Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/11059
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFarias, Alan Marques
dc.date.accessioned2023-12-22T01:46:10Z-
dc.date.available2023-12-22T01:46:10Z-
dc.date.issued2022-10-20
dc.identifier.citationFARIAS, Alan Marques. Microencapsulação de β-caroteno pela coacervação complexa empregando como material de parede ovalbumina e alginato de sódio. 2022. 75 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11059-
dc.description.abstractO β-caroteno (βC) é um composto lipossolúvel natural necessário para a saúde humana, sendo uma fonte alimentar importante de provitamina A, mas apresenta alta instabilidade química, que aumenta sua oxidação na presença de fatores extrínsecos. O presente estudo teve como objetivo microencapular βC em complexos coacervados formados pela interação entre ovalbumina (OVA) e alginato de sódio (NaAlg). A técnica de microencapsulação foi empregada em pH 4,0 e proporção 8:1 (OVA:NaAlg, m/m) após confirmação da afinidade desses complexos com potencial zeta, estudo do diagrama de fases, análises turbidimétrica e de calorimetria de titulação isotérmica. As cápsulas formadas a partir do complexo OVA:NaAlg apresentaram morfologia esférica com núcleo bem definido e alta eficiência de encapsulação (~ 97,5 %). A presença de OVA, NaAlg e βC nas microcápsulas foram confirmadas pela análise de espectroscopia no infravermelho. A Simulação da digestão gastrointestinal in vitro das microcápsulas constatou que 71,39 % do βC encapsulado foi liberado no intestino, com bioacessibilidade de 32,78 %. O perfil cinético de liberação se ajustou melhor ao modelo de primeira ordem (R² = 0,98), cujo mecanismo de liberação é por difusão, de modo que o βC encapsulado migra do meio mais concentrado para o menos concentrado por meio de poros formados no material de parede. Atividade antioxidante foi comprovada ao aplicar microcápsulas de βC na produção de biscoitos, resultando no dobro de proteção do bioativo em relação ao βC livre. Assim, os resultados apresentados sugerem que as microcápsulas de βC formadas com os material de parede OVA:NaAlg podem ser inseridas eficientemente na fortificação de biscoitos.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectBioacessibilidadepor
dc.subjectβ-caroteno encapsuladopor
dc.subjectSimulação gastrointestinalpor
dc.subjectAtividade antioxidantepor
dc.subjectBioaccessibilityeng
dc.subjectencapsulated β-caroteneeng
dc.subjectGastrointestinal simulationeng
dc.subjectAntioxidant activityeng
dc.titleMicroencapsulação de β-caroteno pela coacervação complexa empregando como material de parede ovalbumina e alginato de sódiopor
dc.title.alternativeMicroencapsulation of β-carotene by complex coacervation using ovalbumin and sodium alginate as wall materialeng
dc.typeDissertaçãopor
dc.description.abstractOtherβ-carotene (βC) is a natural fat-soluble compound necessary for human health, being an important food source of provitamin A, but it has high chemical instability, which increases its oxidation in the presence of extrinsic factors. The present study aimed to microencaulate βC in complex coacervated formed by the interaction between ovalbumin (OVA) and sodium alginate (NaAlg). The microencapsulation technique was used at pH 4.0 and 8:1 ratio (OVA:NaAlg, w/w) after confirming the affinity of these complexes with zeta potential, study of the phase diagram, turbidimetric and isothermal titration calorimetry analyses. The capsules formed from the OVA:NaAlg complex showed spherical morphology with a well-defined nucleus and high encapsulation efficiency (~97.5 %). The presence of OVA, NaAlg and βC in the microcapsules were confirmed by Fourier Transform Infrared Spectroscopy (FTIR). The