Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/10799
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Guedes, Gustavo Henrique Soares | |
dc.date.accessioned | 2023-12-22T01:43:10Z | - |
dc.date.available | 2023-12-22T01:43:10Z | - |
dc.date.issued | 2022-06-07 | |
dc.identifier.citation | GUEDES, Gustavo Henrique Soares. Aplicação de drones subaquáticos no monitoramento ambiental em águas interiores: acessando a distribuição vertical dos peixes e a seletividade do método. 2022. 41 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/10799 | - |
dc.description.abstract | Uma nova abordagem para levantamento visual de peixes em reservatórios utilizando drones subaquáticos (remotely operated vehicle- ROV) é apresentada. O ROV foi aplicado para identificar gradientes abióticos e comparar assembléias de peixes nas encostas íngremes de um reservatório tropical. A hipótese testada é que os peixes se concentram na zona litorânea devido às melhores condições físico-químicas e de habitat, em detrimento às camadas profundas e hipóxicas. Doze espécies foram registradas (sete nativas, cinco não nativas), com todas as espécies ocorrendo na zona litorânea (até 7 m de profundidade), sete espécies na transição (7-15 m) e quatro na zona profunda (> 15 m). Uma maior abundância e riqueza de peixes foi encontrada na zona litorânea corroborando a hipótese principal do estudo. A zona litorânea foi dominada por ciclídeos não nativos (Cichla spp., Coptodon rendalli), enquanto bagres nativos (Loricariichthys castaneus, Pimelodella lateristriga) ocuparam áreas mais profundas. A distribuição dos peixes parece ser impulsionada por fatores locais, como disponibilidade de oxigênio e estrutura do habitat. A preferência pela zona litorânea por espécies não nativas pode ter levado à extirpação/diminuição de caracídeos nativos e induzido os bagres a ocuparem habitats profundos. Os drones subaquáticos podem ser uma ferramenta valiosa devido a coleta simultânea de dados abióticos/bióticos, especialmente em reservatórios profundos e com habitats complexos, resultando em avanços no monitoramento ambiental de águas interiores. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.description.sponsorship | CNPQ - Conselho Nacional de Desenvolvimento Científico e Tecnológico | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Veículos operados remotamente | por |
dc.subject | Estratificação vertical | por |
dc.subject | Vídeos subaquáticos | por |
dc.subject | Gradientes ambientais | por |
dc.subject | Remotely operated vehicle | eng |
dc.subject | Vertical stratification | eng |
dc.subject | Underwater video | eng |
dc.subject | Environmental gradients | eng |
dc.title | Aplicação de drones subaquáticos no monitoramento ambiental em águas interiores: acessando a distribuição vertical dos peixes e a seletividade do método | por |
dc.title.alternative | Application of underwater drones in the environmental monitoring of inland waters: accessing the vertical distribution of fishes and the selectivity of the method | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | A new approach for visual fish survey in reservoirs using underwater drones (remotely operated vehicle- ROV) is presented. The ROV was applied to identify abiotic gradients and to compare fish assemblages on the steep slopes in a tropical reservoir. The tested hypothesis is that fish are concentrated in the littoral zone due to the better physicochemical and habitat conditions, compared to deep and hypoxic layers. Twelve species were recorded (seven native, five non-native, with all species occurring in the littoral zone (1-7 meters deep), seven species