Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10917
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoares, Barbara da Silva
dc.date.accessioned2023-12-22T01:44:51Z-
dc.date.available2023-12-22T01:44:51Z-
dc.date.issued2018-02-15
dc.identifier.citationSoares, Barbara da Silva. Microencapsulação do óleo sacha inchi por coacervação complexa empregando biopolímeros. 2018. [92 f.]. Dissertação( Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos) - Universidade Federal Rural do Rio de Janeiro, [Seropédica - RJ] .por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10917-
dc.description.abstractO ácido linolênico (ômega-3) é um composto bioativo de relevância na indústria de alimentos devido à suas propriedades benéficas à saúde. Entretanto, esse composto é sensível a fatores extrínsecos (altas temperaturas, presença de oxigênio, exposição à luz e a presença de metais) provocando sua oxidação. A microencapsulação torna-se uma alternativa promissora de proteção a esses compostos bioativos. Dentre os métodos de microencapsulação, a coacervação complexa apresenta vantagens como: melhores condições de preparo, variedade de biopolímeros como possíveis materiais de parede e alta eficiência de encapsulamento. O objetivo deste trabalho foi estudar o emprego da técnica de coacervação complexa para microencapsular o óleo de sacha inchi, utilizando como material de parede os biopolímeros ovalbumina, pectina, ácido tânico e alginato de sódio nas razões (1:1, 1:2, 1:4, 2:1 e 4:1). O sistema ovalbumina, pectina e ácido tânico mostrou-se eficiente como materiais de parede, apresentaram alta eficiência de encapsulação do óleo sacha inchi de (78,1%) e as microcápsulas apresentaram alta resistência térmica quando comparada a ovalbumina isolada. O sistema ovalbumina e alginato de sódio mostrou-se eficiente como materiais de parede, apresentaram alta eficiência de encapsulação do óleo sacha inchi de (94,1%), as microcápsulas foram reticuladas com CaCl2 e apresentaram uma estrutura reforçada. Além disso, apresentaram alta eficiência de encapsulação do ômega-3 presente no óleo sacha inchi e não foram observadas alterações do óleo após o processo de encapsulação e simulação gástrica. Estes estudos sugeriram que os materiais de parede utilizados para microencapsulação foram eficientes e podem ser utilizados para microencapsulação de compostos bioativos.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectbiopolímerospor
dc.subjectovalbuminapor
dc.subjectalginato de sódiopor
dc.subjectpectinapor
dc.subjectcompostos fenólicospor
dc.subjectbiopolymerseng
dc.subjectovalbumineng
dc.subjectsodium alginateeng
dc.subjectpectineng
dc.subjectphenolic compoundseng
dc.titleMicroencapsulação do óleo sacha inchi por coacervação complexa empregando biopolímerospor
dc.title.alternativeMicroencapsulation of saccharin oil by complex coacervation using biopolymerseng
dc.typeDissertaçãopor
dc.description.abstractOtherLinolenic acid (omega-3) is a bioactive compound of relevance in the food industry because of its beneficial health properties. However, this compound is sensitive to extrinsic factors (high temperatures, presence of oxygen, exposure to light and the presence of metals) causing oxidation. Microencapsulation becomes a promising alternative for protection of these bioactive compounds. Among the methods of microencapsulation, complex coacervation has advantages such as: best preparation conditions, biopolymers as possible wall materials and high encapsulation efficiency. The objective of this work was to study the use of the complex coacervation technique to microencapsulate the sacha inchi oil using the biopolymers ovalbumin, pectin, tannic acid and alginate in the ratios (1: 1, 1: 2, 1: 4, 2: 1 and 4: 1). The ovalbumin, pectin and tannic acid system showed to be efficient as wall materials, showed high sacha inchi oil encapsulation efficiency (78.1%) and as microcapsules presented high thermal resistance when compared to ovalbumin alone. The ovalbumin and sodium alginate system proved to be efficient as wall materials, exhibited high sacha inchi oil encapsulation efficiency (94.1%), as microcapsules were cross-linked with CaCl2 and presented a reinforced structure. In addition, they showed high efficiency of encapsulation of the omega-3 present in sacha inchi oil and were not observed for the gastric encapsulation and simulation process. These studies have suggested that wall materials used for microencapsulation of efficient and can be used for microencapsulation of bioactive compounds.eng
dc.contributor.advisor1Rojas, Edwin Elard Garcia
dc.contributor.advisor1ID014.548.996-54por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1205756654416987por
dc.contributor.referee1Barbosa, Maria Ivone Martins Jacintho
dc.contributor.referee2Souza, Clitor Junior Fernandes de
dc.creator.ID130.715.117-52por
dc.creator.Latteshttp://lattes.cnpq.br/2785928478491176por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesALVIM, I. D; STEIN, M. A; KOURY, I. P; DANTAS, F. B. H; CRUZ, C. L. D. C. V. Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. Food Science and Technology, v.65, p. 689-694, 2016. ANDRADE R. G.; GINANI J. S.; LOPES G. K. B.; DUTRA F.; ALONSO A.; HERMES-LIMA M.Biochimie. 88, 1287–1296,2006. ARENA, E., CAMPISI, S., FALLICO, B., & MACCARONE, E. Distribution of fatty acids and phytosterols as a criterion to discriminate geographic origin of pistacho seeds.Food chemistry.104, 403-408, 2007. ATEFI, M.; NAYEBZADEH, K.; MOHAMMADI, A.; MORTAZAVIAN, A. M. Using ß-cyclodextrin and Arabic gum as wall materials for encapsulation of Saffron essential oil. Iranian journal of pharmaceutical research: IJPR.16, 93.2017, AXELOS, M. A. V., THIBAULT, J., e LEFEBVRE, J. Structure of citrus pectins and viscometric study of their solution properties. International journal of biological macromolecules, 11(3), 186-191, 1989. AZEREDO, H. M. C. Encapsulação: aplicação à tecnologia de alimentos. Alimentos e Nutrição, v. 16(1), p. 89-97, 2005. BALASUBRAMANI, P; PALANISWAMY, P. T; VISVANATHAN, R;THIRUPATHI, V; SUBBARAYAN, A; MARAN, J. P. Microencapsulation of garlic oleoresin using maltodextrin as wall material by spray drying technology. International journal of biological macromolecules, v.72, p.210-217, 2015. BAKRY A.M., ABBAS S., ALI B., MAJEED H., ABOUELWAFA M.Y., MOUSA A., AND LI LIANG. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive Review sin Food Science and Food Safety,Vol.15, 2016. BASAK, S.; GUHA, P. Betel leaf (Piper betle L.) essential oil microemulsion: Characterization and antifungal activity on growth, and apparent lag time of Aspergillus flavus in tomato paste. LWT-Food Science and Technology.75, 616-623,2017. BEINDORFF, C.M., ZUIDAM, N.J., Microencapsulation of fish oil. In: Zuidam, N.J., NEDOVIC, V.A. (Eds.), Encapsulation Technologies for Active. Food Ingredients and Food Processing.Springer, New York, p. 161-185, 2010. BERGOLIO. Sacha Inchi. Disponível em: ˂ http://www.sacha-inchi.org/?lang=en> acesso em: 4 de agosto de 2016. BOBBIO, F.O.; BOBBIO, P.A. Introdução à química de alimentos. 3ª Ed. São Paulo: Varela, p. 238, 2003. BOZAN, B., & TENELLI, F. Chemical composition and oxidative stability of flax,safflower and poppy seeds and seed oils.Bioresource Technology, 99, 6354-6359, 2008. BUZZINI P., ARAPITSAS P., GORETTI M., BRANDA E., TURCHETTI B., PINELLI P., IERI F.; ROMANI A. Mini-Rev. Med. Chem. 8, 1179–1187,2008. CABRAL FA, FOLLEGATTI-ROMERO LA, PIANTINO CR, GRIMALDI R. Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.)seeds. J Supercrit Fluid, 49(3):323–329, 2009. CASTRO-GONZÁLEZ, M.I. Ácidos Grasos Omega 3: Beneficios Y Fuentes.Interciência v.27 n.3 Caracas mar. 2002. CANTERI, M. H., MORENO, L., WOSIACKI, G., e SCHEER, A. D. P. Pectina: da matéria-prima ao produto final. Polímeros: Ciência e Tecnologia, 22(2), 2012. 36 CIFTCI, O. N., PRZYBYLSKI, R., e RUDZIN´ SKA, M. Lipids components of flax, perilla and chia seeds.European Journal of Lipid Science and Technology. http:// dx.doi.org/10.1002/ejlt.201100207, 2012. CHANG P. G., GUPTA R., TIMILSENA Y. P., ADHIKARI B.Optimisation of the complex coacervation between canola protein isolate and chitosan. Journal of Food Engineering 191, 58-66, 2016. CHEN, B. C.; MCCLEMENTS, D. J.; DECKER, E. A. Design of foods with bioactive lipids for improved health. In: DOYLE, M. P.; KLAENHAMMER, T. R. (Ed.). Annual Reviewof Food Science and Technology, v. 4, p. 35-56, 2013. CHEN X., BEUTLER J. A., MCCLOUD T. G., LOEHFELM A., YANG L., DONG H.F., CHERTOV O. Y., SALCEDO R., OPPENHEIM J. J.; HOWARD O. M. Z..Clin. Cancer Res. 9, 3115–3123.2003. CHIRINOS R., ZULOETA G., PEDRESCHI R., MIGNOLET E., LARONDELLE Y., CAMPOS D. Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidante capacity. Food Chemistry 141, 1732-1739, 2013. CHITPRASERT, P; SUTAPHANIT, P. Holy Basil (Ocimum sanctum Linn.) Essential Oil Delivery to Swine Gastrointestinal Tract Using Gelatin Microcapsules Coated with Aluminum Carboxymethyl Cellulose and Beeswax. Journal of agricultural and food chemistry, v.62, n.52, p.12641-12648, 2014. CHOI, S.; KIM, H.; PARK, K.; MOON, T. Molecular characteristics of ovalbumin dextran conjugates formed through the Maillard reaction. Food Chemistry, 92(1), p. 93- 99, 2005. COMUNIAN T. A., FAVARO-TRINDADE C. S. Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocolloids.61, 442-457, 2016. CROGUENNEC T., RENAULT A., BEAUFILS S., DUBOIS J. & PEZENNEC S. Interfacial properties of heat-treated ovalbumin. Journal of Colloid and Interface Science, 315, 627–636 (2007). DIMA, C; PĂTRAŞCU, L; CANTARAGIU, A; ALEXE, P; DIMA, Ş. The kinetics of the swelling process and the release mechanisms of Coriandrumsativum L. essential oil from chitosan/alginate/inulin microcapsules.Food chemistry, v.195, p.39-48, 2016. DOLÇÀ, C; FERRÁNDIZ, M; CAPABLANCA, L; FRANCO, E; MIRA, E; LÓPEZ, F; GARCÍA, D. Microencapsulation of Rosemary Essential Oil by Co-Extrusion/Gelling Using Alginate as a Wall Material. Journal of Encapsulation and Adsorption Sciences, v.5, n.3, p.121, 2015. FANALI, C.; DUGO, L.; CACCIOLA, F.; BECCARIA, M.; GRASSO, S.; DACHÀ, M.; DUGO, P.; MONDELLO, L. Chemical Characterization of Sacha Inchi (Plukenetia volubilis L.) Oil. Disponível em:<dx.doi.org/10.1021/jf203184y>. J. Agric. Food Chem. 59, 13043-13049, 2011. FATHI, M., MARTÍN, Á., e MCCLEMENTS, D. J. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in food science & technology, 39(1), 18-39, 2014. FAVARO-TRINDADE, C. S., PINHO, S. C., & ROCHA, G. A. Microencapsulação de ingredientes alimentícios. Brazilian Journal of Food Technology, 11(2), 103-112, 2008. FOLLEGATTI-ROMERO L.A., PIANTINOC.R., GRIMALDI R. & CABRAL F.A.Supercritical CO2 extraction of omega-3 rich oil from Sacha Inchi (Plukenetia volubilis L.) seeds.The Journal of Supercritical Fluids49, p.323-329, 2009. 37 GANJE, M; JAFARI, S. M; DUSTI, A; DEHNAD, D; AMANJANI, M; GHANBARI, V. Modeling quality changes in tomato paste containing microencapsulated olive leaf extract by accelerated shelf life testing. Food and Bioproducts Processing, v.97, p.12-19, 2016. GARCÍA-SALDAÑA J. S., CAMPAS-BAYPOLI O. N., LÓPEZ-CERVANTES J., SÁNCHEZ-MACHADO D. I., CANTÚ-SOTO E. U., RODRÍGUEZ-RAMÍREZ R.Microencapsulationofsulforaphanefrombrócoliseedextractsbygelatin/gumarabicandgelatin/pectin complexes.FoodChemistry 201 (2016) 94–100. GARG, M. L.,WOOD, L. G., SINGH, H., & MOUGHAN, P. J. Means of delivering recommended levels of long chain n-3 polyunsaturated fatty acids in human diets. Journal of Food Science, 71(5), R66–R71, 2006. GARMENDIA F., PANDO R. & RONCEROS G. Efecto del aceite de sacha inchi (plukenetia volúbilis l)sobre el perfil lipídico en pacientes comhiperlipoproteinemia. Rev Peru Med Exp Salud Publica. 28( 4):628-32, 2011. GIBBS, B.F., KERMASHA, S., ALLI, I., MULLIGAN, C.N. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 50, 213-224, 1999. GIRARDI, N. S.; GARCÍA, D.; PASSONE, M. A.; NESCI, A.; ETCHEVERRY, M. Microencapsulation of Lippia turbinata essential oil and its impact on peanut seed quality preservation.International Biodeterioration & Biodegradation.116, 227-233, 2017. GIOSAFATTO C.V.L., RIGBY N.M., WELLNER N., RIDOUT M., HUSBAND F. & MACKIE A.R. Microbial transglutaminase-mediated modification of ovalbumin. Food Hydrocolloids, 393 26, 261-267, 2012. GOUIN, S. Microencapsulation: industrial appraisal of existing technologies and trends. Trends in food science & technology, v. 15, n. 7, p. 330-347, 2004. GUILLÉN, M. D., RUIZ, A., CABO, N., CHIRINOS, R., & PASCUAL, G. Characterization of Sacha Inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and RMN1H.Comparison with linseed oil.Journal of the American Oil Chemists Society, 80(8), 755-762, 2003. GULÃO, E. D. S., DE SOUZA, C. J., ANDRADE, C. T., e GARCIA-ROJAS, E. E. Complex coacervates obtained from peptide leucine and gum arabic: Formation and characterization. Food chemistry, v 194, p 680-686, 2016. GUTIÉRREZ, L.-F., ROSADA, L.-M., & JIMÉNEZ, A. Chemical composition of Sacha Inchi (Plukenietia volúbilis L.) seeds and characterisation of their lipid fraction.Grasas y aceites.62, 76-83, 2011. HUANG, Y. S., PEREIRA, S. L., & LEONARD, A. E. Enzymes for transgenic biosynthesis of long-chain polyunsaturated fatty acids. Biochimie, 86, 793-798, 2004. IUPAC. Compendium of Chemical Technology, North Carolina, USA, 1997. JAFARI, S. M., ASSADPOOR, E., HE, Y., & BHANDARI, B. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), p.816-835,2008. JAFARI, S. M; MAHDAVI-KHAZAEI, K; HEMMATI-KAKHKI, A. Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate polymers, v.140, p.20-25, 2016. JARVIS, M. C., FORSYTH, W.,& DUNCAN, H. J. A survey of the pectic content of nonlignified monocot cell walls. Plant physiology, 88(2), 309-314, 1988. JIN, Y., PERRIE, C., ZHANG, W., DIEPEN, C.V., CURTIS, J., BARROW, C.J. Microencapsulation of marine lipids as a vehicle for functional food delivery. In: Barrow, C.J., Shahidi, F. (Eds.), Marine Nutraceuticals and Functional Foods. CRC Press, London, p.115-155, 2007. 38 JOYE, I. J; DAVIDOV-PARDO, G; MCCLEMENTS, D. J. Nanotechnology for increasedmicronutrientbioavailability.Trends in Food Science & Technology, v. 40, n.2, p.168-182, 2014. KAUSHIK, P., DOWLING, K., BARROW, C. J., & ADHIKARI, B. Microencapsulation of omega-3 fatty acids: A review of microencapsulation and characterization methods. Journal of Functional Foods,p. 868-881, 2014. KERTESZ, Z. I. The Pectic Substances, New York, Interscience Publishers Inc, 1951. KRALOVEC, J. A., ZHANG, S., ZHANG, W., BARROW, C. J. A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources.Food Chemistry, 131, 639-644, 2012. KRUIF, C.G.; TUINIER, R. Polysaccharide protein interactions.Food Hydrocolloid.Oxford, v 15, n 4-6, p.555-563, 2001. KUCK, L. S; NOREÑA, C. P. Z. Microencapsulation of grape (Vitislabrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food chemistry, v. 194, p. 569-576, 2016. LI, R.; CHEN, R.; LIU, W.; QIN, C.; HAN, J. Preparation of enteric-coated microcapsules of astaxanthin oleoresin by complex coacervation. Pharmaceutical development and technology. 1-8, 2016. LIU, C. G., DESAI, K. G. H., CHEN, X. G., & PARK, H. J. Linolenic acid-modified chitosan for formation of self-assembled nanoparticles. Journal of agricultural and food chemistry, 53(2), 437-441, 2005. LIU, Y., SHI, J., & LANGRISH, T. A. G. Water-based extraction of pectin from flavedo and albedo of orange peels. Chemical Engineering Journal, 120(3), 203-209, 2006. LIU W., WEI LIU, YE A., PENG S., WEI F., LIU C., HAN J. Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate. Food Chemistry, 196, 396-404, 2016. MACHADO, L. C; PELEGATI, V. B; OLIVEIRA, A. L. Study of simple microparticles formation of limonene in modified starch using PGSS–Particles from gas-saturated suspensions. The Journal of Supercritical Fluids, v. 107, p. 260-269, 2016. McCLEMENTS, D. J. Food emulsions: principles, practices, and techniques. CRC press, 2015. McCLEMENTS, D. J.; DECKER E. A. Lipids. In Food Chemistry, 4th Edition, S. 2008. MAJEED, H; ANTONIOU, J; HATEGEKIMANA, J; SHARIF, H. R; HAIDER, J; LIU, F; ZHONG, F. Influence of carrier oil type, particle size on in vitro lipid digestion and eugenol release in emulsion and nanoemulsions. Food Hydrocolloids, v.52, p.415-422, 2016 MATALANIS A., JONES O. G & McCLEMENTS D. J. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids. v. 25 p. 1865-1880, 2011. MAURER, N. E., HATTA-SAKODA, B., PASCUAL-CHAGMAN, G., & RODRIGUEZ-SAONA, L. E. Characterization and authentication of a novel vegetable source of ômega-3 fatty acids,sachainchi (Plukenetiavolubilis L.) oil. Food Chemistry, 134, p.1173-1180, 2012. MOHNEN, D. Pectin structure and biosynthesis. Current opinion in plant biology, 11(3), 266-277, 2008. MÜLLER, J. M.; SANTOS, R. L.; BRIGIDO, R. V. Produção de alginato por microrganismos.Polímeros, v. 21(4), p. 305-310, 2011. 39 MUNIN, A; EDWARDS-LÉVY, F. Encapsulation of natural polyphenolic compounds; a review.Pharmaceutics, v. 3, n. 4, p. 793-829, 2011. NAGGAR, V. F., EL-KHAWAS, M., ISMAIL, F. A. e BORAIE, N. A. Pectin, a possible matrix for oral sustained-release preparations of water-soluble drugs. STP pharma sciences, 2(3), 227-234, 1992. NEDOVIC V., KALUSEVIC A., MANOJLOVIC V., LEVIC S., BUGARSKIB. An overview of encapsulation technologies for food applications .Food Science.p.1806-1815, 2011. NGARIZE, S. Comparison of Changes in the Secondary Structure of Unheated, Heated, and High-Pressure-Treated β-Lactoglobulin and Ovalbumin Proteins Using Fourier Transform Raman Spectroscopy and Self-Deconvolution. Journal of Agricultural and Food Chemistry, v. 52, no. 21, p. 6470–6477, 2004. NORTHCOTE, D. H. Chemistry of the plant cell wall. Annual review of plant physiology, v. 23, n. 1, p. 113-132, 1972. NIU, F.; PAN, W.; SU, Y.; YANG, Y. Physical and antimicrobial properties of thyme oil emulsions stabilized by ovalbumin and gum arabic. Food chemistry. 