in vitro gastrointestinal digestion simulation of microcapsules found that 71.39 % of the encapsulated βC was released in the intestine, with a bioaccessibility of 32.78 %. The kinetic release profile was better adjusted to the first order model (R² = 0.98), whose release mechanism is by diffusion, so that the encapsulated βC migrates from the more concentrated medium to the less concentrated one through pores formed in the wall material. Antioxidant activity was proven when applying βC microcapsules in the production of cookies, resulting in twice the protection of the bioactive in relation to free βC. Thus, the results presented suggest that βC microcapsules formed with the OVA:NaAlg wall material can be efficiently inserted in biscuit fortification.eng
dc.contributor.advisor1Garcia-Rojas, Edwin Elard
dc.contributor.advisor1ID014.548.996-54por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1205756654416987por
dc.contributor.referee1Garcia-Rojas, Edwin Elard
dc.contributor.referee2Costa, Bernardo de Sá
dc.contributor.referee3Vicente, Juarez
dc.creator.ID114.400.647-33por
dc.creator.Latteshttp://lattes.cnpq.br/9632732420242567por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesALMEIDA, M. M. C. DE et al. Textural, Color, Hygroscopic, Lipid Oxidation, and Sensory Properties of Cookies Containing Free and Microencapsulated Chia Oil. Food and Bioprocess Technology, v. 11, n. 5, p. 926–939, 2018. ARAÚJO, J. M. A. Química de Alimentos: Teoria e Prática. 3. ed. Viçosa, MG: Editora UFV, 2006. ARENAS-JAL, M.; SUÑÉ-NEGRE, J. M.; GARCÍA-MONTOYA, E. An overview of microencapsulation in the food industry: opportunities, challenges, and innovations. European Food Research and Technology, v. 246, n. 7, p. 1371–1382, 2020. AZEREDO, H. M. C. DE. Encapsulação: aplicação à tecnologia de alimentos. Alim. Nutr. Araraquara, v. 16, n. 1, p. 89–97, 2005. BAGHERI, L. et al. Spray-dried alginate microparticles carrying caffeine-loaded and potentially bioactive nanoparticles. Food Research International, v. 62, p. 1113–1119, 2014. BARBOSA, A. E. G. et al. Encapsulation of sacha inchi oil in complex coacervates formed by carboxymethylcellulose and lactoferrin for controlled release of β-carotene. Food Hydrocolloids for Health, v. 2, n. November 2021, p. 100047, 2022. BARBOSA, A. E. G.; BASTOS, L. P. H.; GARCIA-ROJAS, E. E. Complex Coacervates Formed between Whey Protein Isolate and Carboxymethylcellulose for Encapsulation of β-Carotene from Sacha Inchi Oil: Stability, In Vitro Digestion and Release Kinetics. Food Biophysics, 2021. BARBOSA, C. M. DA S. et al. Microencapsulamento de hidrolisados de caseína em lipoesferas para mascarar o sabor amargo: avaliação físico-química e sensorial. Revista Brasileira de Ciências Farmacêuticas, v. 38, n. 3, p. 361–374, 2002. BASTOS, L. P. H. et al. Complex coacervates of β-lactoglobulin/sodium alginate for the microencapsulation of black pepper (Piper nigrum L.) essential oil: Simulated gastrointestinal conditions and modeling release kinetics. International Journal of Biological Macromolecules, v. 160, p. 861–870, 2020a. BASTOS, L. P. H. et al. Encapsulation of the black pepper (Piper nigrum L.) essential oil by lactoferrin-sodium alginate complex coacervates: Structural characterization and simulated gastrointestinal conditions. Food Chemistry, v. 316, n. January, p. 126345, 2020b. BASTOS, L. P. H.; DE CARVALHO, C. W. P.; GARCIA-ROJAS, E. E. Formation and characterization of the complex coacervates obtained between lactoferrin and sodium alginate. International Journal of Biological Macromolecules, v. 120, p. 332–338, 2018. BELITZ, H.-D.; GROSCH, W.; SCHIEBERLE, P. Food chemistry. 