in the transition (7-15 m), and four in the profundal zone (> 15 m). A greater fish abundance and richness was found in the littoral zone corroborating the hypothesis. The littoral zone was dominated by non-native cichlids (Cichla spp., Coptodon rendalli), while native catfish (Loricariichthys castaneus, Pimelodella lateristriga) occupied deeper areas. The fish distribution seems to be driven by local factors, such as oxygen availability and habitat structure. The preference for the littoral zone by alien cichlids may have led to the extirpation/decrease of native characids and induced catfishes to occupy deep habitats. Underwater drones can be a valuable tool for the simultaneous collection of abiotic/biotic data, especially in deep reservoirs with complex habitats, resulting in advances in the environmental monitoring of inland waters. | eng |
dc.contributor.advisor1 | Araújo, Francisco Gerson | |
dc.contributor.advisor1ID | 040.983.233-20 | por |
dc.contributor.advisor1ID | https://orcid.org/0000-0003-4551-1974 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7898069293489622 | por |
dc.contributor.referee1 | Araújo, Francisco Gerson | |
dc.contributor.referee1ID | 040.983.233-20 | por |
dc.contributor.referee1ID | https://orcid.org/0000-0003-4551-1974 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/7898069293489622 | por |
dc.contributor.referee2 | Schulz, Uwe Horst | |
dc.contributor.referee2ID | https://orcid.org/0000-0003-2979-2171 | por |
dc.contributor.referee2ID | 003.834.489-05 | por |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/6474240798904132 | por |
dc.contributor.referee3 | Buchas, Rosana Mazzoni | |
dc.contributor.referee3ID | https://orcid.org/0000-0001-8780-7779 | por |
dc.contributor.referee3ID | 631.163.247-00 | por |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/4973806715016726 | por |
dc.contributor.referee4 | Santangelo, Jayme Magalhães | |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/8292200467538527 | por |
dc.creator.ID | 098.166.296-07 | por |
dc.creator.ID | https://orcid.org/0000-0001-8155-8337 | por |
dc.creator.Lattes | http://lattes.cnpq.br/5066100936347376 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Ciências Biológicas e da Saúde | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Biologia Animal | por |
dc.relation.references | Abobi, S. M. & M. Wolff, 2019. West African reservoirs and their fisheries: an assessment of harvest potential. Ecohydrology & Hydrobiology 20: 183–195. Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119–1132. Agostinho, A. A., L. C. Gomes & F. M. Pelicice, 2007. Ecology and Management of Fishery Resources in Reservoirs in Brazil. EDUEM, Maringá. (in portuguese) Agostinho, A. A., L. C. Gomes, N. C. L. Santos, J. C. G. Ortega & F. M. Pelicice, 2016. Fish assemblages in Neotropical reservoirs: Colonization patterns, impacts and management. Fisheries Research 173: 26–36. Agostinho, A. A., L. E. Miranda, L. M. Bini, L. C. Gomes, S. M. Thomaz & H. I. Suzuki, 1999. Patterns of colonization in neotropical reservoirs and prognoses on aging. In: Tundisi, J. G. & M. Straskraba (eds), Theoretical reservoir ecology and its applications. Backhuys Publishers, São Carlos. Ambroso, S., Salazar, J., Zapata-Guardiola, R., Federwisch, L., Richter, C., Gili, J. M., Teixidó, N. 2017. Pristine populations of habitat-forming gorgonian species on the Antarctic continental shelf. Scientific Reports 7: 12251. Amend, M., Fox, D., Romsos, C. 2001. “2001 Nearshore Rocky Reef Assessment ROV Survey,” in Final Report for 2001 Grant Cooperative Agreement PS01053. (Oregon: Oregon Department of Fish and Wildlife, Marine