Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/10254
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Machado, Gladson de Souza | |
dc.date.accessioned | 2023-12-21T18:59:38Z | - |
dc.date.available | 2023-12-21T18:59:38Z | - |
dc.date.issued | 2020-03-06 | |
dc.identifier.citation | MACHADO, Gladson de Souza. Investigações na química de combustões usando modelos da cinética química teórica e simulações numéricas. 2020. 115 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/10254 | - |
dc.description.abstract | O presente trabalho tem por objetivo a investigação da ação de modelos da cinética química teórica para o tratamento de problemas relacionados química de combustões. Para tanto, quatro casos distintos foram estudados. No primeiro, a reação de abstração de hidrogênio do formaldeído por radicais hidroxila foi investigada em nível CCSD(T)/CBS, sendo localizado um complexo pré-barreira e um ponto de sela estabilizados por 3,31 e 1,35 kcal mol-1 em relação aos reagentes, respectivamente. Porém, a formação do complexo pré-barreira em temperaturas acima de 550 K se mostra um processo endergônico em relação à energia livre de Gibbs. Portanto, acima deste valor de temperatura a reação pode ser considerada elementar, sendo indicado o cálculo dos coeficientes de velocidade pela teoria do estado de transição variacional canônica. No segundo estudo de caso foi feita a investigação cinética da decomposição do ácido fórmico. Embora as duas principais vias, descarboxilação e desidratação, tenham apresentado valores muito semelhantes de barreira, 65,40 e 65,03 kcal mol-1, respectivamente, em nível CCSD(T)/CBS, a preferência majoritária pela via de desidratação pode ser explicada pela reação de isomerização entre os confôrmeros Z e E. O coeficiente de velocidade da reação de formação do confôrmero Z é sempre maior que a do outro confôrmero. Além disso, através de cálculos de coeficiente de velocidade RRKM e posterior solução da equação mestra, foi constatado que a transição do regime de segunda ordem para o regime falloff ocorre em 0,5 atm a 1400 K. No terceiro estudo de caso foram investigadas cinco reações de iniciação da combustão da acetona, quatro unimoleculares e uma bimolecular, sendo essa de abstração de hidrogênio por oxigênio molecular. Essas reações foram analisadas em nível CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ. Coeficientes de velocidade foram calculados através da teoria RRKM com posterior solução da equação mestra, para as reações unimoleculares e para a reação bimolecular foi utilizada a teoria do estado de transição canônica. A reação de dissociação, através da quebra de ligação C-C, se mostrou a principal via dentre as unimoleculares. Após o mecanismo de combustão proposto por Sarathy ser otimizado com os parâmetros cinéticos calculados para a acetona, o erro em relação ao tempo de ignição foi reduzido de 81% para 24%. Por fim, no quarto estudo de caso, foram feitas simulações 0D de um ciclo Otto ideal com os seguintes combustíveis: acetona, butanol, etanol, butanol/etanol e acetona/butanol/etanol. Para isso foi proposto um modelo de centelha através da dissociação de 5% do oxigênio e dos combustíveis. Nas integrações do mecanismo de combustão, a análise de velocidades das reações demonstrou que todos os combustíveis são iniciados majoritariamente pela reação de átomos de oxigênio com radicais metil, gerando formaldeído e átomos de hidrogênio. Estes átomos passam por algumas etapas até a formação de radicais hidroxila, que reagem com os combustíveis através de reações de abstração de hidrogênio. Feitas as análises dos estudos de caso, conclui-se que a escolha do método mecânico quântico aliada à termodinâmica, ao modelo cinético adequado e análises numéricas gerou resultados satisfatórios, capazes de propor soluções para discussões em aberto na literatura, novos coeficientes de velocidade e interpretações provenientes de um mecanismo de combustão | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Combustão | por |
dc.subject | Formaldeído | por |
dc.subject | Ácido fórmico | por |
dc.subject | Acetona | por |
dc.subject | Butanol | por |
dc.subject | Combustion | eng |
dc.subject | Formaldehyde | eng |
dc.subject | Formic Acid | eng |
dc.subject | Acetone | eng |
dc.subject | Butanol | eng |
dc.title | Investigações na química de combustões usando modelos da cinética química teórica e simulações numéricas | por |
dc.title.alternative | Investigations in the chemistry of combustion using models of theoretical chemical kinetics and numerical simulations | eng |
dc.type | Tese | por |
dc.description.abstractOther | This work aims to investigate the action of theoretical chemical kinetics models for the treatment of combustion chemistry related problems. Four different cases were studied. In the first case, the hydrogen abstraction reaction channel in the formaldehyde + hydroxyl radicals reaction mechanism was investigated at the CCSD(T)/CBS level, with a pre-barrier complex and a saddle point stabilized by 3.31 and 1.35 kcal mol-1 with respect to the reactants, respectively. However, Gibbs free energy profile suggests that the formation of the pre-barrier complex at temperatures above 550 K is an endergonic process. Therefore, above this temperature value the reaction can be considered elementary, and the calculation of the rate coefficients is suggested by the canonical variational transition state theory method. In the second case study, the kinetic investigation of the decomposition of formic acid was carried out. Although the two main pathways, decarboxylation and dehydration, presented very similar barrier values, 65.40 and 