212, 138-145, 2016. NIU F., SU Y., LIU Y., WANG G., ZHANG Y., YANG Y., Ovalbumin-gum arabicinteractions: effect of pH, temperature, salt, biopolymers ratio and totalconcentration, Colloids Surf. B Biointerfaces 113, 477–482, 2014. NIU, L., LI, J., CHEN, M. S., & XU, Z. F. Determination of oil contents in Sacha Inchi (Plukenetiavolubilis) seeds at different developmental stages by two methods: soxhlet extraction and time-domain nuclear magnetic resonance. Industrial Crops and Products, 56,p. 187-190, 2014. NYEMB K., GUÉRIN-DUBIARD C., DUPONT D., JARDIN J., RUTHERFURD S. M. & NAU F. The extent of ovalbumin in vitro digestion and the nature of generated peptides are modulated by the morphology of protein aggregates. Food Chemistry, 157, 429–438, 2014. ORDÓÑEZ, J.A.; RODRIGUEZ, M.I.C.; ÁLVAREZ, L.F.; SANZ, M.L.G; MINGUILLÓN, G.D.G.F.; PERALEZ, L.H.; CORTECERCO, M.D.S. Tecnologia de Alimentos: Alimentos de origem animal. Porto Alegre: Artmed, v.2, p.269-279, 2005 ORIANI, V. B.; ALVIM, I. D.; CONSOLI, L.; MOLINA, G.; PASTORE, G. M.; HUBINGER, M. D. Solid lipid microparticles produced by spray chilling technique to deliver ginger oleoresin: Structure and compound retention. Food Research International.80, 41-49, 2016. OAKENFULL, D., & SCOTT, A. Hydrophobic interaction in the gelation of high methoxyl pectins. Journal of Food Science, 49(4), 1093-1098, 1984. OZYILDIZ, F; KARAGONLU, S; BASAL, UZEL, G.A; BAYRAKTAR, O. Micro-encapsulation of ozonated red pepper seed oil with antimicrobial activity and application to nonwoven fabric.Letters in Applied Microbiology, v.56, p.168-179, 2012. PAMIES R., SCHMIDT R. R., MARTÍNEZ M. D. C. L., TORRE J. G. D L. The influence of mono and divalent cations on dilute and non-dilute aqueous solutions of sodium alginates. Carbohydrate Polymers 80, 248–253, 2010. PELISSARI, J. R; SOUZA, V. B; PIGOSO, A. A; TULINI, F. L; THOMAZINI, M; RODRIGUES, C. E; FAVARO-TRINDADE, C. S. Production of solid lipid microparticles loaded with lycopene by spray chilling: Structural characteristics of particles and lycopene stability. Food and Bioproducts Processing, v.98, p.86-94, 2016. 40 PENG, C., ZHAO, S.-Q., ZHANG, J., HUANG, G.-Y., CHEN, L.-Y., & ZHAO, F.-Y. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chemistry, 165, p. 560-568, 2014. PÉREZ, S., RODRÍGUEZ-CARVAJAL, M. A., & DOCO, T. A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie, 85(1), 109-121, 2003. PIACENTINI E., GIORNO L., DRAGOSAVAC M. M., VLADISAVLJEVIĆ G. T., HOLDICH R. G. Microencapsulation of oil droplets using cold water fish gelatine/gum arabic complex coacervation by membrane emulsification. Food Research International. 53, 362-372, 2013. RAWDKUEN S., MURDAYANTI D., SUNANTHA K., PHONGTHAI S.Chemical properties and nutritional factors of pressed-cake from tea and Sacha Inchi seeds.Food Bioscience.V. 15, p. 64-71, 2016. REBELLO, F.F.P. Microencapsulação de ingredientes alimentícios. Revista agrogeoambiental, Dez 2009. p.134-144, 2009. RUTZ, J. K.; BORGES, C. D.; ZAMBIAZI, R. C.; CRIZEL-CARDOZO, M. M.; KUCK, L. S.; NOREÑA, C. P. Microencapsulation of palm oil by complex coacervation for application in food systems. Food chemistry.220, 59-66, 2017. RUTTARATTANAMONGKOL, K; AFIZAH, M. N; RIZVI, S. S. Stability and rheological properties of corn oil and butter oil emulsions stabilized with texturized whey proteins by supercritical fluid extrusion. Journal of Food Engineering, 166, 139-147. 2015. SARKAR, S; GUPTA, S;VARIYAR, P. S; SHARMA, A; SINGHAL, R. S. Hydrophobic derivatives of guar gum hydrolyzate and gum arabic as matrices for microencapsulation of mint oil. Carbohydratepolymers, v.95, n.1, p.177-182, 2013. SANGUANSRI, L., & AUGUSTIN, M. A. Microencapsulation in functional food product development. In J. Smith, & E. Charter (Eds.), Functional food product development (pp. 1e23). USA: John Wiley & Sons, 2011. SAHINER N.; SAGBAS S.; AKTAS N. Mater. Sci. Eng., C. 49, 824–834,2015. SANTOS M. B., COSTA A. R., GARCIA-ROJAS E. E. Heteroprotein complex coacervates of ovalbumin and lysozyme:Formation and thermodynamic characterization. International Journal of Biological Macromolecules. 2017. SCHMITT, C.; TURGEON, S. L. Protein/polysaccharide complexes and coacervates in food systems.Advances in Colloid and Interface Science, v. 167, p. 63-70, 2011. SGARBIERI, V. C. Proteínas em alimentos proteicos. São Paulo: Varela, p. 57-172, 1996. SGARBIERI, V. C. Propriedades fisiológicas-funcionais das proteínas do soro de leite. Revista Nutrição, v. 17, n. 4, p. 397-409, 2004. SATHE, S. K., KSHIRSAGAR, H. H., & SHARMA, G. M. Solubilization, fractionation, and electrophoretic characterization of Inca peanut (Plukenetiavolubilis L.) proteins.Plant Foods for Human Nutrition, 67, p. 247-255, 2012. SHARMA, R. K., WOOTEN, J. B., BALIGA, V. L., & HAJALIGOL, M. R. Characterization of chars from biomass-derived materials: pectin chars. Fuel, 80(12), 1825-1836, 2001. SHEN, L.; CHEN, J.; BAI, Y.; MA, Z.; HUANG, J.; FENG, W. Physical Properties and Stabilization of Microcapsules Containing Thyme Oil by Complex Coacervation. Journal of food science.2016, 81, 9.TANEJA, A., & SINGH, H. Challenges for the delivery of long-chain n-3 fatty acids in functional foods.Annual Review of Food Science and Technology, 3, p.105-123, 2012. 41 SOBEL, R., VERSIC, R., & GAONKAR, A. G. Introduction to microencapsulation and controlled delivery in foods. In Microencapsulation in the food industry (p. 3-12). 2014. SOUTO‐MAIOR, J. F. A., REIS, A. V., PEDREIRO, L. N., & CAVALCANTI, O. A. Phosphated crosslinked pectin as a potential excipient for specific drug delivery: preparation and physicochemical characterization. Polymer International, 59(1), 127-135. 2010. SOUZA C.J.F., GARCIA-ROJAS E.E., Interpolymeric complexing between egg whiteproteins and xanthan gum: effect of salt and protein/polysaccharide ratio,Food Hydrocoll. 268–275, 66, 2017. SOUZA, C. J.F.; ROJAS, E. E. G.; MELO, N. R. G., LINS, J.F.C. Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocolloids, v. 30, p. 375-381, 2013. SRIAMORNSAK, P. Application of pectin in oral drug delivery. Expert opinion on drug delivery, 8(8), 1009-1023. 2011. SUNGTHONGJEEN, S., PITAKSUTEEPONG, T., SOMSIRI, A., & SRIAMORNSAK, P. Studies on pectins as potential hydrogel matrices for controlled-release drug delivery. Drug development and industrial pharmacy, 25(12), 1271-1276, 1999. SUTAPHANIT, P; CHITPRASERT, P. Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology.Food chemistry, v.150, p.313-320, 2014. THIES, C. Microencapsulation of Flavors by Complex Coacervation. In: (Ed.). Encapsulation and Controlled Release Technologies in Food Systems: Blackwell Publishing, p.149-170, 2007. TIMILSENA, Y. P., ADHIKARI, R., BARROW, C. J.,& ADHIKARI, B. Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates. Food Hydrocolloids, 66, 71-81, 2017. TIMILSENA Y. P., WANG B., ADHIKARI R., ADHIKARI B. Preparation and characterization of chia seed protein isolate chiaseed gum complex coacervates. Food Hydrocolloids. 52, p. 554-563, 2016. TURASAN, H; SAHIN, S; SUMNU, G. Encapsulation of rosemary essential oil.LWT-Food Science and Technology, v.64, n.1, p.112-119, 2015. VICENTE, J.; SOUZA CEZARINO, T.; PEREIRA, L. J. B.; DA ROCHA, E. P.; SÁ, G. R.; GAMALLO, O. D.; GARCIA-ROJAS, E. E. Microencapsulation of sacha inchi oil using emulsion-based delivery systems.Food Research International.99, 612-622, 2017. VORAGEN, A. G., COENEN, G. J., VERHOEF, R. P., & SCHOLS, H. A. Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20(2), 263, 2009. WANDREY C., BARTKOWIAK A. & HARDING S.E. Materials for Encapsulation In: Zuidam N.J., Nedovic, V.A. (Eds.) Encapsulation Technologies for Food Active Ingredients and Food Processing, Springer: Dordrecht, The Netherlands; 2009, p. 31-100. WARAHO, T.; MCCLEMENTS D. J.; DECKER E. A. Mechanisms of lipid oxidation in food dispersions.Trends in Food Science and Technology. 2011, 22, 3–13. WANG, L.; YANG, S.; CAO, J.; ZHAO, S.; WANG, W. Microencapsulation of Ginger Volatile Oil Based on Gelatin/Sodium Alginate Polyelectrolyte Complex. Chemical and Pharmaceutical Bulletin.64, 21-26,2016. 42 WANG B., VONGSVIVUT J., ADHIKARI B., BARROW C. J.Microencapsulation of tuna oil fortified with the multiple lipophilic ingredients vitamins A, D3, E, K2, curcumin and coenzyme Q10.Journal of Functional Foods.19, p. 893-901, 2015. WILLATS, W. G., KNOX, J. P., & MIKKELSEN, J. D. Pectin: new insights into an old polymer are starting to gel. Trends in Food Science & Technology, 17(3), 97-104, 2006. WILLATS W.G., MCCARTNEY L., MACKIE W., KNOX J.P. Pectin: cell biology andprospects for functional analysis, in: Plant Cell Walls, Springer, Netherlands,2001, pp. 9–27. YAMASAKI, M.; TAKAHASHI, N. Crystal Structure of S-ovalbumin as a Non-loop-inserted ThermostabilizedSerpin Form. Journal of Biology Chemica, v. 278, n. 37, p. 35524–35530, 2003. YUAN, Y., KONG, Z. Y., SUN, Y. E., ZENG, Q. Z., & YANG, X. Q. Complex coacervation of soy protein with chitosan: Constructing antioxidant microcapsule for algal oil delivery. LWT-Food Science and Technology, 75, 171-179, 2017. ZAYAS, J.F. Funcionality of proteins in foods. New York: Springer, p.337, 1997. ZHANG, L. Y.; ZHANG, X. H.; ABBAS, S.; KARANGWA, E. The study of Ph dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, v.30, p.323-332, 2013. ZHANG, K.; ZHANG, H.; HU, X.; BAO, S.; HUANG, H. Synthesis and release studies of microalgal oil-containing microcapsules prepared y complex coacervation. Colloids andSurfaces B: Biointerfaces, v.89, p.61-66, 2012. ZHAO, J; WEI, T; WEI, Z; YUAN, F; GAO, Y. Influence of soybean soluble polysaccharides and beet pectin on the physicochemical properties of lactoferrin-coated orange oil emulsion. Food Hydrocolloids, v.44, p.443-452, 2015. ZIA K. M., ZIA F., ZUBER M., REHMAN S., AHMAD M. N. Alginate based polyurethanes: A review of recent advances and perspective. International Journal of Biological Macromolecules. v.79, p.377-387, 2015. 