Habitat Project, Marine Program). Alin, S., A. Cohen, R. Bills, M. Gashagaza, E. Michel, L. Tiercelin ... & G. Ntakimazi, 1999. Effects of Landscape Disturbance on Animal Communities in Lake Tanganyika, East Africa. Conservation Biology 13: 1017–1033. Araújo, F. G. & L. N. Santos, 2001. Distribution of fish assemblages in the Lajes Reservoir, Rio de Janeiro. Brazilian Journal of Biology 61: 563–576. Araújo, F. G., M. C. C. Azevedo, G. H. S. Guedes & W. Uehara, 2021. Assessment of changes in the ichthyofauna in a tropical reservoir in south-eastern Brazil: consequences of global warming?. Ecology of Freshwater Fish Early View, 10 May 2021. Baumgartner, M. T., G. Baumgartner & L. C. Gomes, 2018. Spatial and temporal variations in fish assemblage: testing the zonation concept in small reservoirs. Brazilian Journal of Biology 78: 487–500. 28 Blabolil, P., L. R. Harper, S. Říčanová, G. Sellers, C. Di Muri, ... & B. Hänfling, 2021. Environmental DNA metabarcoding uncovers environmental correlates of fish communities in spatially heterogeneous freshwater habitats. Ecological Indicators 126: 107698. Borcard, D., F. Gillet & P. Legendre, 2011. Numerical ecology with R. Springer, New York. Branco, C. W. C., B. Kozlowsky-Suzuki, I. F. Sousa-Filho, A. W. S. Guarino, & R. J. Rocha, 2009. Impact of climate on the vertical water column structure of Lajes Reservoir (Brazil): A tropical reservoir case. Lakes & Reservoirs: Research & Man- agement 14: 175–191. Brawand, D., C. Wagner, Y. Li, M. Malinsky, I. Keller, S. Fan, ... & F. Di Palma, 2014. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513: 375–381. Comitê Brasileiro de Barragens, 2011. A História das barragens no Brasil, Céculos XIX, XX e XXI: Cinquenta anos do Comitê Brasileiro de Barragens. CBB, Rio de Janeiro. (in portuguese) Brosse, S., G. D. Grossman, S. & Lek, 2007. Fish assemblage patterns in the littoral zone of a European reservoir. Freshwater Biology 52: 448–458. Busch S. & T. Mehner, 2009. Hydroacoustic Estimates of Fish Population Depths and Densities at Increasingly Longer Time Scales. International Review of Hydrobiology 94: 91–102. Cáceres, M. & P. Legendre, 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90: 3566–3574. Carleton, K. 2009. Cichlid fish visual systems: mechanisms of spectral tuning. Integrative Zoology 4: 75–86. Clarke, K. R., P. J. Somerfield & M. G. Chapman, 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray– Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology 330: 55–80. Čech, M., M. Kratochvíl, J. Kubečka, V. Draštík & J. Matěna, 2005, Diel vertical migrations of bathypelagic perch fry. Journal of Fish Biology 66: 685-702. Costa, M. R., T. M. Mattos, J. L. Borges & F. G. Araújo, 2013. Habitat preferences of common native fishes in a tropical river in southeastern Brazil. Neotropical Ichthyology 11: 871–880. 29 Dias, R.M., A. G. Oliveira, M. T. Baumgartner, M. A. Angulo‐Valencia & A. A. Agostinho, 2021. Functional erosion and trait loss in fish assemblages from neotropical reservoirs: The man beyond the environment. Fish and Fisheries 22: 377–390. Fernando, C. H. & J. Holčík, 1991. Fish in reservoirs. International Review in Hydrobiology 76: 149–167. Ferreira, D. L. P., Guedes, G. H. S., Silva, L. G., & Araújo, F. G., 2021. Resource partitioning among freshwater congeneric fishes (Loricariidae: Hypostomus): trophic, spatial, and temporal dimensions. Studies on Neotropical Fauna and Environment. Frehse, F., Weyl, O. L. & Vitule, J. R. S., 2020. Comparison of visual census and underwater video for fish sampling in Neotropical reservoirs. Environmental Biology of Fishes 103: 