65.03 kcal mol-1, respectively, at the CCSD(T)/CBS level, the prevalence of the dehydration pathway can be explained by the isomerization reaction between the Z and E conformers. The rate coefficient for the formation of the Z-conformer is always higher than that for the other conformer. Furthermore, through RRKM calculations and subsequent solution of the master equation, it was found that the transition from the second order regime to the falloff regime occurs at 0.5 atm at 1400 K. In the third case study, five initiation steps in acetone combustion mechanism were investigated: four unimolecular reactions and one bimolecular reaction, the latter being the abstraction of hydrogen by molecular oxygen. These reactions were analyzed at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level. Rate coefficients were calculated using the RRKM theory with subsequent solution of the master equation, for the unimolecular reactions and for the bimolecular reaction the canonical transition state theory was applied. The dissociation reaction, breaking of the C-C bond, proved to be the main route among the unimolecular steps. The combustion mechanism proposed by Sarathy was optimized by the insertion of the calculated kinetic parameters calculated for acetone, and the error in the prediction of ignition time was reduced from 81% to 24%. Finally, in the fourth case study, 0D simulations of an ideal Otto cycle were performed with the following fuels: acetone, butanol, ethanol, butanol/ethanol and acetone/butanol/ethanol. A spark model was proposed through the dissociation of 5% of oxygen and fuels. In the integration of the combustion mechanism, the analysis of reaction rates demonstrated that all fuels are mainly initiated by the reaction of oxygen atoms with methyl radicals, generating formaldehyde and hydrogen atoms. These atoms pass through some stages until the formation of hydroxyl radicals, which react with the fuels through hydrogen abstraction reactions. After analyzing the case studies, it is concluded that the choice of the quantum mechanical method combined with thermodynamics, the appropriate kinetic model and numerical analyzes generated satisfactory results, capable of proposing solutions for open discussions in the literature, new rate coefficients and interpretations from a combustion mechanism | eng |
dc.contributor.advisor1 | Bauerfeldt, Glauco Favilla | |
dc.contributor.advisor1ID | 069.023.487-23 | por |
dc.contributor.advisor1ID | https://orcid.org/0000-0001-5906-7080 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1876040291299143 | por |
dc.contributor.referee1 | Bauerfeldt, Glauco Favilla | |
dc.contributor.referee1ID | 069.023.487-23 | por |
dc.contributor.referee1ID | https://orcid.org/0000-0001-5906-7080 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/1876040291299143 | por |
dc.contributor.referee2 | Silva, Clarissa Oliveira da | |
dc.contributor.referee2ID | https://orcid.org/0000-0002-5640-5387 | por |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/3211933004567550 | por |
dc.contributor.referee3 | Sant'Anna, Carlos Mauricio Rabello de | |
dc.contributor.referee3ID | https://orcid.org/0000-0003-1989-5038 | por |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/2087099684752643 | por |
dc.contributor.referee4 | Klachquin, Graciela Arbilla de | |
dc.contributor.referee4ID | https://orcid.org/0000-0001-7732-8336 | por |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/7712800981237085 | por |
dc.contributor.referee5 | Faria, Roberto de Barros | |
dc.contributor.referee5Lattes | http://lattes.cnpq.br/6310881885990978 | por |
dc.creator.ID | 058.310.287-55 | por |
dc.creator.Lattes | http://lattes.cnpq.br/3584348234363033 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Química | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Química | por |
dc.relation.references | ABO, B. O., GAO, M., WANG, Y., et al. "Production of butanol from biomass: recent advances and future prospects", Environmental Science and Pollution Research, v. 26, n. 20, p. 20164–20182, jul. 2019. DOI: 10.1007/s11356-019-05437-y. . ALGAYYIM, S. J. M., WANDEL, A. P., YUSAF, T., et al. "Butanol–acetone mixture blended with cottonseed biodiesel: Spray characteristics evolution, combustion characteristics, engine performance and emission", Proceedings of the Combustion Institute, v. 37, n. 4, p. 4729–4739, 2019. DOI: 10.1016/j.proci.2018.08.035. . ALGAYYIM, S. J. M., WANDEL, A. P., YUSAF, T., et al. "The impact of n-butanol and iso-butanol as components of butanol-acetone (BA) mixture-diesel blend on spray, combustion characteristics, engine performance and emission in direct injection diesel engine", Energy, v. 140, p. 1074–1086, dez. 2017. DOI: 10.1016/j.energy.2017.09.044. . ALTEMOSE, B., GONG, J., ZHU, T., et al. "Aldehydes in relation to air pollution sources: A case study around the Beijing Olympics", Atmospheric Environment, v. 109, p. 61–69, maio 2015. DOI: 10.1016/j.atmosenv.2015.02.056. . ALVAREZ-IDABOY, J. R., MORA-DIEZ, N., BOYD, R. J., et al. "On the Importance of Prereactive Complexes in Molecule−Radical Reactions: Hydrogen Abstraction from Aldehydes by OH", Journal of the American Chemical Society, v. 123, n. 9, p. 2018–2024, mar. 2001. DOI: 10.1021/ja003372g. . ARNAUT, L., FORMOSINHO, S., BURROWS, H. Chemical Kinetics: From Molecular Structure to Chemical Reactivity. Amsterdam, Elsevier, 2007. AVERY, G. B., TANG, Y., KIEBER, R. J., et al. "Impact of recent urbanization on formic and acetic acid concentrations in coastal North Carolina rainwater", Atmospheric Environment, v. 35, n. 19, p. 3353–3359, jul. 2001. DOI: 10.1016/S1352-2310(00)00328-9. . AYALA, P. Y., SCHLEGEL, H. B. "Identification and treatment of internal rotation in normal mode vibrational analysis", The Journal of Chemical Physics, v. 108, n. 6, p. 2314–2325, 8 fev. 1998. DOI: 10.1063/1.475616. . BANNAN, T. J., BACAK, A., MULLER, J. B. A., et al. "Importance of direct anthropogenic emissions of formic acid measured by a chemical ionisation mass spectrometer (CIMS) during the Winter ClearfLo Campaign in London, January 2012", Atmospheric Environment, v. 83, p. 301–310, 2014. DOI: 10.1016/j.atmosenv.2013.10.029. . BARBOSA, T. da S., PEIRONE, S., BARRERA, J. A., et al. "Rate coefficients for the reaction of OH radicals with cis-3-hexene: an experimental and theoretical study", Physical Chemistry Chemical Physics, v. 17, n. 14, p. 8714–8722, 2015. DOI: 10.1039/C4CP05760K. . 