43 ALVIM, I. D; STEIN, M. A; KOURY, I. P; DANTAS, F. B. H; CRUZ, C. L. D. C. V. Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. Food Science and Technology, v.65, p. 689-694, 2016. ANDRADE R. G.; GINANI J. S.; LOPES G. K. B.; DUTRA F.; ALONSO A.; HERMES-LIMA M.Biochimie. 88, 1287–1296,2006. ARENA, E., CAMPISI, S., FALLICO, B., & MACCARONE, E. Distribution of fatty acids and phytosterols as a criterion to discriminate geographic origin of pistacho seeds.Food chemistry.104, 403-408, 2007. ATEFI, M.; NAYEBZADEH, K.; MOHAMMADI, A.; MORTAZAVIAN, A. M. Using ß-cyclodextrin and Arabic gum as wall materials for encapsulation of Saffron essential oil. Iranian journal of pharmaceutical research: IJPR.16, 93.2017, AXELOS, M. A. V., THIBAULT, J., e LEFEBVRE, J. Structure of citrus pectins and viscometric study of their solution properties. International journal of biological macromolecules, 11(3), 186-191, 1989. AZEREDO, H. M. C. Encapsulação: aplicação à tecnologia de alimentos. Alimentos e Nutrição, v. 16(1), p. 89-97, 2005. BALASUBRAMANI, P; PALANISWAMY, P. T; VISVANATHAN, R;THIRUPATHI, V; SUBBARAYAN, A; MARAN, J. P. Microencapsulation of garlic oleoresin using maltodextrin as wall material by spray drying technology. International journal of biological macromolecules, v.72, p.210-217, 2015. BAKRY A.M., ABBAS S., ALI B., MAJEED H., ABOUELWAFA M.Y., MOUSA A., AND LI LIANG. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive Review sin Food Science and Food Safety,Vol.15, 2016. BASAK, S.; GUHA, P. Betel leaf (Piper betle L.) essential oil microemulsion: Characterization and antifungal activity on growth, and apparent lag time of Aspergillus flavus in tomato paste. LWT-Food Science and Technology.75, 616-623,2017. BEINDORFF, C.M., ZUIDAM, N.J., Microencapsulation of fish oil. In: Zuidam, N.J., NEDOVIC, V.A. (Eds.), Encapsulation Technologies for Active. Food Ingredients and Food Processing.Springer, New York, p. 161-185, 2010. BERGOLIO. Sacha Inchi. Disponível em: ˂ http://www.sacha-inchi.org/?lang=en> acesso em: 4 de agosto de 2016. BOBBIO, F.O.; BOBBIO, P.A. Introdução à química de alimentos. 3ª Ed. São Paulo: Varela, p. 238, 2003. BOZAN, B., & TENELLI, F. Chemical composition and oxidative stability of flax,safflower and poppy seeds and seed oils.Bioresource Technology, 99, 6354-6359, 2008. BUZZINI P., ARAPITSAS P., GORETTI M., BRANDA E., TURCHETTI B., PINELLI P., IERI F.; ROMANI A. Mini-Rev. Med. Chem. 8, 1179–1187,2008. CABRAL FA, FOLLEGATTI-ROMERO LA, PIANTINO CR, GRIMALDI R. Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.)seeds. J Supercrit Fluid, 49(3):323–329, 2009. CASTRO-GONZÁLEZ, M.I. Ácidos Grasos Omega 3: Beneficios Y Fuentes.Interciência v.27 n.3 Caracas mar. 2002. CANTERI, M. H., MORENO, L., WOSIACKI, G., e SCHEER, A. D. P. Pectina: da matéria-prima ao produto final. Polímeros: Ciência e Tecnologia, 22(2), 2012. 36 CIFTCI, O. N., PRZYBYLSKI, R., e RUDZIN´ SKA, M. Lipids components of flax, perilla and chia seeds.European Journal of Lipid Science and Technology. http:// dx.doi.org/10.1002/ejlt.201100207, 2012. CHANG P. G., GUPTA R., TIMILSENA Y. P., ADHIKARI B.Optimisation of the complex coacervation between canola protein isolate and chitosan. Journal of Food Engineering 191, 58-66, 2016. CHEN, B. C.; MCCLEMENTS, D. J.; DECKER, E. A. Design of foods with bioactive lipids for improved health. In: DOYLE, M. P.; KLAENHAMMER, T. R. (Ed.). Annual Reviewof Food Science and Technology, v. 4, p. 35-56, 2013. CHEN X., BEUTLER J. A., MCCLOUD T. G., LOEHFELM A., YANG L., DONG H.F., CHERTOV O. Y., SALCEDO R., OPPENHEIM J. J.; HOWARD O. M. Z..Clin. Cancer Res. 9, 3115–3123.2003. CHIRINOS R., ZULOETA G., PEDRESCHI R., MIGNOLET E., LARONDELLE Y., CAMPOS D. Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidante capacity. Food Chemistry 141, 1732-1739, 2013. CHITPRASERT, P; SUTAPHANIT, P. Holy Basil (Ocimum sanctum Linn.) Essential Oil Delivery to Swine Gastrointestinal Tract Using Gelatin Microcapsules Coated with Aluminum Carboxymethyl Cellulose and Beeswax. Journal of agricultural and food chemistry, v.62, n.52, p.12641-12648, 2014. CHOI, S.; KIM, H.; PARK, K.; MOON, T. Molecular characteristics of ovalbumin dextran conjugates formed through the Maillard reaction. Food Chemistry, 92(1), p. 93- 99, 2005. COMUNIAN T. A., FAVARO-TRINDADE C. S. Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocolloids.61, 442-457, 2016. CROGUENNEC T., RENAULT A., BEAUFILS S., DUBOIS J. & PEZENNEC S. Interfacial properties of heat-treated ovalbumin. Journal of Colloid and Interface Science, 315, 627–636 (2007). DIMA, C; PĂTRAŞCU, L; CANTARAGIU, A; ALEXE, P; DIMA, Ş. The kinetics of the swelling process and the release mechanisms of Coriandrumsativum L. essential oil from chitosan/alginate/inulin microcapsules.Food chemistry, v.195, p.39-48, 2016. DOLÇÀ, C; FERRÁNDIZ, M; CAPABLANCA, L; FRANCO, E; MIRA, E; LÓPEZ, F; GARCÍA, D. Microencapsulation of Rosemary Essential Oil by Co-Extrusion/Gelling Using Alginate as a Wall Material. Journal of Encapsulation and Adsorption Sciences, v.5, n.3, p.121, 2015. FANALI, C.; DUGO, L.; CACCIOLA, F.; BECCARIA, M.; GRASSO, S.; DACHÀ, M.; DUGO, P.; MONDELLO, L. Chemical Characterization of Sacha Inchi (Plukenetia volubilis L.) Oil. Disponível em:<dx.doi.org/10.1021/jf203184y>. J. Agric. Food Chem. 59, 13043-13049, 2011. FATHI, M., MARTÍN, Á., e MCCLEMENTS, D. J. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in food science & technology, 39(1), 18-39, 2014. FAVARO-TRINDADE, C. S., PINHO, S. C., & ROCHA, G. A. Microencapsulação de ingredientes alimentícios. Brazilian Journal of Food Technology, 11(2), 103-112, 2008. FOLLEGATTI-ROMERO L.A., PIANTINOC.R., GRIMALDI R. & CABRAL F.A.Supercritical CO2 extraction of omega-3 rich oil from Sacha Inchi (Plukenetia volubilis L.) seeds.The Journal of Supercritical Fluids49, p.323-329, 2009. 37 GANJE, M; JAFARI, S. M; DUSTI, A; DEHNAD, D; AMANJANI, M; GHANBARI, V. Modeling quality changes in tomato paste containing microencapsulated olive leaf extract by accelerated shelf life testing. Food and Bioproducts Processing, v.97, p.12-19, 2016. GARCÍA-SALDAÑA J. S., CAMPAS-BAYPOLI O. N., LÓPEZ-CERVANTES J., SÁNCHEZ-MACHADO D. I., CANTÚ-SOTO E. U., RODRÍGUEZ-RAMÍREZ R.Microencapsulationofsulforaphanefrombrócoliseedextractsbygelatin/gumarabicandgelatin/pectin complexes.FoodChemistry 201 (2016) 94–100. GARG, M. L.,WOOD, L. G., SINGH, H., & MOUGHAN, P. J. Means of delivering recommended levels of long chain n-3 polyunsaturated fatty acids in human diets. Journal of Food Science, 71(5), R66–R71, 2006. GARMENDIA F., PANDO R. & RONCEROS G. Efecto del aceite de sacha inchi (plukenetia volúbilis l)sobre el perfil lipídico en pacientes comhiperlipoproteinemia. Rev Peru Med Exp Salud Publica. 28( 4):628-32, 2011. GIBBS, B.F., KERMASHA, S., ALLI, I., MULLIGAN, C.N. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 50, 213-224, 1999. GIRARDI, N. S.; GARCÍA, D.; PASSONE, M. A.; NESCI, A.; ETCHEVERRY, M. Microencapsulation of Lippia turbinata essential oil and its impact on peanut seed quality preservation.International Biodeterioration & Biodegradation.116, 227-233, 2017. GIOSAFATTO C.V.L., RIGBY N.M., WELLNER N., RIDOUT M., HUSBAND F. & MACKIE A.R. Microbial transglutaminase-mediated modification of ovalbumin. Food Hydrocolloids, 393 26, 261-267, 2012. GOUIN, S. Microencapsulation: industrial appraisal of existing technologies and trends. Trends in food science & technology, v. 15, n. 7, p. 330-347, 2004. GUILLÉN, M. D., RUIZ, A., CABO, N., CHIRINOS, R., & PASCUAL, G. Characterization of Sacha Inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and RMN1H.Comparison with linseed oil.Journal of the American Oil Chemists Society, 80(8), 755-762, 2003. GULÃO, E. D. S., DE SOUZA, C. J., ANDRADE, C. T., e GARCIA-ROJAS, E. E. Complex coacervates obtained from peptide leucine and gum arabic: Formation and characterization. Food chemistry, v 194, p 680-686, 2016. GUTIÉRREZ, L.-F., ROSADA, L.-M., & JIMÉNEZ, A. Chemical composition of Sacha Inchi (Plukenietia volúbilis L.) seeds and characterisation of their lipid fraction.Grasas y aceites.62, 76-83, 2011. HUANG, Y. S., PEREIRA, S. L., & LEONARD, A. E. Enzymes for transgenic biosynthesis of long-chain polyunsaturated fatty acids. Biochimie, 86, 793-798, 2004. IUPAC. Compendium of Chemical Technology, North Carolina, USA, 1997. JAFARI, S. M., ASSADPOOR, E., HE, Y., & BHANDARI, B. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), p.816-835,2008. JAFARI, S. M; MAHDAVI-KHAZAEI, K; HEMMATI-KAKHKI, A. Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate polymers, v.140, p.20-25, 2016. JARVIS, M. C., FORSYTH, W.,& DUNCAN, H. J. A survey of the pectic content of nonlignified monocot cell walls. Plant physiology, 88(2), 309-314, 1988. JIN, Y., PERRIE, C., ZHANG, W., DIEPEN, C.V., CURTIS, J., BARROW, C.J. Microencapsulation of marine lipids as a vehicle for functional food delivery. In: Barrow, C.J., Shahidi, F. (Eds.), Marine Nutraceuticals and Functional Foods. CRC Press, London, p.115-155, 2007. 38 JOYE, I. J; DAVIDOV-PARDO, G; MCCLEMENTS, D. J. Nanotechnology for increasedmicronutrientbioavailability.Trends in Food Science & Technology, v. 40, n.2, p.168-182, 2014. KAUSHIK, P., DOWLING, K., BARROW, C. J., & ADHIKARI, B. Microencapsulation of omega-3 fatty acids: A review of microencapsulation and characterization methods. Journal of Functional Foods,p. 868-881, 2014. KERTESZ, Z. I. The Pectic Substances, New York, Interscience Publishers Inc, 1951. KRALOVEC, J. A., ZHANG, S., ZHANG, W., BARROW, C. J. A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources.Food Chemistry, 131, 639-644, 2012. KRUIF, C.G.; TUINIER, R. Polysaccharide protein interactions.Food Hydrocolloid.Oxford, v 15, n 4-6, p.555-563, 2001. KUCK, L. S; NOREÑA, C. P. Z. Microencapsulation of grape (Vitislabrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food chemistry, v. 194, p. 569-576, 2016. LI, R.; CHEN, R.; LIU, W.; QIN, C.; HAN, J. Preparation of enteric-coated microcapsules of astaxanthin oleoresin by complex coacervation. Pharmaceutical development and technology. 1-8, 2016. LIU, C. G., DESAI, K. G. H., CHEN, X. G., & PARK, H. J. Linolenic acid-modified chitosan for formation of self-assembled nanoparticles. Journal of agricultural and food chemistry, 53(2), 437-441, 2005. LIU, Y., SHI, J., & LANGRISH, T. A. G. Water-based extraction of pectin from flavedo and albedo of orange peels. Chemical Engineering Journal, 120(3), 203-209, 2006. LIU W., WEI LIU, YE A., PENG S., WEI F., LIU C., HAN J. Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate. Food Chemistry, 196, 396-404, 2016. MACHADO, L. C; PELEGATI, V. B; OLIVEIRA, A. L. Study of simple microparticles formation of limonene in modified starch using PGSS–Particles from gas-saturated suspensions. The Journal of Supercritical Fluids, v. 107, p. 260-269, 2016. McCLEMENTS, D. J. Food emulsions: principles, practices, and techniques. CRC press, 2015. McCLEMENTS, D. J.; DECKER E. A. Lipids. In Food Chemistry, 4th Edition, S. 2008. MAJEED, H; ANTONIOU, J; HATEGEKIMANA, J; SHARIF, H. R; HAIDER, J; LIU, F; ZHONG, F. Influence of carrier oil type, particle size on in vitro lipid digestion and eugenol release in emulsion and nanoemulsions. Food Hydrocolloids, v.52, p.415-422, 2016 MATALANIS A., JONES O. G & McCLEMENTS D. J. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids. v. 25 p. 1865-1880, 2011. MAURER, N. E., HATTA-SAKODA, B., PASCUAL-CHAGMAN, G., & RODRIGUEZ-SAONA, L. E. Characterization and authentication of a novel vegetable source of ômega-3 fatty acids,sachainchi (Plukenetiavolubilis L.) oil. Food Chemistry, 134, p.1173-1180, 2012. MOHNEN, D. Pectin structure and biosynthesis. Current opinion in plant biology, 11(3), 266-277, 2008. MÜLLER, J. M.; SANTOS, R. L.; BRIGIDO, R. V. Produção de alginato por microrganismos.Polímeros, v. 21(4), p. 305-310, 2011. 39 MUNIN, A; EDWARDS-LÉVY, F. Encapsulation of natural polyphenolic compounds; a review.Pharmaceutics, v. 3, n. 4, p. 793-829, 2011. NAGGAR, V. F., EL-KHAWAS, M., ISMAIL, F. A. e BORAIE, N. A. Pectin, a possible matrix for oral sustained-release preparations of water-soluble drugs. STP pharma sciences, 2(3), 227-234, 1992. NEDOVIC V., KALUSEVIC A., MANOJLOVIC V., LEVIC S., BUGARSKIB. An overview of encapsulation technologies for food applications .Food Science.p.1806-1815, 2011. NGARIZE, S. Comparison of Changes in the Secondary Structure of Unheated, Heated, and High-Pressure-Treated β-Lactoglobulin and Ovalbumin Proteins Using Fourier Transform Raman Spectroscopy and Self-Deconvolution. Journal of Agricultural and Food Chemistry, v. 52, no. 21, p. 6470–6477, 2004. NORTHCOTE, D. H. Chemistry of the plant cell wall. Annual review of plant physiology, v. 23, n. 1, p. 113-132, 1972. NIU, F.; PAN, W.; SU, Y.; YANG, Y. Physical and antimicrobial properties of thyme oil emulsions stabilized by ovalbumin and gum arabic. Food chemistry. 212, 138-145, 2016. NIU F., SU Y., LIU Y., WANG G., ZHANG Y., YANG Y., Ovalbumin-gum arabicinteractions: effect of pH, temperature, salt, biopolymers ratio and totalconcentration, Colloids Surf. B Biointerfaces 113, 477–482, 2014. NIU, L., LI, J., CHEN, M. S., & XU, Z. F. Determination of oil contents in Sacha Inchi (Plukenetiavolubilis) seeds at different developmental stages by two methods: soxhlet extraction and time-domain nuclear magnetic resonance. Industrial Crops and Products, 56,p. 187-190, 2014. NYEMB K., GUÉRIN-DUBIARD C., DUPONT D., JARDIN J., RUTHERFURD S. M. & NAU F. The extent of ovalbumin in vitro digestion and the nature of generated peptides are modulated by the morphology of protein aggregates. Food Chemistry, 157, 429–438, 2014. ORDÓÑEZ, J.A.; RODRIGUEZ, M.I.C.; ÁLVAREZ, L.F.; SANZ, M.L.G; MINGUILLÓN, G.D.G.F.; PERALEZ, L.H.; CORTECERCO, M.D.S. Tecnologia de Alimentos: Alimentos de origem animal. Porto Alegre: Artmed, v.2, p.269-279, 2005 ORIANI, V. B.; ALVIM, I. D.; CONSOLI, L.; MOLINA, G.; PASTORE, G. M.; HUBINGER, M. D. Solid lipid microparticles produced by spray chilling technique to deliver ginger oleoresin: Structure and compound retention. Food Research International.80, 41-49, 2016. OAKENFULL, D., & SCOTT, A. Hydrophobic interaction in the gelation of high methoxyl pectins. Journal of Food Science, 49(4), 1093-1098, 1984. OZYILDIZ, F; KARAGONLU, S; BASAL, UZEL, G.A; BAYRAKTAR, O. Micro-encapsulation of ozonated red pepper seed oil with antimicrobial activity and application to nonwoven fabric.Letters in Applied Microbiology, v.56, p.168-179, 2012. PAMIES R., SCHMIDT R. R., MARTÍNEZ M. D. C. L., TORRE J. G. D L. The influence of mono and divalent cations on dilute and non-dilute aqueous solutions of sodium alginates. Carbohydrate Polymers 80, 248–253, 2010. PELISSARI, J. R; SOUZA, V. B; PIGOSO, A. A; TULINI, F. L; THOMAZINI, M; RODRIGUES, C. E; FAVARO-TRINDADE, C. S. Production of solid lipid microparticles loaded with lycopene by spray chilling: Structural characteristics of particles and lycopene stability. Food and Bioproducts Processing, v.98, p.86-94, 2016. 40 PENG, C., ZHAO, S.-Q., ZHANG, J., HUANG, G.-Y., CHEN, L.-Y., & ZHAO, F.-Y. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chemistry, 165, p. 560-568, 2014. PÉREZ, S., RODRÍGUEZ-CARVAJAL, M. A., & DOCO, T. A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie, 85(1), 109-121, 2003. PIACENTINI E., GIORNO L., DRAGOSAVAC M. M., VLADISAVLJEVIĆ G. T., HOLDICH R. G. Microencapsulation of oil droplets using cold water fish gelatine/gum arabic complex coacervation by membrane emulsification. Food Research International. 53, 362-372, 2013. RAWDKUEN S., MURDAYANTI D., SUNANTHA K., PHONGTHAI S.Chemical properties and nutritional factors of pressed-cake from tea and Sacha Inchi seeds.Food Bioscience.V. 15, p. 64-71, 2016. REBELLO, F.F.P. Microencapsulação de ingredientes alimentícios. Revista agrogeoambiental, Dez 2009. p.134-144, 2009. RUTZ, J. K.; BORGES, C. D.; ZAMBIAZI, R. C.; CRIZEL-CARDOZO, M. M.; KUCK, L. S.; NOREÑA, C. P. Microencapsulation of palm oil by complex coacervation for application in food systems. Food chemistry.220, 59-66, 2017. RUTTARATTANAMONGKOL, K; AFIZAH, M. N; RIZVI, S. S. Stability and rheological properties of corn oil and butter oil emulsions stabilized with texturized whey proteins by supercritical fluid extrusion. Journal of Food Engineering, 166, 139-147. 2015. SARKAR, S; GUPTA, S;VARIYAR, P. S; SHARMA, A; SINGHAL, R. S. Hydrophobic derivatives of guar gum hydrolyzate and gum arabic as matrices for microencapsulation of mint oil. Carbohydratepolymers, v.95, n.1, p.177-182, 2013. SANGUANSRI, L., & AUGUSTIN, M. A. Microencapsulation in functional food product development. In J. Smith, & E. Charter (Eds.), Functional food product development (pp. 1e23). USA: John Wiley & Sons, 2011. SAHINER N.; SAGBAS S.; AKTAS N. Mater. Sci. Eng., C. 49, 824–834,2015. SANTOS M. B., COSTA A. R., GARCIA-ROJAS E. E. Heteroprotein complex coacervates of ovalbumin and lysozyme:Formation and thermodynamic characterization. International Journal of Biological Macromolecules. 