; SINGH, J. Biochemical basic of enhanced drug bioavailability by piperine-evidence that piperine is a potent inhibitor of drug-metabolism. The Journal of Pharmacology Experimental Therapeutics, 232 (1), 258-262, 1985. AUFDERHEIDEA, A.C.; SALOA, W.; MADDENA, M. S.; STREITZ, J.; BUILKSTRA, J.; GUHL, F.; ARRIAZA, B.; RENIER, C. A 9,000-year record of Chagas’ disease. Proceedings of the National Academy Sciences of the United States of America, 17-101 (7), 2034-2039, 2004. BAE, G.S.; KIM, M.S.; JUNG, W.S.; SEO, S.W.; YUN, S.W.;KIM, S.G.;PARK, R.K.; KIM, E.C.; SONG, H.J.; PARK, S.J. Inhibition of lipopolysaccharide-induced inflammatory responses by piperine European Journal of Pharmacology, 642, 154-162, 2010. BAEK, M.C.; JUNG, B.; KANG, H.; LEE, H.S.; BAE, J.S. Novel insight into drug repositioning: Methylthiouracil as a case in point. Pharmacological Research, 99, 185–193, 2015. BAHIA, M. T.; DE ANDRADE, I.M.; MARTINS, T.A.F.; DO NASCIMENTO, A.F.S.; DINIZ, L.F.; CALDAS, I.S.; TALVANI, A.; TRUNZ, B.B.; TORREELE, E.; RIBEIRO, I. Fexinidazole: A Potential New Drug Candidate for Chagas Disease. PLoS Neglected Tropical Diseases, 2012. BANG, J.S.; OH, D.H.; CHOI, H.M.; SUR, B.J.; LIM, S.J.; KIM, J.Y.; YANG, H.I.; YOO, M.C.; HAHM, D.H.; KIM, K.S. Antiinflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthrits Research & Therapy, 11 (2), 1-9, 2009. BANO, G.; RAINA, R. K.; ZUTSHI, U.; BEDI, K.L.; JOHRI, R.K.; SHARMA, S.C. Effect of piperine on bioavailability and pharmacokinetics of propanolol and theophylline in healthy- volunteers. European Journal of Clinical Pharmacology, 41 (6), 615-617, 1991. 118 BARREIRO, E. & FRAGA, C.A.M. Química medicinal: as bases moleculares da ação dos fármacos. ISBN 9788582711187. 3. ed. Porto Alegre: Artmed,. 2015. BASCARDIN, S.B.; TORRECILHAS, A.C.T.; MANARIN, R.; REVELLI, S.; REY, E.G.; TONELLI, R.R.; SILBER, A.M. Chagas’ disease: an update on immune mechanisms and therapeutic strategies. Journal of Cellular and Molecular Medicine, 14(6b), 1373-1384, 2010. BAUM, S.G.; WITTNER, M.; NADLER, J.P.; HORWITZ, S.B.; DENNIS, J.E.; SCHIFF, P.B.; TANOWITZ, H.B. Taxol, a microtubule stabilizing agent, blocks the replication of Trypanosoma cruzi. Proceedings of the National Academy of Sciences of the United States of America, 78 (7), 4571-4575, 1981. BELARDINELLI, L; HARDER, D.; SPERELAKIS, N.; RUBIO, R; BERNE, R.M. Cardiac glycoside stimulation of inward Ca++ current in vascular smooth muscle of canine coronary artery. Journal of Pharmacology Experimental Therapeutics, 209, 62-6, 1979. BERN, C. & MONTGOMERY, S.P. An estimate of the burden of Chagas disease in the United States. Clinical Infectious Diseases, 49, 52–4, 2009. BERN, C.; KJOS, S.; YABSLEY, M.J.; MONTGOMERY, S.P .Trypanosoma cruzi and Chagas’s disease in the United States. Clinical Microbiology Reviews, 24 (4), 655, 2011. BERN, C. Chagas' Disease. The New England Journal of Medicine, 373 (5), 456-466, 2015. BÉRUBÉ, G. An overview of molecular hybrids in drug discovery. Expert Opinion on Drug Discovery, 2016. Acesso em 10-09-2019. Disponível em: http://dx.doi.org/10.1517/17460441.2016.1135125. 2016. BHAT, B. G. & CHANDRASEKHARA, N. Interaction of piperine with rat-liver microssomes. Toxicology, 44(1), 91-98, 1987. BISGIN, H. A graphical approach to drug safety and drug repositioning. 2012. 128f. Tese (Doctor of Philosophy) – Department of Computer Science, Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock, EUA, 2012. BJARNASON, I. & THJODLEIFSSON, B. Gastrointestinal toxicity of non-steroidal antiinflammatory drugs: the effect of nimesulide compared with naproxen on the human gastrointestinal tract. Rheumatology, 38, 24-32, 1999. BOCK, M.; GONERT, R.; HABERKORN, A. Studies with Bay 2502 on animals. Boletín Chileno de Parasitologia, 24, 13-19, 1969. 119 BOELSTERLI, U.A.; ZIMMERMAN, I.H.J.; KRETZ-ROMMEL, A. Idiosyncratic Liver Toxicity of Nonsteroidal Antiinflammatory Drugs. Molecular Mechanisms and Pathology Critical. Reviews in Toxicology, 25(3), 207-235, 1995. BOIANI, M.; PIACENZA, L.; HERNÁNDEZ, P; BOIANI, L.; CERECETTO, H.; GONZÁLES, M.; DENICOLA, A. Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved? Biochemical Pharmacology, 79, 1736-1745, 2010. BONNEY, K.M. & ENGMAN, D.M. Chagas Heart Disease Pathogenesis: One Mechanism or Many? Current Molecular Medicine, 8(6), 510–518, 2008. BRENER, Z. & ANDRADE, Z.A. Trypanosoma cruzi e doença de Chagas. ISBN 9788527705639. 2. ed. 440p. Rio de Janeiro: Nova Guanabara, 2000. BROOKS, P.M. & DAY, R.O. Nonsteroidal antiinflammatory drugs – differences and similarities. The New England Journal of Medicine, 324, 1716-1725, 1991. BRUNE, K. & GRAFT, P. Non-steroid antiinflammatory drugs: influence of extracelular pH on biodistribution and pharmacological effects. Biochemical Pharmacology, 27, 525- 30, 1978. BUCKNER, F. S.; URBINA, J. A. Recent developments in sterol 14-α-demethylase inhibitors for Chagas disease. International Journal for Parasitology: Drugs and Drug Resistance, 2, 236–242, 2012. BUSCHIAZZO, A.; MUIÁ, R,. LARRIEUX, N.; PITCOVSKY, T.; MUCCI, J.; CAMPETELLA, O. Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structure/function studies towards the rational design of inhibitors. PLoS Pathogens, 8, 1-12, 2012. BUSCHINI, A.; FERRARINI, L.; FRANZONI, S.; GALATI, S.; LAZARETTI, M.; MUSSI, F.; DE ALBUQUERQUE, C.N.; ZUCCHI, T.M.A.D.; POLI, P. Genotoxicidade revaluation of three commercial nitroheterocyclic drugs: nifurtimox, benznidazole, and metronidazole. Journal of Parasitology Research, 2009, 463-575. 2009. BURLEIGH, B. A. & A. M. WOOLSEY. Cell signalling and Trypanosoma cruzi invasion. Cellular Microbiology, 4 (11), 701-711, 2002. CAIAZZO, E.; IALENTI, A.; CICALA, C. The relatively selective cyclooxygenase-2 inhibitor nimesulide: What’s going on? European Journal of Pharmacology, 848, 105-111, 2019. CANÇADO, J.R.; MARRA, U.D.; LOPES, M.; MOURÃO, O.; FARIA, C.A.F.; ÁLVARES, J.M.; SALGADO, A.A. Toxicidade y valor terapêutico del Bay 2502 en la 120 enfermedad de Chagas in tres esquemas posológicos. Boletín Chileno de Parasitología, 24, 28-32, 1969. CANDELARIO-JALIL, E. Nimesulide as a promising neuroprotectant in brain ischemia: New experimental evidences. Pharmacologycal Research, 57, 266-273, 2008. CAPUTTO, M.E.; FABIAN, L.E.; BENÍTEZ, D.; MERLINO, A.; RÍOS, N.; CERECETTO, H.; MOLTRASIO, G.Y.; MOGLIONI, A.G.; GONZÁLEZ, M.; FINKIELSZTEIN, L.M. Thiosemicarbazones derived from 1-indanones as new antiTrypanosoma cruzi agentes. Bioorganic & Medicinal Chemistry, 19, 22, 6818-6826, 2011. CARTA AO EDITOR. Acadêmicos de Medicina da UFCE. Triatoma infestans in Brazil: an historical fact. Revista da Sociedade Brasileira de Medicina Tropical, 39 (5), 507-509, 2006. CEVALLOS, A.M.; HERRERA, J.; LÓPEZ-VILLASEÑOR, I.; HERNANDÉZ, R. Differential effects of two widely used solventes, DMSO and etanol, on growth and recovery of Trypanosoma cruzi epimastigotes in culture. The Korean Journal Parasitology, 55(1), 81-84, 2017. CERECETTO, H & GONZALEZ, M. Chemotherapy of Chagas’ disease: status and new developments. Current Topics in Medicinal Chemistry, 2, 1187–1213, 2002. CHAGAS, C. Nova tripanosomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Memórias do Instituto Oswaldo Cruz, 1 (2): 159-21, 1909. CHANDRASEKHAR, R. B.; JITHAN, A.; NARSIMHA, R. Y.; MALLA, R. V. Fabrication and investigation on hepatoprotective activity of sustained release biodegradable piperine microspheres. International Journal of Pharmaceutical Sciences and Nanotechnology, 1 (1), 87-96, 2008. CHATELAIN, E. Chagas disease drug discovery: toward a new era. Journal of Biomolecular Screening, 20, 22–35, 2015. CHIBALE, K. & MUSONDA, C. C. Current Medicinal Chemistry, 10, 1863, 2003. CHONG, C.R.; XU,J.; LU, J.; BHAT, S.; SULLIVAN-JUNIOR, D.J.; LIU, J.O... Inhibition of angiogenesis by the antifungal drug itraconazole. ACS Chemical Biology, 2, 263-70, 2007. CHONG, C.R. & SULLIVAN, D.J. Jr. New uses for old drugs. Nature, 9, 448(7154), 645– 6, 2007. CHONPATHOMPIKUNLERT, P.; WATTANATHORN, J.; MUCHIMAPURA, S. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and 121 cognitive impairment in animal model of cognitive deficit like condition of Alzheimer's disease. Food and Chemical Toxicology, 48, 798-802, 2010. CLAYTON, J. Chagas disease 101. Nature, 465, S4–S5, 2010. CONAB. COMPANHIA NACIONAL DE ABASTECIMENTO. Disponível em: http://www.conab.gov.br. Acesso em 16 de fevereiro de 2018. COURA, J.R. Present situation and new strategies for Chagas disease chemotherapy – a proposal. Memórias do Instituto Oswaldo Cruz, 104(4), 549-554, 2009. COURA, J. R. & CASTRO, S.L. A critical review on Chagas disease chemotherapy. Memórias do Instituto Oswaldo Cruz, 97 (1), 3-24, 2002. COURA, J. R. Chagas disease: what is known and what is needed – A background article. Memórias do Instituto Oswaldo Cruz, 102, supl. I, 113-122, 2007. COURA, J.R. & BORGES-PEREIRA, J. Chronic phase Chagas disease: why should it be treated? A comprehensive review. Memórias do Instituto Oswaldo Cruz, 106 (6), 641-645, 2011. COURA, J.R. & DE CASTRO, S.L. A critical review on Chagas disease chemotherapy. Memórias do Instituto Oswaldo Cruz, 106, 642-645, 2011. CONTEH, L.; ENGELS, T.; MOLYNEUX, D. H. Socioeconomic aspects of neglected tropical diseases. The Lancet, 375, 239-247, 2010. CUÉLLAR, M.A.; SALAS, C.; CORTÉS, M.J.; MORELLO, A.; MAYA, J.D.; PREITE, M.D. Synthesis and in vitro Trypanocide activity of several polycyclic drimane-quinone derivatives. Bioorganic & Medicinal Chemistry, 17, 293-302, 2003. DA COSTA, K.M. Atividade de transportadores ABC em Trypanosoma cruzi e sua relação com a resistência ao benznidazol. 2017. 173f. Tese (Doutorado em Ciências BiológicasBiofísica). Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017. DA CRUZ, G.M.P. Estudo dos mecanismos neuroprotetores da piperina nas convulsões induzidas pela pilocarpina em camundongos. 2012. 200f. Tese (Doutorado em Ciências). Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, 2012. DAVIS, R. & BROGDEN, R.N. Nimesulide. An update of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs, 48(3), 431-54, 1994. DE ARAÚJO-JÚNIOR, J. X.; DA CUNHA, E. V. L.; CHAVES, M. C. O.; GRAY, A. I. Piperdardine, a piperidine alkaloid from Piper tuberculatum. Phytochemistry, 44(3), 559- 561, 1997. 122 DEL CASALE, A.; SORICE, S.; PADOVANO, A.; SIMMACO, M. Psychopharmacological treatment of Obsessive-Compulsive Disorder (OCD). Current Neuropharmacology, 13, 2018. DENIZOT, F. & LANG, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability Journal oflmmunological Methods, 89, 271-277, 1986. DE SOUZA. Electron microscopy of Tripanosomes – A histórica review. Memórias do Instituto Oswaldo Cruz, 103 (4), 313-325, 2008. DE SOUZA, W.; DE CARVALHO, T.M.U.; BARRIAS, E.S. Review on Trypanosoma cruzi: Host Cell Interaction. International Journal of Cell Biology, 1, 1-18, 2010. DE TORANZO, E.G.D.; CASTRO, J.A.; DE CAZZULO, B.M.F; CAZZULO, J.J. Interaction of benznidazole reactive metabolites with nuclear and kinetoplastic DNA, proteins and lipids from Trypanosoma cruzi. Experientia, 44, 880–881, 1988. DHIR, A.; NAIDU, P. S.; KULKARNI, S. K. Neuroprotective effect of nimesulide, a preferential COX-2 inhibitor, against pentylenetetrazol (PTZ)-induced chemical kindling and associated biochemical parameters in mice. Seizure, 16, 691-697, 2007. DIAS, L.C.; DESSOY, M.A.; SILVA, J.J.N ; THIEMANN, O.H.; OLIVA, G.; ANDRICOPULO, A.D. Quimioterapia da doença de Chagas: estado da arte e perspectivas no desenvolvimento de novos fármacos. Química Nova, 32, (9), 2444-2457, 2009. DIAS, J.C.P. O controle da doença de Chagas no Brasil. In: SILVEIRA, A.C. (org.). O Controle da Doença de Chagas nos Países do Cone Sul da América: História de uma iniciativa internacional 1991-2001. Organização Pan-Americana da Saúde, Brasília, 145- 250, 2002. DIAS, J.C.P. Epidemiologia. In BRENER, Z.; ANDRADE, Z.; BARRAL-NETTO, M. (eds.). Trypanosoma cruzi e Doença de Chagas, 2. ed. Rio de Janeiro: Guanabara Koogan, 48-74, 2000. DI PERSIO, J.F.; UY, G.L.; YASOTHAN, U.; KIRKPATRICK, P. Plerixaflor. Nature Review Drug Discovery, 8, 105-107, 2009. DNDi. Drugs for Neglected Diseases initiative, 2019. Acesso em 17-03-2019. Disponível em: http://www.dndi.org.br/pt/doencas-negligenciadas/doenca-de-chagas/tratamentos atuais.html. DUAN, W.; PENG, Q., MASUDA, N.; FORD, E.; TRYGGESTAD, E.; LADENHEIM, B.; ZHAO, M.; CADET, J.L.; WONG., J.; ROSS, C.A. Sertraline slows disease progression and increases neurogenesis in N171-82Q mouse model of Huntington's disease. Neurobiology of Disease, 30(3), 312–22, 2008. 123 DO CAMPO, R.; LOPES, J.N.; CRUZ, F.S.; SOUZA, W. Trypanosoma cruzi: ultrastructural and metabolic alterations of epimastigotes by beta-lapachone. Experimental Parasitology, 42 (1), 142–149, 1977. DO CAMPO, R. & STOPPANI, A.O. Mechanism of the trypanocidal action of nifurtimox and other nitro-derivatives on Trypanosoma cruzi. Medicina (B Aires), 40 (Suppl. 1), 10– 16, 1980. DO CAMPO, R. Sensitivity of Parasites to free radical damage by antiparasitic drugs. Chemical and Biological Interactions, 73, 1-27, 1990. DONNELLY, E.T.; O’CONNELL M.; McCLURE, N.; LEWIS, S.E. Differences in nuclear DNA fragmentation and mitochondrial integrity of semen and prepared human spermatozoa. Human Reproduction,.7, 1552-1561, 2000. DREWS, J. Drug discovery: a historical perspective. Science, 287, 2000. EGEBJERG, M.M.; JAGER, A.K.; BJORN, M.; VAN STADEN, J.; STAFFORD, G. I.; HASMUSSEN, H.B. Amides from Piper capense with CNS Activity–A Preliminary SAR Analysis. Molecules, 14 (9), 3833-3843, 2009. EL-SAYED, N.M.; MYLER, P.J.; BARTHOLOMEU, D.C.; NILSSON, D.; AGGARWAL, G.; TRANS, A.N.; GHEDIN, E.; WORTHEY, E.A.; DELCHER, A.L.; BLANDIN, G.; WESTENBERGER, S.J.; CALER, E.; CERQUEIRA, G.C.; BRANCHE, C.; HAAS, B.; ANUPAMA, A.; ARNER, E.; ASLUND, L.; ATTIPOE, P.; BONTEMPI, E.; BRINGAUD, E.; BURTON, P.; CADAG, E.; CAMPBELL, D.A.; CARRINGTON, M.; CABTREE, J.; DARBAN, H.; DA SILVEIRA, J.F.; DE JONG, P.; EDWARDS, K.; ENGLUND, P.T.; FAZELINA, G.; FELDBLYUM, T.; FERELLA, M.; FRASCH, A.C.; GULL, K.; HORN, D.; HOU, L.; HUANG, Y.; KINDLUND, E.; KLINGBEIL, M.; KLUGE, S.; KOO, H.; LACERDA, D.; LEVIN, M.J.; LORENZI, H.; LOUIE, T.; MACHADO, C.R.; McCULLOCH, R.; McKENNA, A.; MIZUNO, Y.; MOTTRAN, J.C.; NELSON, S.; OCHAYA, S.; OSOEGAWA, K.; PAI, G.; PARSONS, M.; PENTONY, M.; PETTERSSON, U.; POP, M.; RAMIREZ, J.L.; RINTA, J.; ROBERTSON, L.; SALZBERG, S.L.; SANCHEZ, D.O.; SEYLER, A.; SHARMA, R.; SHETTY, J.; SIMPSON, A.J.; SISK, E.; TAMMI, M.T.; TARLENTON, R.; TEIXEIRA, S.; VAN AKEN, S.; VOGT, C.; WARD, P.N.; WICKSTEAD, B.; WORTMAN, J.; WHITE, O.; FRASER, C.M.; STUART, K.D.; ANDERSSON, B. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science, 309 (5733), 409-15, 2005. FABRO, S.; SMITH, R.L.; WILLIAMS, R.T. Toxicity and teratogenicity of optical isomers of thalidomide. Nature, 215, 296, 1967. FAIRLAMB, A.H. & CERAMI, A. Metabolism and functions of trypanothione in the kinetoplastida. Annual Review of Microbiology, 46, 695–729, 1992. 124 FAMAEY, J. P. In vitro and in vivo pharmacological evidence of selective cyclooxygenase2 inhibition by nimesulida: An overview. Inflammation Research, 46, 437- 446, 1997. FAÚNDEZ, M.; PINO, L.; LETELIER, P.; ORTIZ, C.; LÓPEZ, R.; SEGUEL, C.; FERREIRA, J.; PAVANI, M.; MORELLO, A.; MAYA, J.D. Buthionine sulfoximine increases the toxicity of nifurtimox and benznidazole to Trypanosoma cruzi. Antimicrobial Agents Chemotherapy, 49, 126–130, 2005. FERNANDES, O. & CAMPBELL, D.A. Trypanosoma cruzi: cepas de eleição. In:ARAÚJO-JORGE, T. & CASTRO, S.L.(orgs.). Doença de Chagas - manual para experimentação animal. 20. ed. Rio de Janeiro: Editora Fiocruz. Capítulo 10.2, 178-183, 2000. FERREIRA, W. S. Utilização da piperina como protótipo na síntese de novos antichagásicos da classe das 1,3,4- tiadiazólio-2- fenilaminidas. 2006. 197 p. Dissertação (Mestre em Ciências). Universidade Federal Rural do Rio de Janeiro, 2006. FERREIRA, W. S.; FREIRE-DE-LIMA, L.; SARAIVA, V.B.; ALISSON-SILVA, F.; MENDONÇA-PREVIATO, L.; PREVIATO, J.O.; ECHEVARRIA, A.; DE LIMA, M..E.; Novel 1,3,4-thiadiazolium-2-phenylamine clorides derived from natural piperine as trypanocidal agents: chemical an biological studies. Bioorganic Medicinal Chemistry,. 16, 2984-2991, 2008. FERREIRA, C.; SOARES, D. C.; BARRETO-JUNIOR, C. B.; NASCIMENTO, M.T.; FREIRE-DE-LIMA, L.; DELORENZI, J.C.; LIMA, M.E.F.; ATELLA, G.C.; FOLLY, E.; CARVALHO, T.M.U.; SARAIVA, E.M.; PINDO-DA-SILVA, L.H.; Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis. Phytochemistry, 72, 2155, 2011. FERREIRA, W. S.; FRANKLIM, T. N.; LOPES, N. D.; DE LIMA, M. E. F. Piperina, seus análogos e derivados: potencial como antiparasitários. Revista Virtual de Química, 4(3), 208-224, 2012. FERREIRA, D.D.; MESQUITA, J.T.; SILVA, T.A.C.; ROMANELLI, M.M.; BATISTA, D.G.J.; DA SILVA, C.F.; DA GAMA, A.N.S.; NEVES, B.J.; MELO-FILHO, C.C.; SOEIRO, M.N.C.; ANDRADE, C.H.; TEMPONE, A.G. Efficacy of sertraline against Trypanosoma cruzi: an in vitro and in silico study. Journal of Venomous Animals and Toxins including Tropical Diseases, 24, 30, 2018. FILARDI, L. S. & BRENER, Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Transactions of the Royal Society of Tropical Medicine and Hygiene, 81(5), 755-759, 1987. FORREST, M. & BROOKS, P.M. Mechanism of action of non-steroidal anti-rheumatic drugs. Clinical Rheumatology, 2, 275-94, 1988. 125 FRANKLIM, T, N. Planejamento, síntese e avaliação da atividade de novos 1,2,4-triazois, derivados da amida natural piperina, contra formas proliferativas do Trypanosoma cruzi. 2013. Tese (Doutorado em Ciências). Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 2013. FRANKLIM, T, N.; FREIRE-DE-LIMA, L.; DINIZ, J, N, S.; PREVIATO, J. O.; CASTRO, R. N.; MENDONÇA-PREVIATO, L.; LIMA, M. E. F. Design, synthesis and Trypanocidal evaluation of novel 1,2,4-triazoles-3-thiones derived from natural piperine. Molecules, 18, 6366-6382, 2013. FREIRE-DE-LIMA, L.; RIBEIRO, T. S.; ROCHA, G. M.; BRANDÃO, B. A.; ROMEIRO, A.; MENDONÇA-PREVIATO, L.; PREVIATO, J. O.; FREIRE-DE-LIMA, M. E.; CARVALHO, T. M. U.; HEISE, N. The toxic effects of piperine against Trypanosoma cruzi: ultrastructural alterations and reversible blockage of cytokinesis in epimastigote forms. Parasitology Research, 102, 1059-1067, 2008. FREIRE-DE-LIMA, C.G.; NASCIMENTO, D.O.; SOARES, M.B.; BOZZA, P.T.; CASTRO-FARIA-NETO, H.C.; DE MELLO, F.G.; DOS REIS, G.A.; LOPES, M.F. Uptake of apoptotic cells drives the growth of a pathogenic tripanosome in macrophages. Nature, 403(6766), 199-203, 2000. GARCIA, E. S.; RATCLIFFE, N. A.; WHITTEN, M. M.; GONZALEZ, M. S.; AZAMBUJA, P. Exploring the role of insect host factors in the dynamics of Trypanosoma cruzi-Rhodnius prolixus interactions. Journal of Insect Physiology, 53 (1), 11-21, 2007. GHOSHAL, S.; PRASAD, B. N. K.; LAKSIMI, V. Antiamoebic activity of Piper longum fruits against Entamoebahistolytica in vitro and in vivo. Journal of. Ethnopharmacology, 50, 167- 170, 1996. GIORGI, M. E. & LEDERKREMER, R. M. Trans-sialidase and mucins of Trypanosoma cruzi: an importante interplay for the parasite. Carbohydrate Research, 346, 1389-1393, 2011. GODESSART, N. & SALCEDO, C. Antiinflammatory and gastrointestinal lesive effects of novel and classical NSAIDs in rats after acute and subacute treatments. In: Abstract book of the 10th International Conference on Prostaglandins and related Compounds, Sept 22–27, Vienna (Austria), 1996. GONSALVES, A.A.; ARAÚJO, C.R.M.; FILHO, C.A.L.; MEDEIROS, F.S. Contextualizing acid-base reactions according to Bronsted-Lowry protonic theory using propranolol and nimesulide tablets. Química Nova, 35 (8), 1235-1241, 2013. GORLA, N.B.; LEDESMA, O.S.; BARBIERI, G.P.; LARRIPA, I.B. Thirteenfold increase of chromosomal aberrations non-randomly distributed in chagasic children treated with nifurtimox. Mutation Research/Genetic Toxicology, 224, 263-7, 1989. 126 GRIVICICH, I.; REGNER, A.; ROCHA, A.B. Apoptosis: Programmed Cell Death. Revista Brasileira de Cancerologia, 53(3), 335-343, 2007. GUPTAU, S.K.; BANSAL, P.; BHARDWAJ, R.K.; VELPANDIAN. T. Comparative antinociceptive, anti-inflammatory and toxicity profile of nimesulide vs nimesulide and piperine combination. Pharmacological Research, 41, 6, 2000. HA, S.; SEO, Y-J; KWON, M-S; CHANG, B-H; HAN, C-K e YOON, J-H. IDMap: facilitating the detection of potential leads with therapeutic targets. Bioinformatics, 24 (11), 1413–1415, 2008. HALL, B.S & WILKINSON, S.R. Activation of benznidazole by Trypanosomal type I nitroreductases results in glyoxal formation. Antimicrobial Agents and Chemotherapy, 56 (1), 115, 2011. HEALD ,R. & NOGALES, E. Microtubule dynamics. Journal of Cell Science, 115, 3-4, 2002. HIGGS, A.G.; MONCADA, S.; VANE, J.R. The mode of action of anti-inflammatory drugs with prevent peroxidation of arachidonic acid. Rheumatic Disease Clinics of North America, 6, 675-93, 1980. HOPKINS, A.L. Network pharmacology: the next paradigm in drug discovery. Nature Chemical Biology, 4 (11), 682-90, 2008. HORROBIN, D.F. Realism in drug discovery-could Cassandra be right? Nature Publishing Group-Nature biotechnology, 19, 1099-1100, 2001. HOTEZ P.J.; MOLYNEUX, D.H.; FENWICK, A.; KUMARESAN, J.; SACHS, S.E.; SACHS, J.D.; SAVIOLI, L. Control of neglected tropical diseases. The New England Journal of Medicine, 357, 1018–27, 2007. HOTEZ, P.; OTTESEN, E.; FENWICK, A.; MOLYNEUX, D. The neglected tropical diseases: the ancient afflictions of stigma and poverty and the prospects for theis control and elimination. In: Hot Topics in Infection and Immunity in Children. Nova Iorque: Springer, 2006. HOTEZ, P.J.; DUMONTEIL, E.; WOC-COLBURN, L.; SERPA J.A.;BEZEC S.; EDWARDS, M.S.; HALLMARK, C.J.; MUSSELWHITE, L.W.; FLINK, B.J.; BOTTAZZI, M.E. Chagas disease: “The new HIV/AIDS of the Americas”. Plos Negleted Tropical Diseases, 6(5), e1498, 2012. HUANG, S.A. & LIE, J.D. Phosphodiesterase-5 (PDE5) Inhibitors in the management of erectile dysfunction. Pharmacy and Therapeutics, 38, 7, 2013. IKAN, R. Natural Products: A Laboratory Guide.2. ed. 340p: Academic Press, 233-238, 1991. 