103 BAULCH, D. L., COBOS, C. J., COX, R. A., et al. "Evaluated Kinetic Data for Combustion Modelling", Journal of Physical and Chemical Reference Data, v. 21, n. 3, p. 411–734, maio 1992. DOI: 10.1063/1.555908. . CALLEGARI, A., BOLOGNESI, S., CECCONET, D., et al. "Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review", Critical Reviews in Environmental Science and Technology, v. 50, n. 4, p. 384–436, 16 fev. 2020. DOI: 10.1080/10643389.2019.1629801. . CERQUEIRA, M., GOMES, L., TARELHO, L., et al. "Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal", Atmospheric Environment, v. 72, p. 171–176, jun. 2013. DOI: 10.1016/j.atmosenv.2013.02.045. . CHANG, J.-G., CHEN, H.-T., XU, S., et al. "Computational Study on the Kinetics and Mechanisms for the Unimolecular Decomposition of Formic and Oxalic Acids †", The Journal of Physical Chemistry A, v. 111, n. 29, p. 6789–6797, jul. 2007. DOI: 10.1021/jp069036p. . CHAZALLON, B., OANCEA, A., CAPOEN, B., et al. "Ice mixtures formed by simultaneous condensation of formaldehyde and water: an in situ study by micro-Raman scattering", Phys. Chem. Chem. Phys., v. 10, n. 5, p. 702–712, 2008. DOI: 10.1039/B710662A. . CHEBBI, A., CARLIER, P. "Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review", Atmospheric Environment, v. 30, n. 24, p. 4233–4249, 1996. DOI: 10.1016/1352-2310(96)00102-1. . CHEN, G. Q., WU, X. F. "Energy overview for globalized world economy: Source, supply chain and sink", Renewable and Sustainable Energy Reviews, v. 69, p. 735–749, mar. 2017. DOI: 10.1016/j.rser.2016.11.151. . CRAMER, C. J. Essentials of computational chemistry: theories and models. 2nd ed ed. Chichester, West Sussex, England ; Hoboken, NJ, Wiley, 2004. CRISP, T. A., BRADY, J. M., CAPPA, C. D., et al. "On the primary emission of formic acid from light duty gasoline vehicles and ocean-going vessels", Atmospheric Environment, v. 98, p. 426–433, dez. 2014. DOI: 10.1016/j.atmosenv.2014.08.070. . CURRAN, H. J. "Developing detailed chemical kinetic mechanisms for fuel combustion", Proceedings of the Combustion Institute, v. 37, n. 1, p. 57–81, 2019. DOI: 10.1016/j.proci.2018.06.054. . CURTISS, L. A., CARPENTER, J. E., RAGHAVACHARI, K., et al. "Validity of additivity approximations used in GAUSSIAN‐2 theory", The Journal of Chemical Physics, v. 96, n. 12, p. 9030–9034, 15 jun. 1992. DOI: 10.1063/1.462261. . D’ANNA, B., BAKKEN, V., ARE BEUKES, J., et al. "Experimental and theoretical studies of gas phase NO3 and OH radical reactions with formaldehyde, acetaldehyde and their isotopomers", Physical Chemistry Chemical Physics, v. 5, n. 9, p. 1790–1805, 16 abr. 2003. DOI: 10.1039/b211234p. . 104 DELIKHOON, M., FAZLZADEH, M., SOROOSHIAN, A., et al. "Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran", Environmental Pollution, v. 242, p. 938–951, nov. 2018. DOI: 10.1016/j.envpol.2018.07.037. . DEMIRBAS, A. "Political, economic and environmental impacts of biofuels: A review", Applied Energy, v. 86, p. S108–S117, nov. 2009. DOI: 10.1016/j.apenergy.2009.04.036. . DIAS, V., DUYNSLAEGHER, C., CONTINO, F., et al. "Experimental and modeling study of formaldehyde combustion in flames", Combustion and Flame, v. 159, n. 5, p. 1814–1820, maio 2012. DOI: 10.1016/j.combustflame.2012.01.006. . DICKINSON, R. P., GELINAS, R. J. "Sensitivity analysis of ordinary differential equation systems—A direct method", Journal of Computational Physics, v. 21, n. 2, p. 123–143, jun. 1976. DOI: 10.1016/0021-9991(76)90007-3. . DÖNTGEN, M., LEONHARD, K. "Reactions of Chemically Activated Formic Acid Formed via HĊO + ȮH", The Journal of Physical Chemistry A, v. 120, n. 11, p. 1819–1824, 24 mar. 2016. DOI: 10.1021/acs.jpca.6b00887. . DOOLEY, S., CURRAN, H. J., SIMMIE, J. M. "Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate", Combustion and Flame, v. 153, n. 1–2, p. 2–32, abr. 2008. DOI: 10.1016/j.combustflame.2008.01.005. . DUNNING, T. H. "Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen", The Journal of Chemical Physics, v. 90, n. 2, p. 1007–1023, 15 jan. 1989. DOI: 10.1063/1.456153. . DUPUIS, M., LESTER, W. A. "Hydrogen atom abstraction from aldehydes: OH+H 2 CO and O+H 2 CO", The Journal of Chemical Physics, v. 81, n. 2, p. 847–850, 15 jul. 1984. DOI: 10.1063/1.447719. . ELFASAKHANY, A. "Performance and emissions analysis on using acetone–gasoline fuel blends in spark-ignition engine", Engineering Science and Technology, an International Journal, v. 19, n. 3, p. 1224–1232, set. 2016. DOI: 10.1016/j.jestch.2016.02.002. . ELWARDANY, A., NASIR, E. F., ES-SEBBAR, Et., et al. "Unimolecular decomposition of formic and acetic acids: A shock tube/laser absorption study", Proceedings of the Combustion Institute, v. 35, n. 1, p. 429–436, 2015. DOI: 10.1016/j.proci.2014.06.141. EPE - Empresa de Pesquisa Energética (Brasil). Análise de Conjuntura dos Biocombustíveis: Ano base 2018. Rio de Janeiro: EPE, 2019. FAGUNDEZ, J. L. S., GOLKE, D., MARTINS, M. E. S., et al. "An investigation on performance and combustion characteristics of pure n-butanol and a blend of n-butanol/ethanol as fuels in a spark ignition engine", Energy, v. 176, p. 521–530, jun. 2019. DOI: 10.1016/j.energy.2019.04.010. . 