2017. SCHMITT, C.; TURGEON, S. L. Protein/polysaccharide complexes and coacervates in food systems.Advances in Colloid and Interface Science, v. 167, p. 63-70, 2011. SGARBIERI, V. C. Proteínas em alimentos proteicos. São Paulo: Varela, p. 57-172, 1996. SGARBIERI, V. C. Propriedades fisiológicas-funcionais das proteínas do soro de leite. Revista Nutrição, v. 17, n. 4, p. 397-409, 2004. SATHE, S. K., KSHIRSAGAR, H. H., & SHARMA, G. M. Solubilization, fractionation, and electrophoretic characterization of Inca peanut (Plukenetiavolubilis L.) proteins.Plant Foods for Human Nutrition, 67, p. 247-255, 2012. SHARMA, R. K., WOOTEN, J. B., BALIGA, V. L., & HAJALIGOL, M. R. Characterization of chars from biomass-derived materials: pectin chars. Fuel, 80(12), 1825-1836, 2001. SHEN, L.; CHEN, J.; BAI, Y.; MA, Z.; HUANG, J.; FENG, W. Physical Properties and Stabilization of Microcapsules Containing Thyme Oil by Complex Coacervation. Journal of food science.2016, 81, 9.TANEJA, A., & SINGH, H. Challenges for the delivery of long-chain n-3 fatty acids in functional foods.Annual Review of Food Science and Technology, 3, p.105-123, 2012. 41 SOBEL, R., VERSIC, R., & GAONKAR, A. G. Introduction to microencapsulation and controlled delivery in foods. In Microencapsulation in the food industry (p. 3-12). 2014. SOUTO‐MAIOR, J. F. A., REIS, A. V., PEDREIRO, L. N., & CAVALCANTI, O. A. Phosphated crosslinked pectin as a potential excipient for specific drug delivery: preparation and physicochemical characterization. Polymer International, 59(1), 127-135. 2010. SOUZA C.J.F., GARCIA-ROJAS E.E., Interpolymeric complexing between egg whiteproteins and xanthan gum: effect of salt and protein/polysaccharide ratio,Food Hydrocoll. 268–275, 66, 2017. SOUZA, C. J.F.; ROJAS, E. E. G.; MELO, N. R. G., LINS, J.F.C. Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocolloids, v. 30, p. 375-381, 2013. SRIAMORNSAK, P. Application of pectin in oral drug delivery. Expert opinion on drug delivery, 8(8), 1009-1023. 2011. SUNGTHONGJEEN, S., PITAKSUTEEPONG, T., SOMSIRI, A., & SRIAMORNSAK, P. Studies on pectins as potential hydrogel matrices for controlled-release drug delivery. Drug development and industrial pharmacy, 25(12), 1271-1276, 1999. SUTAPHANIT, P; CHITPRASERT, P. Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology.Food chemistry, v.150, p.313-320, 2014. THIES, C. Microencapsulation of Flavors by Complex Coacervation. In: (Ed.). Encapsulation and Controlled Release Technologies in Food Systems: Blackwell Publishing, p.149-170, 2007. TIMILSENA, Y. P., ADHIKARI, R., BARROW, C. J.,& ADHIKARI, B. Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates. Food Hydrocolloids, 66, 71-81, 2017. TIMILSENA Y. P., WANG B., ADHIKARI R., ADHIKARI B. Preparation and characterization of chia seed protein isolate chiaseed gum complex coacervates. Food Hydrocolloids. 52, p. 554-563, 2016. TURASAN, H; SAHIN, S; SUMNU, G. Encapsulation of rosemary essential oil.LWT-Food Science and Technology, v.64, n.1, p.112-119, 2015. VICENTE, J.; SOUZA CEZARINO, T.; PEREIRA, L. J. B.; DA ROCHA, E. P.; SÁ, G. R.; GAMALLO, O. D.; GARCIA-ROJAS, E. E. Microencapsulation of sacha inchi oil using emulsion-based delivery systems.Food Research International.99, 612-622, 2017. VORAGEN, A. G., COENEN, G. J., VERHOEF, R. P., & SCHOLS, H. A. Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20(2), 263, 2009. WANDREY C., BARTKOWIAK A. & HARDING S.E. Materials for Encapsulation In: Zuidam N.J., Nedovic, V.A. (Eds.) Encapsulation Technologies for Food Active Ingredients and Food Processing, Springer: Dordrecht, The Netherlands; 2009, p. 31-100. WARAHO, T.; MCCLEMENTS D. J.; DECKER E. A. Mechanisms of lipid oxidation in food dispersions.Trends in Food Science and Technology. 2011, 22, 3–13. WANG, L.; YANG, S.; CAO, J.; ZHAO, S.; WANG, W. Microencapsulation of Ginger Volatile Oil Based on Gelatin/Sodium Alginate Polyelectrolyte Complex. Chemical and Pharmaceutical Bulletin.64, 21-26,2016. 42 WANG B., VONGSVIVUT J., ADHIKARI B., BARROW C. J.Microencapsulation of tuna oil fortified with the multiple lipophilic ingredients vitamins A, D3, E, K2, curcumin and coenzyme Q10.Journal of Functional Foods.19, p. 893-901, 2015. WILLATS, W. G., KNOX, J. P., & MIKKELSEN, J. D. Pectin: new insights into an old polymer are starting to gel. Trends in Food Science & Technology, 17(3), 97-104, 2006. WILLATS W.G., MCCARTNEY L., MACKIE W., KNOX J.P. Pectin: cell biology andprospects for functional analysis, in: Plant Cell Walls, Springer, Netherlands,2001, pp. 9–27. YAMASAKI, M.; TAKAHASHI, N. Crystal Structure of S-ovalbumin as a Non-loop-inserted ThermostabilizedSerpin Form. Journal of Biology Chemica, v. 278, n. 37, p. 35524–35530, 2003. YUAN, Y., KONG, Z. Y., SUN, Y. E., ZENG, Q. Z., & YANG, X. Q. Complex coacervation of soy protein with chitosan: Constructing antioxidant microcapsule for algal oil delivery. LWT-Food Science and Technology, 75, 171-179, 2017. ZAYAS, J.F. Funcionality of proteins in foods. New York: Springer, p.337, 1997. ZHANG, L. Y.; ZHANG, X. H.; ABBAS, S.; KARANGWA, E. The study of Ph dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, v.30, p.323-332, 2013. ZHANG, K.; ZHANG, H.; HU, X.; BAO, S.; HUANG, H. Synthesis and release studies of microalgal oil-containing microcapsules prepared y complex coacervation. Colloids andSurfaces B: Biointerfaces, v.89, p.61-66, 2012. ZHAO, J; WEI, T; WEI, Z; YUAN, F; GAO, Y. Influence of soybean soluble polysaccharides and beet pectin on the physicochemical properties of lactoferrin-coated orange oil emulsion. Food Hydrocolloids, v.44, p.443-452, 2015. ZIA K. M., ZIA F., ZUBER M., REHMAN S., AHMAD M. N. Alginate based polyurethanes: A review of recent advances and perspective. International Journal of Biological Macromolecules. v.79, p.377-387, 2015. 43 AEWSIRI, T., BENJAKUL, S., VISESSANGUAN, W., WIERENGA, P. A., & GRUPPEN, H. Antioxidative activity and emulsifying properties of cuttlefish skin gelatinetannic acid complex as influenced by types of interaction. Innovative Food Science and Emerging Technologies,v. 11 p.712 e 720, 2010. Aguilera, J. R., Venegas, V., Oliva, J. M., Sayagués, M. J., de Miguel, M., Sánchez-Alcázar, J. A. e Zaderenko, A. P. Targeted multifunctional tannic acid nanoparticles. RSC Advances, 6(9), 7279-7287, 2016. ANVARI, M. &CHUNG D. Dynamic rheological and structural characterization of fish gelatin eGum arabic coacervate gels cross-linked by tannic acid. Food Hydrocolloids 60, 516e524. 2016. BAGHERI, Leila et al. Spray-dried alginate microparticles carrying caffeine-loaded and potentially bioactive nanoparticles.Food research international, v. 62, p. 1113-1119, 2014. BALANGE, A. K. & BENJAKUL, S. Cross-linking activity of oxidised tannic acid towards mackerel muscle proteins as affected by protein types and setting temperatures. Food chemistry, v. 120, n. 1, p. 268-277, 2010. 65 BARBOSA, L. C. Espectroscopia no infravermelho na caracterização de compostos orgânicos. – Viçosa: Ed. UFV, 2007. BAKRY A.M., ABBAS S., ALI B., MAJEED H., ABOUELWAFA M.Y., MOUSA A., AND LI LIANG. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive Reviews in Food Science and Food Safety, v. 15, n. 1, p. 143-182, 2016. CAO, N., FU, Y.,& HE, J. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids, 21, 575 e 584, 2007. CHANG, Chao et al. Zein/caseinate/pectin complex nanoparticles: Formation and characterization. International Journal of Biological Macromolecules, 2017. MICIĆ, Darko M. et al. Kinetics of blackberry and raspberry seed oils oxidation by DSC. Thermochimica Acta, v. 601, p. 39-44, 2015. CHIRINOS R., ZULOETA G., PEDRESCHI R., MIGNOLET E., LARONDELLE Y., CAMPOS D. Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidante capacity. Food Chemistry,v.141, p.1732-1739, 2013. COMUNIAN T.A. , BOILLON M.R.G., THOMAZINI M., NOGUEIRA M. S., CASTRO I. A., FAVARO-TRINDADE C. S. Protection of echium oil by microencapsulation with phenolic compounds.Food Research International. 2016 COMUNIAN T. A., FAVARO-TRINDADE C. S. Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocolloids.61, 442-457, 2016. CORONEL-AGUILERA, C. P. & SAN MARTÍN-GONZÁLEZ, M. F. Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. LWT-Food Science and Technology, v. 62, n. 1, p. 187-193, 2015. DE KRUIF, C. G., WEINBRECK, F., & DE VRIES, R. Complex coacervation of proteins and anionic polysaccharides.Current opinion in colloid & interface science, 9(5), 340-349, 2004. DESPHANDE, S.S. CHERYAN, M.SALUNKHE, D.K. Tannin analysis of foods products. CRC Crit. Rev. Food Sci. Nutr., v.24. p. 401-449, 1986. DEVI, N., HAZARIKA, D., DEKA, C., & KAKATI, D. K. Study of complex coacervation of gelatin A and sodium alginate for microencapsulation of olive oil. Journal of Macromolecular Science, Part A, 49(11), 936-945, 2012. DIARRASSOUBA, F. G. R. et al. Self-assembly of β-lactoglobulin and egg white lysozyme as a potential carrier for nutraceuticals. Food Chemistry, v. 173, p. 203–209, 2015. ERICKSON H.P.Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biological procedures online, 2009. FAREEZ, I. M., LIM, S. M., MISHRA, R. K.,& RAMASAMY, K. Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. International journal of biological macromolecules, 72, 1419-1428.2015. FOLLEGATTI-ROMERO, L. A., PIANTINO, C. R., GRIMALDI, R., & CABRAL, F. A. Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) seeds. Journal of Supercritical Fluids, 49(3), 323–329, 2009. GAONKAR, A. G., VASISHT, N., KHARE, A. R., & SOBEL, R. (Eds.). Microencapsulation in the food industry: a practical implementation guide. Elsevier. 2014. 66 GARG, M. L.,WOOD, L. G., SINGH, H., & MOUGHAN, P. J. Means of delivering recommended levels of long chain n-3 polyunsaturated fatty acids in human diets. Journal of Food Science, 71(5), R66–R71, 2006. GUILLÉN, M.D. & N. CABO. Characterization of edible oils and lard by Fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. Journal of the American Oil Chemists' Society, v. 74, n. 10, p. 1281-1286, 1997. GUILLÉN, M. D., RUIZ, A., CABO, N., CHIRINOS, R., & PASCUAL, G. Characterization of Sacha Inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR.Comparison with linseed oil.Journal of the American Oil Chemists Society, 80(8), 755–762, 2003 IONASHIRO, M. Giolito: Fundamentos da termogravimetria e análise térmica diferencial/calorimetria exploratória diferencial. São Paulo: Editora Giz Editorial, 2005. JOHN, J. A., & SHAHIDI, F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). Journal of Functional Foods, 2, 196-209, 2010. KARACA, A. C., NICKERSON, M. & LOW, N. H. Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: Physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food Chemistry, 139, 448–457, 2013. KAUSHIK, P., DOWLING, K., MCKNIGHT, S., BARROW, C. J., & ADHIKARI, B. Microencapsulation of flaxseed oil in flaxseed protein and flaxseed gum complex coacervates.Food research international, 86, 1-8, 2016. KAUSHIK, P., DOWLING, K., BARROW, C. J., & ADHIKARI, B. Complex coacervation between flaxseed protein isolate and flaxseed gum. Food Research International,72,91-97, 2015. KROLL, J., RAWEL, H. M., & ROHN, S. Reactions of plant phenolics with food proteins and enzymes under special consideration of covalent bonds. Food Science and Technology Research,v. 9, p. 205 e 218, 2003. LIU Y., YING D., CAI Y., LE X. Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization. Food Hydrocolloids 72, 304 e 311, 2017. LIU, S., CAO, Y.L., GHOSH, S., ROUSSEAU, D., LOW, N.H., & NICKERSON, M.T. Intermolecular interactions during complex coacervation of pea protein isolate and gum Arabic. Journal of Agricultural and Food Chemistry, 58(1), 552–556, 2009. LIU, S., LOW, N.H., &NICKERSON,M.T. Effect of pH, salt and biopolymer ratio on the formation of pea protein isolate–gum Arabic complexes. Journal of Agricultural and Food Chemistry, 57, 1521–1526, 2009a. LIU, S., LOW, N.H., &NICKERSON,M.T. Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate − gum Arabic complexes. Journal of Agricultural and Food Chemistry, 57(4), 1521–1526, 2009B. McCLEMENTS, D. J. Food emulsions: principles, practices, and techniques. CRC press, 2015. McCLEMENTS, D. J. Nanoparticle-and microparticle-based delivery systems: Encapsulation, protection and release of active compounds. CRC Press, 2014. MARFIL, P. H., VASCONCELOS, F. H., PONTIERI, M. H., & TELIS, V. Development and validation of analytical method for palm oil determination in microcapsules produced by complex coacervation. Química Nova, 39(1), 94-99, 2016. MATSUDOMI, N; TAKAHASHI, H & MIYATA, T. Some structural properties of ovalbumin heated at 80 C in the dry state. Food Research International, v. 34, n. 2, p. 229-235, 2001. 67 MILLER, L. M.; BOURASSA, M. W.; SMITH, R. J. FTIR spectroscopic imaging of protein aggregation in living cells. Biochimica et Biophysica Acta (BBA) - Biomembranes, v. 1828, n. 10, p. 2339-2346, 2013 NEDOVIC V., KALUSEVIC A., MANOJLOVIC V., LEVIC S., BUGARSKI B. An overview of encapsulation technologies for food applications .Food Science.p.1806-1815, 2011. NIU, L., LI, J., CHEN, M. S., & XU, Z. F. Determination of oil contents in Sacha Inchi (Plukenetiavolubilis) seeds at different developmental stages by two methods: soxhlet extraction and time-domain nuclear magnetic resonance. Industrial Crops and Products, 56,p. 187-190, 2014. POOLE, C. D., HALCOX, J. P., JENKINS-JONES, S., CARR, E. S.M., SCHIFFLERS,M. G., RAY, K. K.,& CURRIE, C. J. Omega-3 fatty acids and mortality outcome in patients with and without type 2 diabetes after myocardial infarction: A retrospective, matched-cohort study. Clinical Therapeutics, 35(1), 40–51, 2013. RAWDKUEN S., MURDAYANTI D., SUNANTHA K., PHONGTHAI S.Chemical properties and nutritional factors of pressed-cake from tea and Sacha Inchi seeds. Food Bioscience.V. 15, p. 64-71, 2016. RAMPINO, A., BORGOGNA, M., BELLICH, B., BLASI, P., VIRGILIO, F., & CESÀRO, A.Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques. European Journal of Pharmaceutical Sciences, v. 84, p. 37-45, 2016. RUTZ, J. K., BORGES, C. D., ZAMBIAZI, R. C., DA ROSA, C. G., & DA SILVA, M. M. Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food. Food chemistry, v. 202, p. 324-333, 2016. RUTZ, J. K., BORGES, C. D., ZAMBIAZI, R. C., CRIZEL-CARDOZO, M. M., KUCK, L. S., & NOREÑA, C. P. Microencapsulation of palm oil by complex coacervation for application in food systems. Food chemistry, 220, 59-66, 2017. RUTZ, J. K., ZAMBIAZI, R. C., BORGES, C. D., KRUMREICH, F. D., DA LUZ, S. R., HARTWIG, N., & DA ROSA, C. G. Microencapsulation of purple Brazilian cherry juice in xanthan, tara gums and xanthan-tara hydrogel matrixes. Carbohydrate polymers, 98(2), 1256-1265, 2013. SANGUANSRI, L., & AUGUSTIN, M. A. Microencapsulation in functional food product development. In J. Smith, & E. Charter (Eds.), Functional food product development (pp. 1e23). USA: John Wiley & Sons. (2011). SANTOS, A. F., MACEDO, L. J., CHAVES, M. H., ESPINOZA-CASTAÑEDA, M., MERKOÇI, A., LIMA, F. D. C. A., & CANTANHÊDE, W. Hybrid Self-Assembled Materials Constituted by Ferromagnetic Nanoparticles and Tannic Acid: a Theoretical and Experimental Investigation. Journal of the Brazilian Chemical Society, 27(4), 727-734, 2016. SANTOS M. B., COSTA A. R., GARCIA-ROJAS E. E. Heteroprotein complex coacervates of ovalbumin and lysozyme:Formation and thermodynamic characterization. International Journal of Biological Macromolecules, 2017. SOUZA, C. J. F., & GARCIA-ROJAS, E. E. Effect of salt and protein concentration on the association and dissociation of ovalbumin-pectin complexes.Food Hydrocolloids, 47, 124-129, 2015. SPONTON O.E., PEREZ A.A., CARRARA C.R., SANTIAGO L.G., Linoleic acid binding properties of ovalbumin nanoparticles, Colloids and Surfaces B: Biointerfaces.http://dx.doi.org/10.1016/j.colsurfb.2015.01.037.2015. TANEJA, A., & SINGH, H. Challenges for the delivery of long-chain n-3 fatty acids in functional foods.Annual Review of Food Science and Technology, 3, p.105-123, 2012. 68 THIES, C. Microencapsulation of Flavors by Complex Coacervation. In: (Ed.). Encapsulation and Controlled Release Technologies in Food Systems: Blackwell Publishing, p.149-170, 2007. TIMILSENA, Y. P., ADHIKARI, R., BARROW, C. J.,& ADHIKARI, B. Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates. Food Hydrocolloids, 66, 71-81, 2017. TRABELSI S., ASCHI A., OTHMAN T., GHARBI A. Complex formation between ovalbumin and strong polyanion PSSNa: Study of structure and properties. Materials Science and Engineering C 42, 295–302, 2014. TURGEON, S. L., BEAULIEU, M., SCHMITT, C., & SANCHEZ, C. Protein-polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science, v. 8, p. 401-414, 2003. VICENTE J.CAPPATO L. P., CALADO V. M. A., CARVALHO M G., GARCIA-ROJAS E. E. Thermal and oxidative stability of Sacha Inchi oil and capsulesformed with biopolymers analyzed by DSC and 1H NMR.J Therm Anal Calorim. 2017. VICENTE, J., CARVALHO, M. G., & GARCIA-ROJAS, E. E. Fatty acids profile of Sacha Inchi oil and blends by 1H NMR and GC–FID.Food Chemistry, 181, 215-221, 2015. VICENTE, J., DE SOUZA CEZARINO, T., PEREIRA, L. J. B., DA ROCHA, E. P., SÁ, G. R., GAMALLO, O. D., & GARCIA-ROJAS, E. E.Microencapsulation of sacha inchi oil using emulsion-based delivery systems.Food Research International, 99, 612-622, 2017. WANDREY C., BARTKOWIAK A. & HARDING S.E. Materials for Encapsulation In: Zuidam N.J., Nedovic, V.A. (Eds.) Encapsulation Technologies for Food Active Ingredients and Food Processing, Springer: Dordrecht, The Netherlands. p. 31-100. 2009. XIONG W., REN C., TIAN M, YANG X., LI J., LI B. Complex coacervation of ovalbumin-carboxymethylcellulose assessed by isothermal titration calorimeter and rheology:Effect of ionic strength and charge density of polysaccharide. Food Hydrocolloids. doi: 10.1016/j.foodhyd.2017.06.031. 2017. YANG, Ziming et al. Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach. Food chemistry, v. 145, p. 272-277, 2014. AUGUSTIN, M. A., SANGUANSRI, L.., RUSLI, J. K., SHEN, Z., CHENG, L. J., KEOGH, J. & CLIFTON, P. Digestion of microencapsulated oil powders: in vitro lipolysis and in vivo absorption from a food matrix. Food & Function, 5, 2905-2912, 2014. BAGHERI, L., MADADLOU, A., YARMAND, M., & MOUSAVI, M. E. Spray-dried alginate microparticles carrying caffeine-loaded and potentially bioactive nanoparticles. Food research international, 62, 1113-1119, 2014. BOKKHIM, H., BANSAL, N., GRØNDAHL, L., & BHANDARI, B. Interactions between different forms of bovine lactoferrin and sodium alginate affect the properties of their mixtures. Food Hydrocolloids, 48, 38-46, 2015. Chen, K. N.; Chen, M. J.; Lin, C. W. Optimal combination of the encapsulating materials for probiotic microcapsules and its experimental verification (R1). Journal of Food Engineering, Oxford.2006, 76, 3, 313-320. CHIRINOS R., ZULOETA G., PEDRESCHI R., MIGNOLET E., LARONDELLE Y., CAMPOS D. Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty 89 acids, tocopherols, phytosterols, phenolic compounds and antioxidante capacity. Food Chemistry 141, 1732-1739, 2013. DAEMI, H. &BARIKANI, M. Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica, v. 19, n. 6, p. 2023-2028, 2012. DEVI, N., HAZARIKA, D., DEKA, C., & KAKATI, D. K. Study of complex coacervation of gelatin A and sodium alginate for microencapsulation of olive oil. Journal of Macromolecular Science, Part A, 49(11), 936-945, 2012. DIARRASSOUBA, F. G. R. et al. Self-assembly of β-lactoglobulin and egg white lysozyme as a potential carrier for nutraceuticals. Food Chemistry, v. 173, p. 203–209, 2015 FAREEZ, I. M., LIMA, S. M., MISHRA, R. K.,& RAMASAMY, K. Chitosan coated alginate-xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. International Journal of Biological Macromolecules, 72, 1419–1428, 2015. FOLLEGATTI-ROMERO, L. A., PIANTINO, C. R., GRIMALDI, R., & CABRAL, F. A. Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) seeds.Journal of Supercritical Fluids, 49(3), 323–329, 2009. KARACA, A. C., NICKERSON, M. & LOW, N. H. Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: Physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food Chemistry, 139, 448–457, 2013. KLEMMER, K. J., WALDNER, L., STONE, A., LOW, N. H., & NICKERSON, M. T. Complex coacervation of pea protein isolate and alginate polysaccharides.Food Chemistry, 130(3), 710-715, 2012. LAVIE, C. J., MILANI, R. V., MEHRA, M. R., & VENTURA, H. O. Omega 3 polyunsaturated fatty acids and cardiovascular diseases. Journal of the American College of Cardiology, 54(7), 585e594, 2009. LIU W., WEI LIU, YE A., PENG S., WEI F., LIU C., HAN J. Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate. Food Chemistry, 196, 396-404, 2016. MARFIL, P. H., VASCONCELOS, F. H., PONTIERI, M. H., & TELIS, V. Development and validation of analytical method for palm oil determination in microcapsules produced by complex coacervation. Química Nova, 39(1), 94-99, 2016. MATALANIS A., JONES O. G & McCLEMENTS D. J. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids. v. 25 p. 1865-1880, 2011. MATSUDOMI, N; TAKAHASHI, H & MIYATA, T. Some structural properties of ovalbumin heated at 80 C in the dry state. Food Research International, v. 34, n. 2, p. 229-235, 2001. McCLEMENTS, D.J.; DECKER, E.A.; PARK, Y.; WEISS, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods.Critical Reviews in Food Science and Nutrition. 49:6, (2009) 577-606. MCCLEMENTS, D. J. Food emulsions: principles, practices, and techniques. CRC press, 2015. McClements, D. J. Nanoparticle-and microparticle-based delivery systems: Encapsulation, protection and release of active compounds. CRC Press, 2014. MILLER, L. M.; BOURASSA, M. W.; SMITH, R. J. FTIR spectroscopic imaging of protein aggregation in living cells. Biochimica et Biophysica Acta (BBA) - Biomembranes, v. 1828, n. 10, p. 2339-2346, 2013 90 MÖBUS, K., SIEPMANN, J., & BODMEIER, R. Zinc–alginate microparticles for controlled pulmonary delivery of proteins prepared by spray-drying. European Journal of Pharmaceutics and Biopharmaceutics, 81, 121–130, 2012. MOEBUS, K., SIEPMANN, J., & BODMEIER, R. Novel preparation techniques for alginate–poloxamer microparticles controlling protein release on mucosal surfaces. European Journal of Pharmaceutical Sciences, 45, 358–366, 2012. NIU, F.; SU, Y.; LIU, Y.; WANG, G.; ZHANG, Y.; YANG, Y. Ovalbumin-gum arabic interactions: effect of pH, temperature, salt, biopolymers ratio and total concentration. Colloids Surf B Biointerfaces, v. 113, p. 477–482, 2014. PAMIES R., SCHMIDT R. R., MARTÍNEZ M. D. C. L., TORRE J. G. D L. The influence of mono and divalent cations on dilute and non-dilute aqueous solutions of sodium alginates. Carbohydrate Polymers 80, 248–253, 2010. POOLE, C. D., HALCOX, J. P., JENKINS-JONES, S., CARR, E. S.M., SCHIFFLERS,M. G., RAY, K. K.,& CURRIE, C. J. Omega-3 fatty acids and mortality outcome in patients with and without type 2 diabetes after myocardial infarction: A retrospective, matched-cohort study. Clinical Therapeutics, 35(1), 40–51, 2013. RATHER, S. A., AKHTER, R., MASOODI, F. A., GANI, A., & WANI, S. M. Effect of double alginate microencapsulation on in vitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297. LWT-Food Science and Technology, v. 83, p. 50-58, 2017. RAZZAK, M. A., KIM, M., & CHUNG, D. Elucidation of aqueous interactions between fish gelatin and sodium alginate. Carbohydrate polymers, 148, 181-188, 2016. SANTOS, M. B., DA COSTA, A. R., & GARCIA-ROJAS, E. E. Heteroprotein complex coacervates of ovalbumin and lysozyme: Formation and thermodynamic characterization. International Journal of Biological Macromolecules, 2017. SGARBIERI, V. C. Proteinas em alimentos proteicos: propriedades-degradacoes-modificacoes. Livraria Varela, 1996. SIM, J. S., & NAKAI, S. Eggs uses and processing technologies: New developments. CAB International,1994. SOUZA, C. J. F., & GARCIA-ROJAS, E. E. Effect of salt and protein concentration on the association and dissociation of ovalbumin-pectin complexes.Food Hydrocolloids, 47, 124-129, 2015. SHEN, L.; CHEN, J.; BAI, Y.; MA, Z.; HUANG, J.; FENG, W. Physical Properties and Stabilization of Microcapsules Containing Thyme Oil by Complex Coacervation. Journal of food science.81, 9, 2016. SPONTON, Osvaldo E.; PEREZ, Adrián A.; SANTIAGO, Liliana G. Protein-polysaccharide associative phase separation applied to obtain a linoleic acid dried ingredient. Food Hydrocolloids, v. 71, p. 158-167, 2017. SPONTON, O. E., PEREZ, A. A., CARRARA, C. R., & SANTIAGO, L. G. Linoleic acid binding properties of ovalbumin nanoparticles. Colloids and Surfaces B: Biointerfaces, 128, 219-226, 2015. SPONTON, O. E., PEREZ, A. A., CARRARA, C. R., & SANTIAGO, L. G. Complexes between ovalbumin nanoparticles and linoleic acid: Stoichiometric, kinetic and thermodynamic aspects. Food chemistry, 211, 819-826, 2016. TANEJA, A., & SINGH, H. Challenges for the delivery of long-chain n-3 fatty acids in functional foods.Annual Review of Food Science and Technology, 3, p.105-123, 2012. 91 TIMILSENA, Y. P., ADHIKARI, R., BARROW, C. J.,& ADHIKARI, B. Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates. Food Hydrocolloids, 66, 71-81, 2017. TIMILSENA, Y. P.; WANG, B.; ADHIKARI, R.; ADHIKARI, B. Preparation and characterization of chia seed protein isolate–chia seed gum complex coacervates. Food hydrocolloids.2016, 52, 554-563. THIES, C. Microencapsulation of Flavors by Complex Coacervation. In: (Ed.). Encapsulation and Controlled Release Technologies in Food Systems: Blackwell Publishing, p.149-170, 2007. UBBINK, J.; KRÜGER, J. Physical approaches for the delivery of active ingredients in foods.Trends in Food Science and Technology, London. 2006, 17, 244-254. VICENTE, J., CARVALHO, M. G., & GARCIA-ROJAS, E. E. Fatty acids profile of Sacha Inchi oil and blends by 1H NMR and GC–FID.Food Chemistry, 181, 215-221, 2015. VICENTE, J.; SOUZA CEZARINO, T.; PEREIRA, L. J. B.; DA ROCHA, E. P.; SÁ, G. R.; GAMALLO, O. D.; GARCIA-ROJAS, E. E. Microencapsulation of sacha inchi oil using emulsion-based delivery systems.Food Research International.99, 612-622,2017. WANG, L., YANG, S., CAO, J., ZHAO, S., & WANG, W. Microencapsulation of Ginger Volatile Oil Based on Gelatin/Sodium Alginate Polyelectrolyte Complex. Chemical and Pharmaceutical Bulletin, 64(1), 21-26, 2016. WANG, X., XU, R., WANG, R., & LIU, A. Transcriptome analysis of Sacha Inchi (Plukenetia volubilis L.) seeds at two developmental stages. BMC genomics, 13(1), 716, 2012. WICHCHUKIT, S. et al. Whey protein/alginate beads as carriers of a bioactive component. Food Hydrocolloids, v. 33, n. 1, p. 66-73, 2013.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/64365/2018%20-%20Barbara%20da%20Silva%20Soares.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4466
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-03-23T19:01:02Z No. of bitstreams: 1 2018 - Barbara da Silva Soares.pdf: 2084197 bytes, checksum: 1af0bae5f3a83345edcf31c459eef1dc (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-03-23T19:01:02Z (GMT). No. of bitstreams: 1 2018 - Barbara da Silva Soares.pdf: 2084197 bytes, checksum: 1af0bae5f3a83345edcf31c459eef1dc (MD5) Previous issue date: 2018-02-15eng
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Barbara da Silva Soares.pdf2018 - Barbara da Silva Soares2.04 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.