1269–1277. Gido, K. B., J. F. Schaefer & J. A. Falke, 2009. Convergence of fish communities from the littoral zone of reservoirs. Freshwater Biology 54: 1163–1177. Goulon S., S. Westrelin, C. Samedy, R. Roy, J. Guillard & C. Argillier, 2018. Complementarity of two high-resolution spatiotemporal methods (hydroacoustics and acoustic telemetry) for assessing fish distribution in a reservoir. Hydroécologie Appliquée 20: 57–84. Gois, K. S., R. R. Antonio, L. C. Gomes & A. A. Agostinho, 2012. The role of submerged trees in structuring fish assemblages in reservoirs: two case studies in South America. Hydrobiologia 685: 109–119. Guedes, G. H. S., I. D. Gomes, A. A. Nascimento, F. S. Aguiar & F. G. Araújo, 2021. Equilibrium reproductive strategy of the peacock bass Cichla kelberi facilitates invasion into a Neotropical reservoir. Journal of Fish Biology 98: 743–755. Guedes, G. H. S., T. M. Mattos, G. S. Camilo, W. Uehara, D. L. P. Ferreira & F. G. Araújo, 2020. Artificial flow regime promotes abiotic and biotic gradients: Testing the concept of longitudinal zonation in an off-river reservoir. Ecohydrology & Hydrobiology 20: 256–264. Guedes, G. H. S., Araújo, F. G., 2022. Underwater drones reveal different fish community structures on the steep slopes of a tropical reservoir. Hydrobiologia 849, 1301– 1312. Hamley, J. M., 1975. Review of gillnet selectivity. Journal of the Fisheries Board of Canada 32: 1943–1969. Higgs, N. D., Gates, A. R., Jones, D. O., 2014. Fish food in the deep sea: revisiting the role of large food-falls. PLoS ONE, 9:96016. 30 Hsieh, T. C., K. H. Ma & A. Chao, 2016. iNEXT: An R package for interpolation and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7: 1451–1456. Jude, D. J., Sumeren, H. W. V., Lutchko, J., 2022. First documentation of spawning by deepwater sculpins in the Great Lakes and potential impacts of round gobies. Journal of Great Lakes Research 48: 614–619. King, A. J. A., et al., 2018. Efficacy of remote underwater video cameras for monitoring tropical wetland fishes. Hydrobiologia 807: 145– 164. Kay, M. & J. Wobbrock, 2020. ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs. DOI: 10.5281/zenodo.594511, R package version 0.10.8, https://github.com/mjskay/ARTool Klippel, G., R. L. Macêdo & C. W. C. Branco, 2020. Comparison of different trophic state indices applied to tropical reservoirs. Lakes & Reservoirs: Research and Management 25: 214– 229. Kubečka, J., E. Hohausová, J. Matěna, J. Peterka, U. S. Amarasinghe, S. A. Bonar, ... & I. J. Winfield, 2009. The true picture of a lake or reservoir fish stock: A review of needs and progress. Fisheries Research 96: 1–5. Lovalvo D, Clingenpeel SR, McGinnis S, Macur RE, Varley JD, Inskeep WP, et al. (2010). A geothermal‐linked biological oasis in Yellowstone Lake, Yellowstone National Park, Wyoming. Geobiology 8: 327– 336. Lewis, V. M., 2009. Ecological zonation in lakes. In: Likens, G (eds), Encyclopedia of Inland Waters. Elsevier, Oxford. Lima, R. L. P., F. C. Boogaard & R. E. de Graaf-van Dinther, 2020. Innovative water quality and ecology monitoring using underwater unmanned vehicles: field applications, challenges and feedback from water managers. Water 12: 1196. Lucas, M. C. & E. Baras, 2000. Methods for studying spatial behaviour of freshwater fishes in the natural environment. Fish and Fisheries 1: 283–316. Luzzi, B. et al., 2014. Theory and Standards. In: Christ RD, Wernli RL. The ROV Manual: A User Guide for Remotely Operated Vehicles. Second Edition, 712 pp. Mallet, D., Pelletier, D. 2014. Underwater video techniques for observing coastal marine biodiversity: a review of sixty years of publications (1952–2012). Fisheries