105 FERNÁNDEZ-DACOSTA, C., SHEN, L., SCHAKEL, W., et al. "Potential and challenges of low-carbon energy options: Comparative assessment of alternative fuels for the transport sector", Applied Energy, v. 236, p. 590–606, fev. 2019. DOI: 10.1016/j.apenergy.2018.11.055. . FERNÁNDEZ-RAMOS, A., ELLINGSON, B. A., MEANA-PAÑEDA, R., et al. "Symmetry numbers and chemical reaction rates", Theoretical Chemistry Accounts, v. 118, n. 4, p. 813–826, 12 out. 2007. DOI: 10.1007/s00214-007-0328-0. . FIORI, C., MARZANO, V. "Modelling energy consumption of electric freight vehicles in urban pickup/delivery operations: analysis and estimation on a real-world dataset", Transportation Research Part D: Transport and Environment, v. 65, p. 658–673, dez. 2018. DOI: 10.1016/j.trd.2018.09.020. . FRANCISCO, J. S. "An examination of substituent effects on the reaction of OH radicals with HXCO (where X=H, F, and Cl)", The Journal of Chemical Physics, v. 96, n. 10, p. 7597–7602, 15 maio 1992. DOI: 10.1063/1.462412. . FUKUI, K. "The Path of Chemical Reactions—The IRC Approach", Accounts of Chemical Research, v. 14, p. 6, 1981. . GALANO, A., ALVAREZ-IDABOY, J. R., BRAVO-PÉREZ, G., et al. "Gas phase reactions of C 1 –C 4 alcohols with the OH radical: A quantum mechanical approach", Phys. Chem. Chem. Phys., v. 4, n. 19, p. 4648–4662, 2002. DOI: 10.1039/B205630E. . GALLONI, E., FONTANA, G., SCALA, F. "Experimental and Numerical Analyses of a Spark-Ignition Engine Firing with N-Butanol-Gasoline Blends at High Load Operation", Energy Procedia, v. 148, p. 336–343, ago. 2018. DOI: 10.1016/j.egypro.2018.08.086. . GAO, L. G., ZHENG, J., FERNÁNDEZ-RAMOS, A., et al. "Kinetics of the Methanol Reaction with OH at Interstellar, Atmospheric, and Combustion Temperatures", Journal of the American Chemical Society, v. 140, n. 8, p. 2906–2918, 28 fev. 2018. DOI: 10.1021/jacs.7b12773. . GARDINER JR., W. Combustion Chemistry. New York, NY, Springer US, 1984. Disponível em: http://nbn-resolving.de/urn:nbn:de:1111-20120201682. Acesso em: 21 out. 2018. GILBERT, R. G., JORDAN, M. J. T., SMITH, S. C. UNIMOL program suite (calculation of fall-off curves for unimolecular and recombination reactions). Sydney, [s.n.], 1993. GLASIUS, M. "Sources to formic acid studied by carbon isotopic analysis and air mass characterization", Atmospheric Environment, v. 34, n. 15, p. 2471–2479, 2000. DOI: 10.1016/S1352-2310(99)00416-1. . GOSWAMI, M., VOLKOV, E. N., KONNOV, A. A., et al. Updated Kinetic Mechanism for NOx Prediction and Hydrogen Combustion. Project: Low Emission Gas Turbine Technology for Hydrogen-rich Syngas. 2008. 106 GRANA, R., FRASSOLDATI, A., FARAVELLI, T., et al. "An experimental and kinetic modeling study of combustion of isomers of butanol", Combustion and Flame, v. 157, n. 11, p. 2137–2154, nov. 2010. DOI: 10.1016/j.combustflame.2010.05.009. . GRANBY, K., CHRISTENSEN, C. S., LOHSE, C. "Urban and semi-rural observations of carboxylic acids and carbonyls", Atmospheric Environment, v. 31, n. 10, p. 1403–1415, maio 1997. DOI: 10.1016/S1352-2310(96)00347-0. . GREENWALD, E. E., NORTH, S. W., GEORGIEVSKII, Y., et al. "A Two Transition State Model for Radical−Molecule Reactions: A Case Study of the Addition of OH to C 2 H 4", The Journal of Physical Chemistry A, v. 109, n. 27, p. 6031–6044, jul. 2005. DOI: 10.1021/jp058041a. . HRATCHIAN, H. P., SCHLEGEL, H. B. "Using Hessian Updating To Increase the Efficiency of a Hessian Based Predictor-Corrector Reaction Path Following Method", Journal of Chemical Theory and Computation, v. 1, n. 1, p. 61–69, jan. 2005. DOI: 10.1021/ct0499783. . HRATCHIAN, Hrant P., SCHLEGEL, H. B. "Accurate reaction paths using a Hessian based predictor–corrector integrator", The Journal of Chemical Physics, v. 120, n. 21, p. 9918–9924, jun. 2004. DOI: 10.1063/1.1724823. . HSU, D. S. Y., SHAUB, W. M., BLACKBURN, M., et al. "Thermal decomposition of formic acid at high temperatures in shock waves", Symposium (International) on Combustion, v. 19, n. 1, p. 89–96, jan. 1982. DOI: 10.1016/S0082-0784(82)80181-1. . IANNI, J. C. Kintecus. [S.l: s.n.], 2017. Disponível em: www.kintecus.ocm. Acesso em: 31 dez. 2019. JANG, Y.-S., MALAVIYA, A., CHO, C., et al. "Butanol production from renewable biomass by clostridia", Bioresource Technology, v. 123, p. 653–663, nov. 2012. DOI: 10.1016/j.biortech.2012.07.104. . JIN, C., YAO, M., LIU, H., et al. "Progress in the production and application of n-butanol as a biofuel", Renewable and Sustainable Energy Reviews, v. 15, n. 8, p. 4080–4106, out. 2011. DOI: 10.1016/j.rser.2011.06.001. . JOHNSON, R. D. NIST Computational Chemistry Comparison and Benchmark Database NIST Standard Reference Database Number 101 Release 17b. [S.d.]