127 JIAN, Y.S.; CHEN, C.W.; LIN, C.A.; YU, H.P.; LIAO, M.Y.; WU, S.H.; LIN, Y.F.; LAI, P.S. Hyaluronic acid-nimesulide conjugates as anticancer drugs against CD44- overexpressing HT-29 colorectal cancer in vitro and in vivo. International Journal of Nanomedicine, 27 (12), 2315-2333, 2017. JIN, G & WONG, S.T.C. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discovery Today, 00, 00 January, 2014. JOHRI, R. K., THUSU, N., KHAJURIA, A., ZUTSHI, U. Piperine-mediated changes in the permeability of rat intestinal epithelial-cells the status of gamma-glutamyl tranpeptidase activity, uptake of amino-acid and lipid-peroxidation. Biochemical Pharmacology, 43 (7), 1401-1407, 1992. JONES, A.J.; GRKOVIC, T.; SYKES, M.L.; AVERY, V.M. Trypanocidal activity of marine natural products. Marine Drugs, 11, 4058-4082, 2013. JONES, R. Nonsteroidal anti-inflammatory drug prescribing: past, present, and future. The American Journal of Medicine, 110, (1A), 7S, 2001. KAISER, M.; MÄSER, P.; TADOORI, L.P.; IOSET, J.R.; BRUN, R. Antiprotozoal Activity Profiling of Approved Drugs: A Starting Point toward Drug Repositioning. PLOS ONE, 13, 2015. KAITIN, K.I. Deconstruting the drug development process: the new face of innovation. Clinical Pharmacology & Therapeutics, 87, 356-61, 2010. KAPIL, A. Piperine: a potent inhibitor of Leishmania donovani promastigotes in vitro. Planta Medica, 59 (5), 474, 1993. KAPPE, C.O.; DALLINGER, D. Controlled microwave heating in modern organic synthesis: highlights from the 2004-2008 literature. Molecular Diversity, 13(2), 71-193, 2009. KIM, K. J.; LEE, M. S.; JO, K.; HWANG, J. K. Piperidine alkaloids from Piper retrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMPactivated protein kinase. Biochemica and Biophysical Research Communications, 411 (1), 219-225, 2011. KIUCHI, F.; NAKAMURA, N.; TSUDA, Y.; KONDO, K. e YOSHIMURA H. Studies on crude drugs effective on visceral larva migrans. IV. Isolation and identication of larvicidal principles in pepper. Chemical & Pharmaceutical Bulletin, 36, 2452-2465, 1988. KLOTZ, S.A.; SCHIMIDT, J.O.; DORN, P. L.; IVANYI, C.; SULLIVAN, K.R.; STEVENS, L. Free-roaming kissing bugs, vectors of Chagas disease, feed often on humans in the Southwest. The American Journal of Medicine, 127(5), 2014. 128 KONTOGIORGIS, C. A. & HADJIPAVLOU-LITINA, D. J. Non steroidal antiinflammatory and anti-allergy agents. Current Medicinal Chemistry, 9, 89-98, 2002. KORNHUBER, J.; MUEHLBACHER, M.; TRAPP, S.; PECHMANN, S.; FRIEDL, A.; REICHEL, M.; MUHLE, C.; TERFLOTH, L.; GROEMER, T.W.; SPITZER, G.M.; LIEDL, K.R.; GULBINS, E.; TRIPAL. P. Identification of Novel Functional Inhibitors of Acid Sphingomyelinase. PLOS ONE, 6, 2011. KOUL, S.; KOUL, J. L.; TANEJA, S. C.; DHAR, K. L.; JAMWAL, D. S.; SINGH, K.; REEN, R. R.; SINGH, J. Structure-activity relationship of piperine and its synthetic analogues for their inhibitory potentials of rat hepatic microsomal constitutive and inducible cytochrome P450 activities. Bioorganic & Medicinal Chemistry, 8(1), 251-268, 2000. KUMAR, S.; SARAVANAKUMAR, M.; RAJA, B. Efficacy of piperine, an alkaloidal constituent of pepper on nitric oxide, antioxidants and lipid peroxidation markers in LNAME induced hypertensive rats. International Journal of Pharmacology Sciences and Research, 1, 300–307, 2010. KUMMER, C.L. & COELHO, T.C.R.B. Cycloxygenase-2 inhibitors nonsteroid antiinflammatory drugs: Current Issues. Revista Brasileira de Anestesiologia, 52 (4), 498-512, 2002. LEE, S. A.; HONG, S. S.; HAN, X. H.; HWANG, J.S.; OH, G.H.; LEE, K.S.; LEE, M.K.; HWANG, B.Y.; RO, J.S. Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidade and antidepressant-like activity. Chemical & Pharmaceutical. Bulletin, 53 (7), 832-835, 2005. LEPESHEVA, G.I. Design or screening of drugs for the treatment of Chagas disease: what shows the most promise? Expert Opinion on Drug Discovery, 8(12), 2013. LEY, V.; ANDREWS, N. W.; ROBBINS, E. S.; NUSSENZWEIG, V. Amastigotes of Trypanosoma cruzi sustain na infective cycle in mammalian cells. Journal of Experimental Medicine, 168, 649-659, 1988. LEWINSON, R. Carlos Chagas and the discovery of Chaga’s disease (American Trypanosomiasis). Journal of the Royal Society of Medicine, 74 (6), 451-455, 1981. LIMA, L.M. & BARREIRO, E. Bioisosterism: an useful strategy for molecular modification and drug design. Current Medicinal Chemistry, 12, 23-49, 2005. LIU, C.; CHANG, S.H.; NARKO, K.; TRIFAN, O.C.; WU, M.T.; SMITH, E.; HAUDENSCHILD, C.; LANE, T.F.; HLA, T. Overexpression of cyclooxygenase-2 is sufficient to induce tumor genesis in transgenic mice. Journal of Biological Chemistry, 25, 276 (21), 18563-18569, 2001. 129 MA’AYAN, A.; JENKIS, S.L.; GOLDFARB, J.; IYENGAR, R. Network analysis of FDA approved drugs and their targets. Mount Sinai Journal of Medicine, 74,27-32, 2007. MACHADO, F.S.; MUKHERJEE, S.; WEISS, L.M.; TANOWITZ, H.B.; ASHTON, A.W. Bioactive lipids in Trypanosoma cruzi infection. Advances in Parasitology, 76, 1-31, 2011. MAIA, R. C.; SILVA, L.L.; MAZZEU, E.F.; FUMIAN, M.M.; DE REZENDE, C.M.; DORIGUETTO, A.C.; CORRÊA, R.S.; MIRANDA, A.L.; BARREIRO, E.J.; FRAGA, C.A. Synthesis and analgesic profile of conformationally constrained N-acylhydrazone analogues: Discovery of novel N-arylideneamino quinazolin-4(3H)-one compounds derived from natural safrole. Bioorganic & Medicinal Chemistry, 17, 6517-6525, 2009. MAIA, R.C. & FRAGA, C.A.M. Discovery of dual chemotherapy drug candidates designed by molecular hybridization current. Enzyme Inhibition, 6, 171-182, 2010. MARCH, J. Advanced organic chemistry-reactions, mecanism and struture. 3. ed.: John Willey & Sons: 388, 437, 438, 1095, 1099, 1100 e 1101, 1985. MARCILI, A.; LIMA, L.; CAVAZZANA, M.; JUNQUEIRA, A.C.V. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2 B genes and genotyping based on ITS1 rDNA. Parasitology, 136, 641–655, 2009. MAO, Q. Q.; XIAN, Y. F.; IP, S. P.; CHE, C.T. Involvement of serotonergic system in the antidepressant-like effect of piperine. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 1144-1147, 2011. MARQUES, J. V.; OLIVEIRA, A.; RAGGI, L.; YOUNG, M.C.M.; KATO, M.J.. Antifungal activity of natural and synthetic amides from Piper species. Journal of the Brazilian Chemical Society, 21, (10), 1807-1813, 2010. MARTINELLI, A.; RODRIGUES, L. A.; CRAVO, P. Plasmodium chabaudi: efficacy of artemisinin + curcumin combination treatment on a clone selected for artemisinin resistance in mice. Experimental Parasitology, 119, 304-307, 2008. MATTHEWS, S.J. & McCoy, C. Thalidomide: a review of approved and investigational uses. Clinical therapeutics, 25, (2), 2003. MATTILA, M.A.K. & LARNI, H.M. Flunitrazepam: a review of its pharmacological properties and therapeutic use. Drugs, 20, 353–374, 1980. MATSUDA, H.; NINOMIYA, K.; MORIKAWA, T.; YASUDA, D.; YAMAGUCHI, I.; YOSHIKAWA, M. Hepatoprotective amide constituents from the fruit of Piper chaba: structural requirements, mode of action, and new amides. Bioorganic & Medicinal Chemistry, 17, 7313-7323, 2009. 130 MASON, R.P. & HOLTZMAN, J.L. The role of catalytic superoxide formation in the O2 inhibition of nitroreductase. Biochemical & Biophysical Research Communications, 67, 1267–1274, 1975. MAYA, J. D.; BOLLO, S; NUÑES-VERGARA, L. J.; SQUELLA, J. A.; REPETTO, Y.; MORELLO, A.; PÉRIÉ, J.; CHAUVIÈRE, G. Trypanosoma cruzi: effect and mode of action of nitroimidazole and nitrofuran derivatives. Biochemical Pharmacology, 65, 999- 1006, 2003. MAYA, J.D.; CASSELS, B.K.; ITURRIAGA-VASQUEZ, P.; FERREIRA, J.; FAÚNDEZ, M.; GALANTI, N.; FERREIRA, A.; MORELLO, A. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comparative Biochemistry & Physiology, 146, 601–620, 2007. MAZZETI, A.L.; DINIZ, L.F.; GONÇALVEs, K.R.; WONDOLLINGER, R.S.; ASSÍRIA, T.; RIBEIRO, I.; BAHIA, M.T. Synergic effect of allopurinol in combination with nitroheterocyclic compounds 2 against Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, 8, 2019. MEANWELL, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. Journal of Medicinal Chemistry, 54, 2529–2591, 2011. MEDINA-FRANCO, J.L.; GIULIANOTTI, M.A.; WELMAKER, G.S.e HOUGHTEN, R.A. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discovery Today, 00, 00, 2013. MEHTA, A; KAUR, G; CHINTAMANENI, M. Piperine and quercetin enhances antioxidant and hepatoprotective effect of curcumin in paracetamol induced oxidative stress. International Journal of Pharmacology, 8, 101–7, 2012. MENNA-BARRETO, R.F.S.; SALOMÃO, K.; DANTAS, A.P.; SANTA-RITA, R.M.; SOARES, M.J.; BARBOSA, H.S.; DE CASTRO, S.L. Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron, 40, 157-168, 2009. MEZENCEV, R.; GALLIZI, M.; KUTSCHY, P.; DO CAMPO, R. Trypanosoma cruzi: antiproliferative effect of indole phytoalexins on intracellular amastigotes in vitro. Experimental Parasitology, 122, 66-69, 2008. MILDER, R. & KLOETZEL, J. The development of Trypanosoma cruzi in macrophages in vitro. Interaction with lysossomes and host cell fate. Parasitology, 80, 139-145, 1980. MINISTÉRIO DA SAÚDE-Doenças Infecciosas e Parasitárias-Guia de Bolso Revista. 8. ed.: Brasília, DF, 2010. 131 MINGATTO, F.E.; SANTOS, A.C.; RODRIGUES, T.; PIGOSO, A.A.; UYEMURA, S.A.; CURTI, C. Effects of nimesulide and its reduced metabolite on mitochondria. British Journal of Pharmacology, 131, 1154-1160, 2000. MUNOZ-BELLIDO, J.; MUNOZ-CRIADO, S.; GARC̀IA-RODR̀IGUEZ, J.A. Antimicrobial activity of psychotropic drugs: selective serotonin reuptake inhibitors. International Journal of Antimicrobial Agents, 14(3), 177–80, 2000. MITSCHER, L. A.; LEMKE, T. L.; GENTRY, E. J. Foye’s Principles of Medicinal Chemistry. 6.ed. Lippincott: Williams & Wilkins, 2012. MURTA, S. M.; DOS SANTOS, W. G.; ANACLETO, C.; NIRDE, P.; MOREIRA, E. S. e ROMANHA, A. J. Drug resistance in Trypanosoma cruzi is not associated with amplification or overexpression of P-glycoprotein (PGP) genes. Molecular & Biochemical Parasitology, 117 (2), 223-228, 2001. MORELLO, A.; LIPCHENCA, I.; CASSELS, B.K.; SPEISKY, H.; ALDUNATE, J.; REPETTO, Y. Trypanocidal effect of boldine and related alkaloids upon several strains of Trypanosoma cruzi. Comparative Biochemistry & Physiology-Pharmacology Toxicology & Endocrinology, 107, 367–371, 1994. MORENO, S.N., DO CAMPO, R., MASON, R.P.; LEON, W.; STOPPANI, A.O.M. Different behaviors of benznidazole as free radical generator with mammalian and Trypanosoma cruzi microsomal preparations. Archives of Biochemistry & Biophysics, 218, 585–591, 1982. MORILLO, C. A., MARIN-NETO, J. A., AVEZUM, A.; SOSA-ESTANI, S.; RASSI JR, A.; ROSAS, F.; VILLENA, E.; QUIROZ, R.; BONILLA, R.; BRITTO, C.; GUHL, F.; VELAZQUEZ, E. Randomized trial of benznidazole for chronic Chagas´ cardiomyopathy. The New England Journal of Medicine, 373, 1295-1306, 2015. MOTA, D. C. G. D.; PEREIRA, A. M. T. B.; ARAÚJO, S. M.; GOMES, M. L. Estresse e resiliência em doença de Chagas. Aletheia, 24, 57-68, 2006. MUELAS-SERRANO, S.J.J.; NOGAL-RUIZ, A.; GOMEZ-BARRIO. Setting of a colorimetric method to determine the viability of Trypanosoma cruzi epimastigotes. Parasitology Research, 86, 12, 999-1002, 2000. MULLEN, O. L.; DODD, M. C.; MINTON, J. P. Evaluation of dye exclusion and colony inhibition techniques for detection of polyoma-specific, cell-mediated immunity. Journal of National Cancer Institute, 54, 229-231, 1975. MUNOZ-BELLIDO, J.; MUNOZ-CRIADO, S.; GARC̀IA-RODR̀IGUEZ, J.A. Antimicrobial activity of psychotropic drugs: selective serotonin reuptake inhibitors. International Journal of Antimicrobial Agents, 14(3), 177–80, 2000. 132 NANAVATY, V.; LAMA, R.; SANDHU, R.; ZHONG, B.; KULMAN, D.; BOBBA, V.; ZHAO, A.; LI, B.; SU, B. Orally active and selective tubulin inhibitors as antiTrypanosome agents. Plos One, 15, 2016. NAVARRO, M.; CISNEROS-FAJARDO, E.J.; LEHMANN, T.; SANCHEZ-DELGADO, R.S.; ATENCIO, R.; SILVA, P.; LIRA, R.; URBINA, J.A. Toward a novel metal-based chemotherapy against tropical diseases. 6. Synthesis and characterization of new copper(II) and gold(I) clotrimazole and ketoconazole complexes and evaluation of their activity against Trypanosoma cruzi. Inorganic Chemistry, 40, 6879-6884, 2001. NEPALI, K; SHARMA, S.; SHARMA, M.; BEDI, P.M.S.; DHAR, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. European Journal of Medicinal Chemistry, 77, 422-487, 2014. NETTER, P; LAPICQUE, F.; BANNWARTH, B.; TAMISIER, J.N.; THOMAS, P. ROYER, R.J. Diffusion of intramuscular ketoprofen into the cerebrospinal fluid. European Journal of Clinical Pharmacology, 29 (3), 319-321, 1985. NEWMAN, D.J. & CRAGG, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629-661, 2016. NOVAC, N. Challenges and opportunities of drug repositioning. Trends in Pharmacological Sciences, 34 (5), 2013. OATES, J.A. Nonsteroidal antiinflammatory drugs-differences and similarities. The New England Journal of Medicine, 324, 1716-1725, 1991. OMS. Metrics: Disability-Adjusted Life Year (DALY). World Health Organization, 2015. Acesso em 01-06-2019. Disponível em: http://www.who.int/healthinfo/gobal_burden_disease/metrics_daly/en/. ONG, M.M.; WANG, A.S.; LEOW, K.Y.; KHOO, Y.M.; BOELSTERLI, U.A. Nimesulide-induced hepatic mitochondrial injury in heterozygous Sod2+/− mice. Free Radical Biology & Medicine, 40, 420–429, 2006. OPREA, T.I.; NIELSEN, S.K.; URSU, O.; YANG, J.J.; TABOUREAU, O.; MATHIAS, S.L.; KOUSKOUMVEKAKI, I.; SKLAR, L.A.; BOLOGA, C.G. Association drugs, targets and clinical outcomes into an integrated network affords a new platform for computer-aided drug repurposing. Molecular Informatics, 14, 30 (2-3), 100-11, 2011. OPAS (Organización Panamericana de la Salud) XIII Reunión de la comisión intergubernamental para la eliminación de Triatoma infestans y la interrupción de la tripanosomiasis americana por transfusión. Montevideo y Argentina, Mar, 29-31, 2004. OUELLETTE, R.J. & RAWN, J.D. Amines and amides. In: Principles of organic chemistry. OUELLETTE, R.J. & RAWN, J.D. 1. ed. 496p.: Elsevier, 315-342, 2015. 