Research, 154:44–62. Matthews, W. J., 1998. Patterns in freshwater fish ecology. Chapman and Hall, New York. 31 Mazzoni, R., Moraes, M., Rezende, C. F., Iglesias-Rios, R., 2010. Diet and feeding daily rhythm of Pimelodella lateristriga (Osteichthyes, Siluriformes) in a coastal stream from Serra do Mar - RJ. Brazilian Journal of Biology 70: 1123–1129. McLean, D. L., M. J. G. Parsons, A. R. Gates, M. C. Benfield, T. Bond, D. J. Booth, ... & D. B. O. Jones, 2020. Enhancing the scientific value of industry Remotely Operated Vehicles (ROVs) in our oceans. Frontiers in Marine Science 7: 1–20. McMeans, B. C., K. S. McCann, M. M. Guzzo, T. J. Bartley, C. Bieg, P. J. Blanchfield, .... & B. J. Shuter, 2020. Winter in water: differential responses and the maintenance of biodiversity. Ecology Letters 23: 922–938. Mehner, T., 2012. Diel vertical migration of freshwater fishes – proximate triggers, ultimate causes and research perspectives. Freshwater Biology 57: 1342–1359. Mims, M. C. & J. D. Olden, 2012. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93: 35–45. Monk, J., N. Barrett, T. Bond, A. Fowler, D. McLean, J. Partridge, ... & J. Williams, 2020. Field manual for imagery-based surveys using remotely operated vehicles (ROVs). In: Field Manuals for Marine Sampling to Monitor Australian Waters, (Eds: Przeslawski, R., Foster, S.). National Environmental Science Programme (NESP). https://rov-field-manual.github.io/ Murrie, A., B. Rosenthal, C. R. Saab, G. Durward & P. B. MacInnes, 2014. Theory and standards. In: Christ, R. D. & R. L. Wernli (eds), The ROV manual: A user guide for remotely operated vehicles. Butterworth, Heinemann. Muška, M., M. Tušer, J. Frouzová, V. Draštík, M. Čech, T. Jůza, ... & J. Kubečka, 2013. To migrate, or not to migrate: partial diel horizontal migration of fish in a temperate freshwater reservoir. Hydrobiologia 707: 17–28. Muška, M., M. Tušer, J. Frouzová, T. Mrkvička, D. Ricard, J. Seďa, ... & J. Kubečka, 2018. Real-time distribution of pelagic fish: combining hydroacoustics, GIS and spatial modelling at a fine spatial scale. Scientific Reports 8: 5381. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, R. Peter ... & H. Wagner, 2019. Vegan: Community Ecology Package. R package version 2.5- 6. https://CRAN.R-project.org/package=vegan Oliveira, A. G., L. C. Gomes, J. D. Latini, & A. A. Agostinho, 2014. Implications of using a variety of fishing strategies and sampling techniques across different biotopes to determine fish species composition and diversity. Natureza & Conservação 12: 112–117. 32 Oliveira, E. F. & E. Goulart, 2008. Distribuição espacial de peixes em ambientes lênticos: interação de fatores. Acta Scientiarum: Biological Sciences 22: 445–453. Parzefall, J. & E. Trajano, 2010. Behavioral patterns in Subterranean Fishes. In: Trajano, E., M. E. Bichuette & B. G. Kapoor (eds), Biology of Subterranean Fishes. Science Publishers, USA. Pollock, M. S., L. M. J. Clarke & M. G. Dubé, 2007. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environmental Reviews 15: 1– 14. Pollom, R. A. & G. A. Rose, 2016. A global review of the spatial, taxonomic, and temporal scope of freshwater fisheries hydroacoustics research. Environmental Reviews 24: 333–347. Porto, C. P., Casarim, R., Prado, I. G. & Santos Pompeu, P., 2022. Vertical distribution of fish in the deepest Brazilian reservoir. Fisheries Management and Ecology, 29, 310– 318. US Geological Survey, 2018. Lakes and reservoirs—Guidelines for study design and sampling: U.S. Geological Survey Techniques and Methods, book 9, chap. A10, 48 Prado, I. G. & P. S. Pompeu, 2017. Diel vertical migration of fish in a Neotropical