. Disponível em: http://cccbdb.nist.gov/. KANNAN, N., VAKEESAN, D. "Solar energy for future world: - A review", Renewable and Sustainable Energy Reviews, v. 62, p. 1092–1105, set. 2016. DOI: 10.1016/j.rser.2016.05.022. . KENDALL, R. A., DUNNING, T. H., HARRISON, R. J. "Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions", The Journal of Chemical Physics, v. 96, n. 9, p. 6796–6806, maio 1992. DOI: 10.1063/1.462569. . KILKIŞ, Ş., KRAJAČIĆ, G., DUIĆ, N., et al. "Research frontiers in sustainable development of energy, water and environment systems in a time of climate crisis", 107 Energy Conversion and Management, v. 199, p. 111938, nov. 2019. DOI: 10.1016/j.enconman.2019.111938. . KUKHARONAK, H., IVASHKO, V., PUKALSKAS, S., et al. "Operation of a Spark-ignition Engine on Mixtures of Petrol and N-butanol", Procedia Engineering, v. 187, p. 588–598, 2017. DOI: 10.1016/j.proeng.2017.04.418. . KUSHWAHA, D., SRIVASTAVA, N., MISHRA, I., et al. "Recent trends in biobutanol production", Reviews in Chemical Engineering, v. 35, n. 4, p. 475–504, 24 abr. 2019. DOI: 10.1515/revce-2017-0041. . LABERTEAUX, K. P., HAMZA, K. "A study on opportune reduction in greenhouse gas emissions via adoption of electric drive vehicles in light duty vehicle fleets", Transportation Research Part D: Transport and Environment, v. 63, p. 839–854, ago. 2018. DOI: 10.1016/j.trd.2018.07.012. . LEE, T. H., HANSEN, A. C., LI, G., et al. "Effects of isopropanol-butanol-ethanol and diesel fuel blends on combustion characteristics in a constant volume chamber", Fuel, v. 254, p. 115613, out. 2019. DOI: 10.1016/j.fuel.2019.06.021. . LI, H.-Y., PU, M., JI, Y.-Q., et al. "Theoretical study on the reaction path and rate constants of the hydrogen atom abstraction reaction of CH2O with CH3/OH", Chemical Physics, v. 307, n. 1, p. 35–43, dez. 2004. DOI: 10.1016/j.chemphys.2004.07.014. . LI, M., SHAO, M., LI, L.-Y., et al. "Quantifying the ambient formaldehyde sources utilizing tracers", Chinese Chemical Letters, v. 25, n. 11, p. 1489–1491, nov. 2014. DOI: 10.1016/j.cclet.2014.07.001. . LI, Yuanxu, NING, Z., LEE, C. F., et al. "Effect of acetone-butanol-ethanol (ABE)–gasoline blends on regulated and unregulated emissions in spark-ignition engine", Energy, v. 168, p. 1157–1167, fev. 2019. DOI: 10.1016/j.energy.2018.12.022. . LI, Yuqiang, CHEN, Y., WU, G., et al. "Experimental comparison of acetone-n-butanol-ethanol (ABE) and isopropanol-n-butanol-ethanol (IBE) as fuel candidate in spark-ignition engine", Applied Thermal Engineering, v. 133, p. 179–187, mar. 2018. DOI: 10.1016/j.applthermaleng.2017.12.132. . LI, Yuqiang, MENG, L., NITHYANANDAN, K., et al. "Experimental investigation of a spark ignition engine fueled with acetone-butanol-ethanol and gasoline blends", Energy, v. 121, p. 43–54, fev. 2017. DOI: 10.1016/j.energy.2016.12.111. . LI, Yuqiang, NITHYANANDAN, K., LEE, T. H., et al. "Effect of water-containing acetone–butanol–ethanol gasoline blends on combustion, performance, and emissions characteristics of a spark-ignition engine", Energy Conversion and Management, v. 117, p. 21–30, jun. 2016. DOI: 10.1016/j.enconman.2016.02.083. . LI, Yuqiang, TANG, W., CHEN, Y., et al. "Potential of acetone-butanol-ethanol (ABE) as a biofuel", Fuel, v. 242, p. 673–686, abr. 2019. DOI: 10.1016/j.fuel.2019.01.063. . LIND, S., TROST, J., ZIGAN, L., et al. "Application of the tracer combination TEA/acetone for multi-parameter laser-induced fluorescence measurements in IC engines 108 with exhaust gas recirculation", Proceedings of the Combustion Institute, v. 35, n. 3, p. 3783–3791, 2015. DOI: 10.1016/j.proci.2014.06.144. . LING, Z. H., ZHAO, J., FAN, S. J., et al. "Sources of formaldehyde and their contributions to photochemical O 3 formation at an urban site in the Pearl River Delta, southern China", Chemosphere, v. 168, p. 1293–1301, fev. 2017. DOI: 10.1016/j.chemosphere.2016.11.140. . LU, T., LAW, C. K. "Toward accommodating realistic fuel chemistry in large-scale computations", Progress in Energy and Combustion Science, v. 35, n. 2, p. 192–215, abr. 2009. DOI: 10.1016/j.pecs.2008.10.002. . LUECKEN, D. J., HUTZELL, W. T., STRUM, M. L., et al. "Regional sources of atmospheric formaldehyde and acetaldehyde, and implications for atmospheric modeling", Atmospheric Environment, v. 47, p. 477–490, fev. 2012. DOI: 10.1016/j.atmosenv.2011.10.005. . M. J. FRISCH, G. W. TRUCKS, H. B. SCHLEGEL, G. E. SCUSERIA, M. A. ROBB, J. R. CHEESEMAN, G. SCALMANI, V. BARONE, G. A. PETERSSON, H. NAKATSUJI, X. LI, M. CARICATO, A. MARENICH, J. BLOINO, B. G. JANESKO, R. GOMPERTS, B. MENNUCCI, H. P. HRATCHIAN, J. V. ORTIZ, A. F. IZMAYLOV, J. L. SONNENBERG, D. WILLIAMS-YOUNG, F. DING, F. LIPPARINI, F. EGIDI, J. GOINGS, B. PENG, A. PETRONE, T. HENDERSON, D. RANASINGHE, V. G. ZAKRZEWSKI, J. GAO, N. REGA, G. ZHENG, W. LIANG, M. HADA, M. EHARA, K. TOYOTA, R. FUKUDA, J. HASEGAWA, M. ISHIDA, T. NAKAJIMA, Y. HONDA, O. KITAO, H. NAKAI, T. VREVEN, K. THROSSELL, J. A. MONTGOMERY, JR., J. E. PERALTA, F. OGLIARO, M. BEARPARK, J. J. HEYD, E. BROTHERS, K. N. KUDIN, V. N. STAROVEROV, T. KEITH, R. KOBAYASHI, J. NORMAND, K. RAGHAVACHARI, A. RENDELL, J. C. BURANT, S. S. IYENGAR, J. TOMASI, M. COSSI, J. M. MILLAM, M. KLENE, C. ADAMO, R. CAMMI, J. W. OCHTERSKI, R. L. MARTIN, K. MOROKUMA, O. FARKAS, J. B. FORESMAN,D. J. FOX. Gaussian 09. Wallingford CT, Gaussian, Inc., 2010. M, V. B., K, M. M., G, A. P. R. "Butanol and pentanol: The promising biofuels for CI engines – A review", Renewable and Sustainable Energy Reviews, v. 78, p. 1068–1088, out. 2017. DOI: 10.1016/j.rser.2017.05.038. . MACHADO, G. D. S. AVALIAÇÃO DE MODELOS CINÉTICOS PARA COMBUSTÃO DE ETANOL E BUTANOL E IMPLICAÇÕES EM QUÍMICA ATMOSFÉRICA. 2015. 117 f. Dissertação – Universidade Federal Rural do Rio de Janeiro, Seropédica, 2015. MACHADO, G. de S., MARTINS, E. M., BAPTISTA, L., et al. "Theoretical investigation of the formic acid decomposition kinetics", International Journal of Chemical Kinetics, v. 52, n. 3, p. 188–196, mar. 2020. DOI: 10.1002/kin.21341. . MCQUARRIE, D. A., SIMON, J. D. Molecular Thermodynamics.pdf. California, University Science Books, 1999. 