133 PACHER, P.; NIVOROZHKIN, A.; SZABO, C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacogical Reviews, 58, 87–114, 2006. PADHY, B.M. & GUPTA, Y.K. Drug repositioning: re-investigating existing drugs for new therapeutic indications. Journal of Postgraduate Medicine, 57, 153-160, 2011. PAIVA, C.N; FEIJÓ, D.F.; DUTRA, F.F.; CARNEIRO, V.C.; FREITAS, G.B.; ALVES, L. S.; MESQUITA, J.; FORTES, G.B.; FIGUEIREDO, R.T.; SOUZA, H.S.P.; FONTAPPIÉ, M.R.; LANNES-VIEIRA, J.; BOZZA, M.T. Oxidative stress fuels Trypanosoma cruzi infection in mice. The Journal of Clinical Investigation, 122, 7, 2012. PALIT, P. & ALI, N. Oral therapy with sertraline, a selective serotonin reuptake inhibitor, shows activity against Leishmania donovani. Journal of Antimicrobial Chemotherapy, 61(5), 1120–4, 2008. PAPADOPOULOU, M.V., TRUNZ, B.B.; BLOOMER, W.D.; McKENZIE, C.; WILKINSON, S.R.; PRASITTICHAI, C.; BRUN, R.; KAISER, M.; TOREELE, E. Novel 3-nitro-1H 1,2,4-triazole-based aliphatic and aromatic amines as anti-Chagasic agents. Journal of Medicine Chemistry, 54, 8214-23, 2011. PATTERSON, D.E.; CRAMER, R.D.; FERGUSON, A.M.; CLARCK, R.D.; WEINBERGER, L.E. Neighborhood behavior: a useful concept for validation of ‘molecular diversity’ descriptors. Journal of Medicine Chemistry, 39, 3049–3059, 1996. PATTERSON, S.; WYLLIE, S.; STOJANOVSKY, L.; PERRY, M.R.; SIMEONS, F.R.C.; NORVAL, S.; OSUNA-CABELLO, M.; DE RYCKER, M.; FAIRLAMB, A.H. The R enantiomer of the antitubercular drug PA-824 as a potential oral treatment for visceral leishmaniasis. Antimicrobial Agents & Chemotherapy, 57, 4699-4706, 2013. PATTERSON, S. & WYLLIE, S. Nitro drugs for the treatment of Trypanosomatid diseases: past, present, and future prospects. Trends in Parasitology, 30 (6), 2014. PARMAR, V. S.; JAIN, S. C.; BISHT, K. S.; TANEJA, P.; JHA, A.; TYAGI, O. D.; PRASAD, A. K.; WENGEL, J.; OLSEN, C. E.; BOLL, P. M. Phytochemistry of the genus Piper. Phytochemistry, 46(4), 597-673, 1997. PARTHASARATHY, V.A.; CHEMPAKAM, B.; ZACHARIAH, T.J.Chemistry of spices. CAB International: Oxfordshire, cap. 2, 2008. PAULO, M. & PETER, J. Beyond Cox-inhibition: ‘side-effects’ of ibuprofen on neoplastic development and progression. Current Pharmaceutical Design, 21, 2978-2982, 2015. PAVIA, D.L.; LAMPMAN, G.M.; KRIZ, G.S.; VYVYAN, J.R. Introduction to Spectroscopy. 5. ed. 784 p : Cengage Learning, 2014. 134 PEREIRA-CHIOCCOLA, V. L.; ACOSTA-SERRANO, A.; ALMEIDA, I.C.; FERGUSON, M.A.J.; SOUTO-PADRÓN, T.; RODRIGUES, M.M.; TRAVASSOS, L.R.; SCHENKMAN, S. Mucin-like molecules from a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-a-galactosyl antibodies. Journal of Cell Science, 113, 1299-1307, 2000. PEREZ-MAZLIAH, D.E.; ALVAREZ, M.G.; COOLEY, G.; LOCOCO, B.E.; BERTOCCHI, G.; PETTI, M.; ALARMENTI, A.H.; TARLETON, R.L.; LAUCELLA, S.A.; ALBAREDA, M.C.; VIOTTI, R. Sequential combined treatment with allopurinol and benznidazole in the chronic phase of Trypanosoma cruzi infection: a pilot study. Journal of Antimicrobial Chemotherapy, 68, 424-437, 2013. PEREZ, C. J.; LYMBERY, A. J.; THOMPSON, R. C.A. Reactivation of chagas disease: implications for global health. Trends in Parasitology, 31 (11), 595-603, 2015. PERICHERLA, S.; MAREDDY, J.; GEETHA RANI, D. P.; GOLLAPUD, P.V.; PAL, S. Chemical modifications of nimesulide. Journal of Brazilian Chemical Society, 18 (2), 384- 390, 2007. PINAZO, M.J.; ESPINOSA G.; GÁLLEGO, M.; LÓPEZ-CHEJADE, P.L.; URBINA, J.A.; GASCÓN, J. Successful treatment with posaconazole of a patient with chronic Chagas disease and systemic lupus erythematosus. The American Journal of Tropical Medicine and Hygiene, 82, 583–587, 2010. POKROVSKAYA, V.; BELAKHOV, V.; HAINRICHSON, M.; YARON, S.; BAASOV, T. Design, synthesis, and evaluation of novel fluoroquinolone aminoglycoside hybrid antibiotics. Journal of Medicinal Chemistry, 52, 2243-2254, 2009. PRATA, A. Clinical and epidemiological aspects of Chagas disease. The Lancet Infectious Diseases, 1, 92–100, 2001. PRATA, A.; MACÊDO, V.; PORTO, G.; SANTOS, I.; CERISOLA, J.A.; SILVA, N. Tratamento da doença de Chagas pelo nifurtimox (Bayer 2502). Sociedade Brasileira de Medicina Tropical, 9, 6, 1975. PRESTON, S.J.; ARNOLD, M.H.; BELLER, E.M.; BROOKS, P.M.; BUCHANAN,W.W. Comparative analgesic and anti-inflammatory properties of sodium salicylate and acetylsalicylic acid (aspirin) in rheumatoid arthritis. Britsh Journal of Clinical Pharmacology, 27, 607-11, 1989. RAAY, B.; MEDDA, S.; MUKHOPADHYAY, S.; BASU, M. K. Targeting of piperine intercalated in mannose-coated liposomes in experimental leishmaniasis. Indian Journal of Biochemistry and Biophysics, 36 (4), 248-251, 1999. RAETHER, W. & HANEL, H. Nitroheterocyclic drugs with broad spectrum activity. Parasitology Research, 50, 19-39, 2003. 135 RAINSFORD, K. D. Relationship of nimesulida safety to its pharmacokinetics: assessment of adverse reactions. Rheumatology, 38, 4-10, 1999. RAO, V. R. S.; SURESH, G.; RAO, R. R.; BABU, K. S.; CHASHOO, G.; SAXENA, A. K.; RAO, J. M. Synthesis of piperine-amino acid ester conjugates and study of their cytotoxic activities against human cancer cell lines. Medicinal Chemistry Research, 21, 38, 2010. RASHEED, S.; SÁNCHEZ, S.S.; YOUSUF, S.; HONORÉ, S.M.; CHOUDHARY, M.I. Drug repurposing: in-vitro anti-glycation properties of 18 common drugs. PLOS ONE, 13, e0190509, 2018. RASSI, A. JR.; RASSI, A.; MARIN-NETO, J.A. Chagas disease. The Lancet, 375,1388– 402, 2010. RASSI A. JR.; RASSI, A.; DE REZENDE, J.M. American Tripanosomiasis (Chagas disease). Infectious Disease Clinics of North America, 26 (2), 275-291, 2012. REEN, R. K., JAMWAL, D.S., TANEJA, S. C.; KOUL, J.L.; DUBEY, R.K.; WIEBEL, F.J.; SINGH, J. Impairment of UDP-glucose dehydrogenase and glucuronidation activities in liver and small-intestine of rat and guinea-pig in vitro by piperine. Biochemical Pharmacology, 46(2), 229-238, 1993. REEN, R. K., WIEBEL, F. J., SINGH, J. Piperine inhibits aflatoxin B-1-induced cytotoxity and genotoxicity in V79 Chinese hamster cells genetically engineered to express rat cytochrome P4502B1. Journal of Ethnopharmacology, 58 (3), 165-173, 1997. REITHINGER, R.; TARLETON, R. L.; URBINA, J. A.; KITRON, U.; GÜRTLER, R. E. Eliminating Chagas’ disease: challenges and a roadmap. The BMJ, 338, b1283, 2009. REY, L. Parasitologia. 