reservoir. Marine and Freshwater Research 68: 1070. R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Raoult, V., Tosetto, L., Harvey, C., Nelson, T. M., Reed,J., Parikh, A., Chan. A. J., Smith, T. M., Williamson, J. E., 2020. Remotely operated vehicles as alternatives to snorkellers for video-based marine research. Journal Experimental Marine Biology and Ecology, 522 (2020), p. 151253. Reis, R. E., J. S. Albert, F. Di Dario, M. M. Mincarone, P. Petry & L. A. Rocha, 2016. Fish biodiversity and conservation in South America. Journal of Fish Biology 89: 12–47. Říha, M., D. Ricard, M. Vašek, M. Prchalová, T. Mrkvička, T. Jůza, ... & J. Kubečka, 2015. Patterns in diel habitat use of fish covering the littoral and pelagic zones in a reservoir. Hydrobiologia 747: 111–131. Ryer, C. H., Stoner, A. W., Iseri, P. J., Spencer, M. L., 2009. Effects of simulated underwater vehicle lighting on fish behavior. Marine Ecology Progress Series 391:97-106. Sastraprawira, S. M., I. H. Abd. Razak, S. Shahimi, S. Pati, H. A. Edinur, A. B. John, ... & B. R. Nelson, 2020. A review on introduced Cichla spp. and emerging concerns. Heliyon 6: e05370. 33 Sharpe, D. M. T., L. F. De León, R. González & M. E. Torchin, 2017. Tropical fish community does not recover 45 years after predator introduction. Ecology 98: 412– 424. Soares, M. C. S., M. M. Marinho, V. L. M. Huszar, C. W. C. Branco & S. M. F. Azevedo, 2008. The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil. Lakes & Reservoirs: Research and Management 13: 257–269. Straškraba, M. & J. G. Tundisi, 2013. Water Quality Management of Dams. Oficina de Textos, São Paulo. (in portuguese). Strayer, D. L. & S. E. G. Findlay, 2010. Ecology of freshwater shore zones. Aquatic Sciences 72: 127–63. Sward, D., J. Monk & N. Barrett, 2019. A systematic review of remotely operated vehicle surveys for visually assessing fish assemblages. Frontiers in Marine Science 6: 134. Trajano, E., 2001. Ecology of Subterranean Fishes: An Overview. Environmental Biology of Fishes 62: 133–160. Thornton, K. W., 1990. Perspectives on reservoir limnology. In: Thornton KW, Kimmel BL, Payne FE. (Eds.). Reservoir Limnology: Ecological Perspectives. John Wiley & Sons, New York, pp. 1–15. Trenkel, V. M., Chris Francis, R. I. C., Lorance, P., Mahévas, S., Rochet, M. J., Tracey, D. M., 2004. Availability of deep-water fish to trawling and visual observation from a remotely operated vehicle (ROV). Marine Ecology Progress Series 284: 293–303. Wetzel, R. G., 2001. Limnology: lake and river ecosystems. Academic Press, San Diego. Winton, R. S., E. Calamita & B. Wehrli, 2019. Reviews and syntheses: Dams, water quality and tropical reservoir stratification. Biogeosciences 16: 1657–1671. | por |
dc.subject.cnpq | Biologia Geral | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/74583/2022%20-%20Gustavo%20Henrique%20Soares%20Guedes.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6878 | |
dc.originais.provenance | Submitted by Leticia Schettini (leticia@ufrrj.br) on 2023-08-29T11:43:07Z No. of bitstreams: 1 2022 - Gustavo Henrique Soares Guedes.pdf: 1783489 bytes, checksum: c3e101fbb003c3f873ab3b1c774c076b (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-08-29T11:43:07Z (GMT). No. of bitstreams: 1 2022 - Gustavo Henrique Soares Guedes.pdf: 1783489 bytes, checksum: c3e101fbb003c3f873ab3b1c774c076b (MD5) Previous issue date: 2022-06-07 | eng |
Appears in Collections: | Mestrado em Biologia Animal |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022 - Gustavo Henrique Soares Guedes.pdf | 2022 - Gustavo Henrique Soares Guedes | 1.74 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.