109 MILLER, W. H. "Unified statistical model for ’’complex’’ and ’’direct’’ reaction mechanisms", The Journal of Chemical Physics, v. 65, n. 6, p. 2216–2223, 15 set. 1976. DOI: 10.1063/1.433379. . MITTAL, G., BURKE, S. M., DAVIES, V. A., et al. "Autoignition of ethanol in a rapid compression machine", Combustion and Flame, v. 161, n. 5, p. 1164–1171, maio 2014. DOI: 10.1016/j.combustflame.2013.11.005. . MOURAD, M., MAHMOUD, K. "Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends", Renewable Energy, v. 143, p. 762–771, dez. 2019. DOI: 10.1016/j.renene.2019.05.064. . NOBES, R. H., BOUMA, W. J., RADOM, L. "The Additivity of Polarization Function and Electron Correlation Effects in ab initio Molecular-Orbital Calculations", Chemical Physics Letters, v. 89, n. 6, p. 497–500, 1982. . NÖLSCHER, A. C., BUTLER, T., AULD, J., et al. "Using total OH reactivity to assess isoprene photooxidation via measurement and model", Atmospheric Environment, v. 89, p. 453–463, jun. 2014. DOI: 10.1016/j.atmosenv.2014.02.024. . NOORANI, K. E., AKIH-KUMGEH, B., BERGTHORSON, J. M. "Comparative High Temperature Shock Tube Ignition of C1−C4 Primary Alcohols", Energy & Fuels, v. 24, n. 11, p. 5834–5843, 18 nov. 2010. DOI: 10.1021/ef1009692. . Ó CONAIRE, M., CURRAN, H. J., SIMMIE, J. M., et al. "A comprehensive modeling study of hydrogen oxidation: A Comprehensive Modeling Study of Hydrogen Oxidation", International Journal of Chemical Kinetics, v. 36, n. 11, p. 603–622, nov. 2004. DOI: 10.1002/kin.20036. . OCAÑA, A. J., JIMÉNEZ, E., BALLESTEROS, B., et al. "Is the Gas-phase OH+H 2 CO Reaction a Source of HCO in Interstellar Cold Dark Clouds? A Kinetic, Dynamic, and Modeling Study", The Astrophysical Journal, v. 850, n. 1, p. 28, 14 nov. 2017. DOI: 10.3847/1538-4357/aa93d9. . OLIVEIRA, R. C. de M., BAUERFELDT, G. F. "Ozonolysis Reactions of Monoterpenes: A Variational Transition State Investigation.", The Journal of Physical Chemistry A, v. 119, n. 12, p. 2802–2812, 26 mar. 2015. DOI: 10.1021/jp5129222. . OLIVEIRA, Rodrigo C. de M., BAUERFELDT, G. F. "Implementation of a variational code for the calculation of rate constants and application to barrierless dissociation and radical recombination reactions: CH3OH = CH3 + OH", International Journal of Quantum Chemistry, v. 112, n. 19, p. 3132–3140, 5 out. 2012. DOI: 10.1002/qua.24250. . OLM, C., VARGA, T., VALKÓ, É., et al. "Uncertainty quantification of a newly optimized methanol and formaldehyde combustion mechanism", Combustion and Flame, v. 186, p. 45–64, dez. 2017. DOI: 10.1016/j.combustflame.2017.07.029. . PEIRONE, S., NIETO, J. D., COMETTO, P. M., et al. "Comparative Kinetics of the 3-Buten-1-ol and 1-Butene Reactions with OH Radicals: A Density Functional Theory/RRKM Investigation", The Journal of Physical Chemistry A, v. 119, n. 13, p. 3171–3180, 2 abr. 2015. DOI: 10.1021/jp512544x. . 110 PETIT, A. S., HARVEY, J. N. "Atmospheric hydrocarbonactivation by the hydroxyl radical: a simple yet accurate computational protocol for calculating rate coefficients", Phys. Chem. Chem. Phys., v. 14, n. 1, p. 184–191, 2012. DOI: 10.1039/C1CP21367A. . PICHON, S., BLACK, G., CHAUMEIX, N., et al. "The combustion chemistry of a fuel tracer: Measured flame speeds and ignition delays and a detailed chemical kinetic model for the oxidation of acetone", Combustion and Flame, v. 156, n. 2, p. 494–504, fev. 2009. DOI: 10.1016/j.combustflame.2008.10.001. . PUGAZHENDHI, A., MATHIMANI, T., VARJANI, S., et al. "Biobutanol as a promising liquid fuel for the future - recent updates and perspectives", Fuel, v. 253, p. 637–646, out. 2019. DOI: 10.1016/j.fuel.2019.04.139. . RATHOUR, R. K., AHUJA, V., BHATIA, R. K., et al. "Biobutanol: New era of biofuels", International Journal of Energy Research, v. 42, n. 15, p. 4532–4545, dez. 2018. DOI: 10.1002/er.4180. . RIENSTRA-KIRACOFE, J. C., ALLEN, W. D., SCHAEFER, H. F. "The C 2 H 5 + O 2 Reaction Mechanism: High-Level ab Initio Characterizations", The Journal of Physical Chemistry A, v. 104, n. 44, p. 9823–9840, nov. 2000. DOI: 10.1021/jp001041k. . SAHEB, V., ZOKAIE, M. "Multichannel Gas-Phase Unimolecular Decomposition of Acetone: Theoretical Kinetic Studies", The Journal of Physical Chemistry A, v. 122, n. 28, p. 5895–5904, 19 jul. 2018. DOI: 10.1021/acs.jpca.8b02423. . SAITO, K., KAKUMOTO, T., KURODA, H., et al. "Thermal unimolecular decomposition of formic acid", The Journal of Chemical Physics, v. 80, n. 10, p. 4989–4996, 15 maio 1984. DOI: 10.1063/1.446521. . SAITO, K., SHIOSE, T., TAKAHASHI, O., et al. "Unimolecular Decomposition of Formic Acid in the Gas PhaseOn the Ratio of the Competing Reaction Channels", The Journal of Physical Chemistry A, v. 109, n. 24, p. 5352–5357, jun. 2005. DOI: 10.1021/jp045072h. . SANHUEZA, E., FIGUEROA, L., SANTANA, M. "Atmospheric formic and acetic acids in Venezuela", Atmospheric Environment, v. 30, n. 10–11, p. 1861–1873, maio 1996. DOI: 10.1016/1352-2310(95)00383-5. . SANTANA, F. O., CAMPOS, V. P., CRUZ, L. P. S., et al. "Formaldehyde and acetaldehyde in the atmosphere of Salvador-Ba, Brazil, using passive sampling", Microchemical Journal, v. 134, p. 78–86, set. 2017. DOI: 10.1016/j.microc.2017.04.032. . SARATHY, S. M., OSSWALD, P., HANSEN, N., et al. "Alcohol combustion chemistry", Progress in Energy and Combustion Science, v. 44, p. 40–102, 2014. DOI: doi.org/10.1016/j.pecs.2014.04.003. . SARATHY, S. M., VRANCKX, S., YASUNAGA, K., et al. "A comprehensive chemical kinetic combustion model for the four butanol isomers", Combustion and Flame, v. 159, n. 6, p. 2028–2055, jun. 2012. DOI: 10.1016/j.combustflame.2011.12.017. . 