3. ed. 856 p. Rio de Janeiro: Guanabara Koogan,.2011. RIBEIRO, T. S., LIMA, L. F., PREVIATO, J. O., PREVIATO, L. M., HEISE, N., LIMA, M. E. F. Toxic effects of natural piperine and its derivatives on epimastigotes and amastigotes of Trypanosoma cruzi. Bioorganic & Medicinal Chemistry Letters, 14, 3555– 3558, 2004. RISS, T.L.; MORAVEC, R.A.; MINOR, L.; NILES, A.L.; DUELLMAN, S.; BENINK, H.A.; WORZELLA, T.J. Cell Viability Assays Assay Guidance Manual, 1 (1), 305-336, 2013. RODRIGUES, J.C. & DE SOUZA, W. Ultrastructural alterations in organelles of parasitic protozoa induced by different classes of metabolic inhibitors. Current Pharmaceutical Design, 14 (9), 925–938, 2008. 136 RODRIGUES, J.H.S.; STEIN, J.; STRAUSS, M.; RIVAROLA, H.W.; UEDANAKAMURA, T.; NAKAMURA, C.V.; DUSZENKO, M. Clomipramine kills Trypanosoma brucei by apoptosis. International Journal of Medical Microbiology, 306, 196-205, 2016. ROMANO, P.S.; CUETO, J.A.; CASASSA, A.F.; VANRELL, M.C.; GOTTLIEB, R.A.; COLOMBO, M.I. Molecular and cellular mechanisms involved in Trypanosoma cruzi/host cell interplay. IUBMB Life, 64, 387-396, 2012. ROMÃO, J.A.; BOCCARDO, L.; DE PAULA, V.F.; CHAGAS, R.J.; MOREIRA, B.O. Toxicidade de extratos de Piper nigrum, piperina e piperamidas para o diplópodo Orthoporus fuscipes em condições de laboratório. Revista Brasileira de Toxicologia, 21(1), 33-38, 2008. ROUZER, C.A. & MARNETT, L.J. Cyclooxygenases: structural and functional insights. Journal of Lipid Research, 50 (Suppl), S29-S34, 2009. RUELA, A.L.M.; ARAÚJO, M.B.; PEREIRA, G.R. Desenvolvimento e validação de um método analítico rápido por cromatografia líquida de alta eficiência para determinação de nimesulida em estudos de liberação in vitro. Química. Nova, 32, 1, 165-168, 2009. SAADEH, H.A.; MOSLEH, I.M.; MUBARAK, M.S. Synthesis of novel hybrid molecules from precursors with known antiparasitic activity. Molecules, 14, 1483-1494, 2009. SANGWAN, P.L.; KOUL, J.L.; SURRINDER, K.; REDDY, M.V.; THOTA, N.; KHAN, I.; KUMAR, A.; KALIA, N.; QAZI, G.N. Piperine analogues as potente Staphylococcus aureus NorA efflux pump inhibitors. Bioorganic & Medicinal Chemistry, 16, 9847-9857, 2008. SBARAGLINI, M.L.; VANRELL, M.C.; BENAIM, G.; CARRILLO, C.; TALEVI, A.; ROMANO, P.S. Negleted tropical protozoan diseases: drug repositioning as a rational option. Current Topics in Medicinal Chemistry, 16 (19), 2201-2222, 2016. SCHENKMAN, S.; JIANG, M.S.; HART, G. W.; NUSSENWEIG, V. A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell, 65, 1117-1125, 1991. SCHMIDT, A. & KRAUTH-SIEGEL, R. L.Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development. Current. Topics in Medicinal Chemistry, 2, 1239-1259, 2002. SEEBEK, T.; STERK, G.J.; KE, H. Phosphodiesterase inhibitors as a new generation of antiprotozoan drugs: exploiting the benefit of enzymes that are highly conserved between host and parasite. Future Medicinal Chemistry, 3(10), 1289–1306, 2011. 137 SEIBERT, K. & MASFERRER, J.L. Role of inducible cyclooxygenase (COX-2) in inflammation. Receptor, 4,17–23, 1994. SEMLER, U. & GROSS, G.G. Distribution of piperine in vegetative perts of Piper nigrum. Phytochemistry, 27 (5), 1566-1567, 1988. SHIM, J.S. & LIU, J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. International Journal of Biological Sciences, 10 (7), 654-663, 2014. SHOBA, G.; JOY, D.; THANGAM, J.; MAJEED, M.; RAGENDRAM, R.; SRINIVAS, P. S. R. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Medica, 64 (4), 353-356, 1998. SHOUKRI, R.A.; AHMED, I.S.; SHAMMA, R.N. In vitro and in vivo evaluation of nimesulide lyophilized orally disintegrating tablets. European Journal of Pharmaceutics& Biopharmaceutics, 73, 162-171, 2009. SILVA, E.F.; CANTO-CAVALHEIRO, M.M.; BRAZ, V.R.; CYSNE-FINKELSTEIN, L.; LEON, L. L.; ECHEVARRIA, A. Synthesis and biological evaluation of new 1,3,4- thiadiazolium-2-phenylamine derivatives against Leishmania amazonensis promastigotes and amastigotes. European Journal of Medicinal Chemistry, 37 (12), 979-984, 2002. SINGH, B.K.; TRIPATHI, M.; PANDEY, P.K.; KAKKAR, P. Nimesulide aggravates redox imbalance and calcium dependent mitochondrial permeability transition leading to dysfunction in vitro. Toxicology, 275, 1–9, 2010. SINGH, I.P.; JAIN, S.K.; KAUR, A.; SINGH, S.; KUMAR, R.; GARG, P.; SHARMA, S.S.; ARORA, S.K. Synthesis and antileishmanial activity oh piperoyl-amino acid conjugates. European Journal of Medicinal Chemistry, 45, 3439-3445, 2010. SOUZA, R.F. O que é um estudo clínico randomizado? Medicina (Ribeirão Preto), 42 (1), 3-8. Disponível em: http://www.fmrp.usp.br/revista. Acesso em: 16-07-2019. 2009. SRINIVASAN, K. Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Critical Reviews in Food Science and Nutrition, 47, 735-748, 2007. SPIELBERG, S.P. In vitro assessment of pharmacogenetic susceptibility to toxic drug metabolites in humans. Federation Proceedings, 43 (8), 2308-13, 1984. SQUELLA, J.A.; GONZALEZ, P.; BOLLO, S.; NUNEZ-VERGARA, L.J. Electrochemical generation and interaction study of the nitro radical anion from nimesulide. Pharmaceutical Research, 16 (1), 161-164, 1999. STENKVIST, B.; BENGTSSON, E.; DAHLQVIST, B.; ERIKSSON, O.; JARKRANS, T.; NORDIN, B. Cardiac glycosides and breast cancer, revisited. The New England Journal of Medicine, 306, 484, 1982. 138 SUETH-SANTIAGO, V. Avaliação da atividade tóxica e investigação sobre os prováveis mecanismos de ação de diarileptanoides naturais, seus derivados e análogos frente ao Trypanosoma cruzi. 2015. 274 f. Tese (Doutorado em Ciências). Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, 2015. SUETH-SANTIAGO, V.; DECOTE-RICARDO, D.; MORROT, A.; FREIRE-DE-LIMA, C.G.; LIMA, M.E.F. Challenges in the chemotherapy of Chagas disease: Looking for possibilities related to the differences and similarities between the parasite and host. World Journal of Biological Chemistry, 8, 57–80, 2017. SÜLEYMAN, H.; DEMIRCAN, B.; KARAGOZ, Y.; OZTASAN, N.; SULEYMAN, B. Antiinflammatory effects of selective COX-2 inhibitors. Polish Journal of Pharmacology, 56, 775-780, 2004. SÜLEYMAN, H.; CADIRCI, E.; ALBAYRAK, A.; HALICI, Z. Nimesulide is a selective COX-2 inhibitory, atypical non-steroidal anti-inflammatory drug. Current Medicinal Chemistry, 15 (3), 278-83, 2008. SUNILA, E. S. & KUTTAN, G. Immunomodutalory and antitumor activity of Piper longum Linn. and piperine. Journal of Ethnopharmacology, 90, 339-346, 2004. TIBAYRENC, M. & AYALA, F.J. The clonal theory of parasitic protozoa: 12 years on. Trends in Parasitology, 18, 405–410, 2002. TOGNELLA, S. Nimesulide new clinical opportunities. Drugs, 46 (Suppl. I), 275-276, 1993. TRAVERSA, G.; BIANCHI, C.; DA CAS, R.; ABRAHA, I.; MENNITI-IPPOLITO, F.; VENEGONI, M. Cohort study of hepatoxicity associated with nimesulide and other nonsteroidal anti-inflammatory drugs. Britsh Medicinal Journal, 327, 18-22, 2003. TROCHINE, A; CREEK, D.J.; FARAL-TELLO, P.; BARRETT, M.P.; ROBELLO, C Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLOS Neglected Tropical Diseases, 8 (5), e2844, 2014. TRUONG, D.D. Tolcapone: reviewof its pharmacology and use as adjunctive therapy in patients with Parkinson’s disease. Clinical Interventions in Aging, 4, 109-113, 2009. UCHIYAMA, N. J. Antichagasic activities of natural products against Trypanosoma cruzi. Journal of Health Science, 55, 1, 31-39, 2009. URBINA, J.A.; PAYARES, G.; SANOJA, C.; LIRA, R.; ROMANHA, A.J. In vitro and in vivo activities of ravuconazole on Trypanosoma cruzi, the causative agent of Chagas disease. International Journal of Antimicrobial Agents, 21, 27-38, 2003. 139 URBINA, J.A. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Tropica, 115, 55–68, 2010. VANE, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for the aspirinlike drugs. Nature New Biol, 231, 232-235, 1971. VANE, J.R.; BAKHLE, Y.S.; BOTTING, R.M. Ciclooxygenases 1 and 2. Annual Reviews of Pharmacology and Toxicology, 38, 97-120, 1998. VANNIER-SANTOS, M.A.; CASTRO, S.L. Electron microscopy in antiparasitic chemotherapy: a (close) view to a kill. Current Drug Targets, 10 (3), 246-60, 2009. VARGAS-MÉNDEZ, L.Y.; KOUZNETSOV, V.V. Cruzain inhibitors as prominent molecules with the potential to become drug candidates against Chagas disease. Journal of Pharmacological Research, 2 (3), 1–7, 2019 VEERAREDDY, P. R.; VOBALABOINA, V.; NAHID, A. Formulation and evaluation of oil-in-water emulsions of piperine in visceral leishmaniasis. Die Pharmazie, 59 (3), 194- 197, 2004. VIEGAS-JUNIOR, C.; DANUELLO, A.; BOLZANI, V.S.; BARREIRO, E.J.; FRAGA, C.A.M. Molecular hybridization: a useful tool in the design of new drug prototypes. Current Medicinal Chemistry, 14, 1829-1852, 2007. VILLALTA, F.; MADISON, M. N.; KLESHCHENKO, Y. Y.; NDE, P.N.; LIMA, M. F. Molecular analysis of early host cell infection by Trypanosoma cruzi. Frontiers In Bioscience, 13, 3714-3734. 2009. VIODÉ, C.; BETTACHE, N.; CENAS, N.; KRAUTH-SIEGEL, R.L.; CHAUVIÉRE, G.; BAKALARA, N.; PÉRIÉ, J. Enzymatic reduction studies of nitroheterocycles. Biochemical Pharmacology, 57, 549-557, 1999. VOAK, A.A.; GOBALAKRISHNAPILLAI, V.; SEIFERT, K.; BALCZO, E.; HU, L.; HALL, B.S.; WILKINSON, S.R. An essential type nitroreductase from Leismania major can be used to activate leishmanicidal prodrugs. Journal of Biological Chemistry, 288, 28466-28476, 2013. WALSH, J.S. & MIWA, G. T. Bioactivation of drugs: risk and drug design. Annual Review of Pharmacology and Toxicology, 51, 145-167, 2011. WARNOCK, D.W. Itraconazole and fluconazole: new drugs for deep fungal infection. Journal of Antimicrobial Chemotherapy, 24, 275-7, 1989. WERBOVETZ, K.A. Tubulin as an antiprotozoal drug target. Mini Reviews in Medicinal Chemistry, 2 (6), 519–529, 2002. 140 WHO (Word Health Organization). Quality control methods for medicinal plant materials. Geneva: WHO, 115p., 1998. WHO. Control of Chagas disease: second report of the WHO expert committee.TDR - Technical Report Series, vol. 905, Geneva, 2002 WHO. TDR and product/drug discovery, introduction. Acesso em 15-04-2019. Disponível em: http://apps.who.int/tdr/svc/topics/product-drug-development, 2009 WHO: Chagas disease (American Tripanosomiasis) fact sheet (revised in June 2010). Weekly Epidemiological Record, 85, 334–6, 2010 WHO. Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis. Technical report of the TDR Disease Reference Group on Chagas Disease, Human African Trypanosomiasis and Leishmaniasis. Geneva: World Health Organization; (WHO Technical Report Series, 975), 2012. WHO. Working to overcome the global impact of neglected tropical diseases. First WHO report on neglected tropical diseases, 2011. WILKINSON, S.R.; PRATHALINGAM, S.R.; TAYLOR, M.C. et al. Functional characterisation of the iron superoxide dismutase gene repertoire in Trypanosoma brucei. Free Radical Biology & Medicine, 40,198–209, 2006. WILKINSON, S.R.; TAYLOR, M.C.; HORN, D.; KELLY, J.M.; CHEESEMAN, I. A mechanism for cross-resitance to nifurtimox and benznidazole in Trypanosomes. Proceedings of the National Academy of Sciences of the United States of America,.105,.13p, 5022-5027, 2008. WILKINSON, S.R. & KELLY, J.M. Trypanocidal drugs: mechanisms, resistance and new targets. Experts Reviews in Molecular Medicine, 11, e31. Acesso em 26-09-2019. Disponível em: http://journals.cambridge.org/abstract_S1462399409001252. 2009.;. WILKINSON, S.R.; BOT, C.; KELLY, J.M.; HALL, B.S. Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives. Current Topics in Medicine Chemistry, 11, 2072–2084, 2011. WRIGHT, V. A review of benorylate - a new antirheumatic drug. Scandnavian Journal of Rheumatology Supplement, 13, 5-8, 1975. WYNSEN, J.C.; O’BRIEN, P.D.; WARLTIER, D.C. Zatebradine, a specific bradycardic agent, enhances the positive inotropic actions of dobutamine in ischemic myocardium, Journal of the American College of Cardiology, 23 (1), 233-241, 1994. 141 ZHAI, B.; WU, C.; WANG, L.; SACHS, M.S. e LIN, X. The antidepressant sertraline provides a promising therapeutic option for neurotropic cryptococcal infections. Antimicrobial Agents & Chemotherapy, 56(7), 3758–66, 2012. ZHOU, L.; STEWART, G.; RIDEAU, E.; WESTWOOD, N.J.; SMITH, T.K. A class of 5- nitro-2-furancarboxylamides with potent Trypanocidal activity against Trypanosoma brucei in vitro. Journal of Medicine Chemistry, 56, 796-806, 2013. ZINGALES, B. & COLLI, W. Trypanosoma cruzi: interaction with host cells. In: The biology of Trypanosomes. Berlin: Springer Verlag, 1995. ZINGALES, B.; ANDRADE, S.G.; BRIONES, M.R.; CAMPBELL, D.A.; CHIARI, E.; FERNANDES, O.; GUHL, F.; LAGES-SILVA, E.; MACEDO, A.M.; MACHADO, C.R.; MILES, M.A.; ROMANHA, A.J.; STURM, N.R.; TIBAYRENC, M.; SCHIGMAN, A.G. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Memórias do Instituto Oswaldo Cruz, 104, 1051–1054, 2009. ZINGALLES, B. Trypanosoma cruzi genetic diversity: something new for something know about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Tropica, 184, 38-52, 2018. ZHONG, B.; CAI, X.; CHENNAMANESI, S.; YI, X.; LIU, L.; PINK, J.J.; DOWLATI, A.; XU, Y; ZHOU, A.; SU, B. From COX-2 inhibitor nimesulide to potent anti-cancer agent: synthesis, in vitro, in vivo and pharmacokinetic evaluation. European Journal of Medicinal Chemistry, 47 (1), 432-444, 2012. | por |
dc.subject.cnpq | Química | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/68381/2019%20-%20Joana%20D%e2%80%99Arc%20da%20Silva%20Trindade.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5433 | |
dc.originais.provenance | Submitted by Leticia Schettini (leticia@ufrrj.br) on 2022-03-03T23:41:37Z No. of bitstreams: 1 2019 - Joana D’Arc da Silva Trindade.pdf: 4280920 bytes, checksum: 1dc3ff4d21e408e1729abea1a21e04e6 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-03-03T23:41:39Z (GMT). No. of bitstreams: 1 2019 - Joana D’Arc da Silva Trindade.pdf: 4280920 bytes, checksum: 1dc3ff4d21e408e1729abea1a21e04e6 (MD5) Previous issue date: 2019-10-17 | eng |
Appears in Collections: | Doutorado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2019 - Joana D’Arc da Silva Trindade.pdf | 2019 - Joana D’Arc da Silva Trindade | 4.18 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.