111 SATO, K., HIDAKA, Y. "Shock-tube and modeling study of acetone pyrolysis and oxidation", Combustion and Flame, v. 122, n. 3, p. 291–311, ago. 2000. DOI: 10.1016/S0010-2180(00)00121-8. . SAXENA, S., KIEFER, J. H., KLIPPENSTEIN, S. J. "A shock-tube and theory study of the dissociation of acetone and subsequent recombination of methyl radicals", Proceedings of the Combustion Institute, v. 32, n. 1, p. 123–130, 2009. DOI: 10.1016/j.proci.2008.05.032. . SCHUTTE, W. A., ALLAMANDOLA, L. J., SANDFORD, S. A. "Very low temperature formaldehyde reactions and the build-up of organic molecules in comets and interstellar ices", Advances in Space Research, v. 15, n. 3, p. 401–406, mar. 1995. DOI: 10.1016/S0273-1177(99)80110-0. . SECO, R., PEÑUELAS, J., FILELLA, I. "Formaldehyde emission and uptake by Mediterranean trees Quercus ilex and Pinus halepensis", Atmospheric Environment, v. 42, n. 34, p. 7907–7914, nov. 2008. DOI: 10.1016/j.atmosenv.2008.07.006. . SENOSIAIN, J. P., KLIPPENSTEIN, S. J., MILLER, J. A. "Reaction of Ethylene with Hydroxyl Radicals: A Theoretical Study †", The Journal of Physical Chemistry A, v. 110, n. 21, p. 6960–6970, jun. 2006. DOI: 10.1021/jp0566820. . SHINDELL, D., KUYLENSTIERNA, J. C. I., VIGNATI, E., et al. "Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security", Science, v. 335, n. 6065, p. 183–189, 13 jan. 2012. DOI: 10.1126/science.1210026. . SINGLETON, D. L., CVETANOVIC, R. J. "Temperature dependence of the reaction of oxygen atoms with olefins", Journal of the American Chemical Society, v. 98, n. 22, p. 6812–6819, out. 1976. DOI: 10.1021/ja00438a006. . SIVAKUMARAN, V., HÖLSCHER, D., DILLON, T. J., et al. "Reaction between OH and HCHO: temperature dependent rate coefficients (202–399 K) and product pathways (298 K)", Phys. Chem. Chem. Phys., v. 5, n. 21, p. 4821–4827, 2003. DOI: 10.1039/B306859E. . SKODJE, R. T., TRUHLAR, D. G. "Parabolic tunneling calculations", The Journal of Physical Chemistry, v. 85, n. 6, p. 624–628, mar. 1981. DOI: 10.1021/j150606a003. . SORDA, G., BANSE, M., KEMFERT, C. "An overview of biofuel policies across the world", Energy Policy, v. 38, n. 11, p. 6977–6988, nov. 2010. DOI: 10.1016/j.enpol.2010.06.066. . SOTO, M. R., PAGE, M. "Features of the Potential Energy Surface for Reactions of OH with CH,O", v. 94, p. 3242–3246, 1990. . SOUZA, S. "Low molecular weight carboxylic acids in an urban atmosphere: Winter measurements in São Paulo City, Brazil", Atmospheric Environment, v. 33, n. 16, p. 2563–2574, jul. 1999. DOI: 10.1016/S1352-2310(98)00383-5. . STEINFELD, J. I., HASE, W. L., FRANCISCO, J. S. Chemical Kinetics and Dynamics. 2. ed. [S.l.], Pearson, 1998. 112 STRANIC, I., CHASE, D. P., HARMON, J. T., et al. "Shock tube measurements of ignition delay times for the butanol isomers", Combustion and Flame, v. 159, n. 2, p. 516–527, fev. 2012. DOI: 10.1016/j.combustflame.2011.08.014. . TAKAHASHI, O., ITOH, K., KAWANO, A., et al. "A theoretical study of the bifurcation reaction of formic acid: dynamics around the intrinsic reaction coordinate", Journal of Molecular Structure: THEOCHEM, v. 545, n. 1–3, p. 197–205, jul. 2001. DOI: 10.1016/S0166-1280(01)00406-7. . TAKAHASHI, O., NOMURA, T., TABAYASHI, K., et al. "Short-time maximum entropy method analysis of molecular dynamics simulation: Unimolecular decomposition of formic acid", Chemical Physics, v. 351, n. 1–3, p. 7–12, jul. 2008. DOI: 10.1016/j.chemphys.2008.03.022. . TSANG, W., HAMPSON, R. F. "Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds", Journal of Physical and Chemical Reference Data, v. 15, n. 3, p. 1087–1279, jul. 1986. DOI: 10.1063/1.555759. . TURÁNYI, T. "Sensitivity analysis of complex kinetic systems. Tools and applications", Journal of Mathematical Chemistry, v. 5, n. 3, p. 203–248, set. 1990. DOI: 10.1007/BF01166355. . VANDRESEN, S., RESENDE, S. M. "The Atmospheric Reaction between DMSO and the Chlorine Radical", The Journal of Physical Chemistry A, v. 108, n. 12, p. 2284–2289, mar. 2004. DOI: 10.1021/jp036906j. . VASU, S. S., SARATHY, S. M. "On the High-Temperature Combustion of n -Butanol: Shock Tube Data and an Improved Kinetic Model", Energy & Fuels, v. 27, n. 11, p. 7072–7080, 21 nov. 2013. DOI: 10.1021/ef401406z. . VASUDEVAN, V., DAVIDSON, D. F., HANSON, R. K. "Direct measurements of the reaction OH + CH2O → HCO + H2O at high temperatures", International Journal of Chemical Kinetics, v. 37, n. 2, p. 98–109, fev. 2005. DOI: 10.1002/kin.20056. . VEZA, I., SAID, M. F. M., LATIFF, Z. A. "Progress of acetone-butanol-ethanol (ABE) as biofuel in gasoline and diesel engine: A review", Fuel Processing Technology, v. 196, p. 106179, dez. 2019. DOI: 10.1016/j.fuproc.2019.106179. . VICHIETTI, R. M., SPADA, R. F. K., DA SILVA, A. B. F., et al. "Accurate Calculations of Rate Constants for the Forward and Reverse H2O + CO <--> HCOOH Reactions", v. 2, p. 7267–7272, 2017. DOI: 10.1002/slct.201701137. . VIEGAS, L. P. "Exploring the Reactivity of Hydrofluoropolyethers toward OH through a Cost-Effective Protocol for Calculating Multiconformer Transition State Theory Rate Constants", The Journal of Physical Chemistry A, v. 122, n. 50, p. 9721–9732, 20 dez. 2018. DOI: 10.1021/acs.jpca.8b08970. . VILLANUEVA-FIERRO, I., POPP, C. J., MARTIN, R. S. "Biogenic emissions and ambient concentrations of hydrocarbons, carbonyl compounds and organic acids from ponderosa pine and cottonwood trees at rural and forested sites in Central New Mexico", 113 Atmospheric Environment, v. 38, n. 2, p. 249–260, jan. 2004. DOI: 10.1016/j.atmosenv.2003.09.051. . VRANCKX, S., HEUFER, K. A., LEE, C., et al. "Role of peroxy chemistry in the high-pressure ignition of n-butanol – Experiments and detailed kinetic modelling", Combustion and Flame, v. 158, n. 8, p. 1444–1455, ago. 2011. DOI: 10.1016/j.combustflame.2010.12.028. . WAIT, E. E., MASUNOV, A. E., VASU, S. S. "Quantum chemical and master equation study of OH + CH 2 O → H 2 O + CHO reaction rates in supercritical CO 2 environment", International Journal of Chemical Kinetics, v. 51, n. 1, p. 42–48, jan. 2019. DOI: 10.1002/kin.21228. . WALKER, T. E. H., RICHARDS, W. G. "Calculation of Spin-Orbit Coupling Constants in Diatomic Molecules from Hartree-Fock Wave Functions", Physical Review, v. 177, n. 1, p. 100–101, 5 jan. 1969. DOI: 10.1103/PhysRev.177.100. . WANG, S., DAVIDSON, D. F., HANSON, R. K. "High temperature measurements for the rate constants of C1–C4 aldehydes with OH in a shock tube", Proceedings of the Combustion Institute, v. 35, p. 473–480, 2015. DOI: 10.1016/j.proci.2014.06.112. . WANG, S., SUN, K., DAVIDSON, D. F., et al. "Shock-Tube Measurement of Acetone Dissociation Using Cavity-Enhanced Absorption Spectroscopy of CO", The Journal of Physical Chemistry A, v. 119, n. 28, p. 7257–7262, 16 jul. 2015. DOI: 10.1021/jp511642a. . WEBER, B. W., KUMAR, K., ZHANG, Y., et al. "Autoignition of n-butanol at elevated pressure and low-to-intermediate temperature", Combustion and Flame, v. 158, n. 5, p. 809–819, maio 2011. DOI: 10.1016/j.combustflame.2011.02.005. . WOON, D. E., DUNNING, T. H. "Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon", The Journal of Chemical Physics, v. 98, n. 2, p. 1358–1371, 15 jan. 1993. DOI: 10.1063/1.464303. . WORLDOMETERS.INFO. World Population. 18 fev. 2020. Disponível em: https://www.worldometers.info/world-population/#table-historical. Acesso em: 18 fev. 2020. WU, H., NITHYANANDAN, K., ZHOU, N., et al. "Impacts of acetone on the spray combustion of Acetone–Butanol–Ethanol (ABE)-Diesel blends under low ambient temperature", Fuel, v. 142, p. 109–116, fev. 2015. DOI: 10.1016/j.fuel.2014.10.009. . WU, J., NING, H., MA, L., et al. "Pressure-dependent kinetics of methyl formate reactions with OH at combustion, atmospheric and interstellar temperatures", Physical Chemistry Chemical Physics, v. 20, n. 41, p. 26190–26199, 2018. DOI: 10.1039/C8CP04114H. . XU, S., ZHU, R. S., LIN, M. C. "Ab initio study of the OH + CH2O reaction: The effect of the OH··OCH2 complex on the H-abstraction kinetics", International Journal of Chemical Kinetics, v. 38, n. 5, p. 322–326, maio 2006. DOI: 10.1002/kin.20166. . 114 YASUNAGA, K., MIKAJIRI, T., SARATHY, S. M., et al. "A shock tube and chemical kinetic modeling study of the pyrolysis and oxidation of butanols", Combustion and Flame, v. 159, n. 6, p. 2009–2027, jun. 2012. DOI: 10.1016/j.combustflame.2012.02.008. . YU, D., TIAN, Z.-Y., WANG, Z., et al. "Experimental and theoretical study on acetone pyrolysis in a jet-stirred reactor", Fuel, v. 234, p. 1380–1387, dez. 2018. DOI: 10.1016/j.fuel.2018.08.020. . YU, Y., EZELL, M. J., ZELENYUK, A., et al. "Photooxidation of α-pinene at high relative humidity in the presence of increasing concentrations of NOx", Atmospheric Environment, v. 42, n. 20, p. 5044–5060, jun. 2008. DOI: 10.1016/j.atmosenv.2008.02.026. . YUSOFF, M. N. A. M., ZULKIFLI, N. W. M., MASUM, B. M., et al. "Feasibility of bioethanol and biobutanol as transportation fuel in spark-ignition engine: a review", RSC Adv., v. 5, n. 121, p. 100184–100211, 2015. DOI: 10.1039/C5RA12735A. . ZHANG, J., WEI, L., MAN, X., et al. "Experimental and Modeling Study of n -Butanol Oxidation at High Temperature", Energy & Fuels, v. 26, n. 6, p. 3368–3380, 21 jun. 2012. DOI: 10.1021/ef3005042. . ZHANG, R., SUN, W., TAO, T., et al. "Species diagnostics and modeling study of laminar premixed flames fueled by acetone–butanol–ethanol (ABE)", Proceedings of the Combustion Institute, v. 36, n. 1, p. 1303–1310, 2017. DOI: 10.1016/j.proci.2016.07.023. . ZHAO, Yan, TRUHLAR, D. G. "The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals", Theoretical Chemistry Accounts, v. 120, n. 1–3, p. 215–241, maio 2008. DOI: 10.1007/s00214-007-0310-x. . ZHAO, Yuchao, WANG, B., LI, H., et al. "Theoretical studies on the reactions of formaldehyde with OH and OH−", Journal of Molecular Structure: THEOCHEM, v. 818, n. 1–3, p. 155–161, set. 2007. DOI: 10.1016/j.theochem.2007.05.018. . ZHEN, X., WANG, Y., LIU, D. "Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines", Renewable Energy, v. 147, p. 2494–2521, mar. 2020. DOI: 10.1016/j.renene.2019.10.119. . ZHOU, C.-W., LI, Y., BURKE, U., et al. "An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements", Combustion and Flame, v. 197, p. 423–438, nov. 2018. DOI: 10.1016/j.combustflame.2018.08.006. . ZHU, L., HASE, W. L. "Comparison of models for calculating the RRKM unimolecular rate constant k(E, J)", Chemical Physics Letters, v. 175, n. 1–2, p. 117–124, nov. 1990. DOI: 10.1016/0009-2614(90)85528-K. . ZHU, Y., DAVIDSON, D. F., HANSON, R. K. "1-Butanol ignition delay times at low temperatures: An application of the constrained-reaction-volume strategy", Combustion 115 and Flame, v. 161, n. 3, p. 634–643, mar. 2014. DOI: 10.1016/j.combustflame.2013.06.028. . | por |
dc.subject.cnpq | Química | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/71565/2020%20-%20Gladson%20de%20Souza%20Machado.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6176 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-01-03T11:50:13Z No. of bitstreams: 1 2020 - Gladson de Souza Machado.pdf: 3256825 bytes, checksum: c4af84c4c54eab3fc4f44202fc830921 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-01-03T11:50:14Z (GMT). No. of bitstreams: 1 2020 - Gladson de Souza Machado.pdf: 3256825 bytes, checksum: c4af84c4c54eab3fc4f44202fc830921 (MD5) Previous issue date: 2020-03-06 | eng |
Appears in Collections: | Doutorado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2020 - Gladson de Souza Machado.pdf | 2020 - Gladson de Souza Machado | 3.18 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.