4. ed. [s.l.] Springe, 2009. BOKKHIM, H. et al. Interactions between different forms of bovine lactoferrin and sodium alginate affect the properties of their mixtures. Food Hydrocolloids, v. 48, p. 38–46, 2015. BRACCINI, I.; PÉREZ, S. Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules, v. 2, n. 4, p. 1089–1096, 2001. BRODKORB, A. et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, v. 14, n. 4, p. 991–1014, 2019. CARMO, E. L. DO; FERNANDES, R. V. DE B.; BORGES, S. V. Microencapsulação por spray drying, novos biopolímeros e aplicações na tecnologia de alimentos. Journal of Chemical Engineering and Chemistry, v. 1, n. 2, p. 30–44, 2015. CHATER, P. I. et al. Alginate as a protease inhibitor in vitro and in a model gut system; Selective inhibition of pepsin but not trypsin. Carbohydrate Polymers, v. 131, p. 142– 151, 2015. CONSTANTINO, A. B. T.; GARCIA-ROJAS, E. E. Vitamin D3 microcapsules formed by heteroprotein complexes obtained from amaranth protein isolates and lactoferrin: Formation, characterization, and bread fortification. Food Hydrocolloids, v. 129, n. October 2021, 2022a. CONSTANTINO, A. B. T.; GARCIA-ROJAS, E. E. Food Hydrocolloids Microencapsulation of betanin by complex coacervation of carboxymethylcellulose and amaranth protein isolate for application in edible gelatin films. v. 133, n. May, 2022b. CORREÂ-FILHO, L. C. et al. Microencapsulation of β-Carotene by Spray Drying: Effect of Wall Material Concentration and Drying Inlet Temperature. International Journal of Food Science, v. 2019, 2019. DIARRASSOUBA, F. et al. Self-assembly of β-lactoglobulin and egg white lysozyme as a potential carrier for nutraceuticals. Food Chemistry, v. 173, p. 203–209, 2015. DIMA, C. et al. Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods. Comprehensive Reviews in Food Science and Food Safety, v. 19, n. 6, p. 2862–2884, 2020. DROSOU, C.; KROKIDA, M.; BILIADERIS, C. G. Food Hydrocolloids Encapsulation of β -carotene into food-grade nanofibers via coaxial electrospinning of hydrocolloids : Enhancement of oxidative stability and photoprotection. Food Hydrocolloids, v. 133, n. June, p. 107949, 2022. ETCHEPARE, M. DE A. et al. Microencapsulação de probióticos utilizando alginato de sódio. Ciencia Rural, v. 45, n. 7, p. 1319–1326, 2015. FÁVARO-TRINDADE, C. S.; GROSSO, C. R. F. The effect of the immobilisation of Lactobacillus acidophilus and Bifidobacterium lactis in alginate on their tolerance to gastrointestinal secretions. Milchwissenschaft, v. 55, n. 9, p. 496–499, 2000. FEDDAOUI, W. et al. Study of the complex coacervation mechanism between ovalbumin and the strong polyanion PSSNa: influence of temperature and pH. European Biophysics Journal, v. 48, n. 8, p. 803–811, 2019. FOOD INGREDIENTS BRASIL. A tecnologia da microencapsulação de ingredientes. Food Ingredientes Brasil, v. 19, n. 42, p. 18–24, 2017. GAONKAR, A. et al. Microencapsulation in the food industry: A pratical implementation guide. v. 53, 1. ed. [s.l.] Elsevier, 2014. GARTI, N. Delivery and controlled release of bioactives in foods and nutraceuticals. Abington: Woodhead Publishing, 2008. GARTI, N.; MCCLEMENTS, D. J. Encapsulation tecnologies and delivery systems for food ingredients and nutraceuticals. 239. ed. Philadelphia: Woodhead Publishing, 2012. HABIBI, A. et al. Preparation of Fish Oil Microcapsules by Complex Coacervation of Gelatin–Gum Arabic and their Utilization for Fortification of Pomegranate Juice. Journal of Food Process Engineering, v. 40, n. 2, p. 1–11, 2017. HU, Q. et al. In vitro digestion and cellular antioxidant activity of β-caroteneloaded emulsion stabilized by soy protein isolate-Pleurotus eryngii polysaccharide conjugatesFood Hydrocolloids, 2021. HU, Y. T. et al. Techniques and methods to study functional characteristics of emulsion systems. Journal of Food and Drug Analysis, v. 25, n. 1, p. 16–26, 2017. IUPAC. Compendium of Chemical Terminology. Gold Book ed. [s.l.] IUPAC, 2014. JAIN, A. et al. Microencapsulation by Complex Coacervation Using Whey Protein Isolates and Gum Acacia: An Approach to Preserve the Functionality and Controlled Release of β-Carotene. Food and Bioprocess Technology, v. 8, n. 8, p. 1635–1644, 2015. JAIN, A. et al. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. International Journal of Biological Macromolecules, v. 87, p. 101–113, 2016. JANNASARI, N. et al. Microencapsulation of vitamin D using gelatin and cress seed mucilage: Production, characterization and in vivo study. International Journal of Biological Macromolecules, v. 129, p. 972–979, 2019. JATO, JOSÉ LUIS VILA. Tecnología Farmacéutica. 1. ed. Madri, Espanha: Sintesis Editorial, 2001. LAN, Y. et al. Phase behavior and complex coacervation of concentrated pea protein isolate-beet pectin solution. Food Chemistry, v. 307, n. June 2019, p. 125536, 2020. LAN, Y. et al. Microencapsulation of hemp seed oil by pea protein isolate−sugar beet pectin complex coacervation: Influence of coacervation pH and wall/core ratio. Food Hydrocolloids, v. 113, n. October 2020, p. 106423, 2021. LAN, Y.; CHEN, B.; RAO, J. Pea protein isolate–high methoxyl pectin soluble complexes for improving pea protein functionality: Effect of pH, biopolymer ratio and concentrations. Food Hydrocolloids, v. 80, p. 245–253, 2018. LEITE, B. S. F. et al. Revestimento comestível à base de goma xantana, compostos lipofílicos e/ou cloreto de cálcio na conservação de morangos. Revista Brasileira de Fruticultura, v. 37, n. 4, p. 1027–1036, 2015. LIU, W. et al. Encapsulation of β-carotene-loaded oil droplets in caseinate/alginate microparticles: Enhancement of carotenoid stability and bioaccessibility. Journal of Functional Foods, v. 40, n. November 2017, p. 527–535, 2018. LIU, Y. et al. Investigation into the bioaccessibility and microstructure changes of β- carotene emulsions during in vitro digestion. Innovative Food Science and Emerging Technologies, v. 15, p. 86–95, 2012. MATALANIS, A.; MCCLEMENTS, D. J. Hydrogel microspheres for encapsulation of lipophilic components: Optimization of fabrication & performance. Food Hydrocolloids, v. 31, n. 1, p. 15–25, 2013. MCCLEMENTS, D. J. Nanoparticle- and microparticle-based delivery systems: Encapsulation, protection and release of active compounds. 1. ed. New York: CRC Press, 2015. MEHRAN, M.; MASOUM, S.; MEMARZADEH, M. Microencapsulation of Mentha spicata essential oil by spray drying: Optimization, characterization, release kinetics of essential oil from microcapsules in food models. Industrial Crops and Products, v. 154, n. June, p. 112694, 2020. MENEZES, C. R. DE et al. Microencapsulação de probióticos : avanços e perspectivas. Ciência Rural, v. 43, p. 1309–1316, 2013. MIHALCEA, L. et al. Encapsulation of carotenoids from sea buckthorn extracted by CO2 supercritical fluids method within whey proteins isolates matrices. Innovative Food Science and Emerging Technologies, v. 42, n. April, p. 120–129, 2017. MINEKUS, M. et al. A standardised static in vitro digestion method suitable for foodan international consensus. Food and Function, v. 5, n. 6, p. 1113–1124, 2014. NASCIMENTO, L. D. DO et al. MICROENCAPSULAMENTO DE ÓLEOS ESSENCIAIS: CONCEITOS E APLICAÇÕES. In: A Produção do Conhecimento na Engenharia Química. [s.l.] Atena Editora, 2019. p. 22–35. NIU, F. et al. Ovalbumin-gum arabic interactions: Effect of pH, temperature, salt, biopolymers ratio and total concentrationColloids and Surfaces B: Biointerfaces, 2014. NO, J.; SHIN, M.; MUN, S. Preparation of functional rice cake by using β-caroteneloaded emulsion powder. Journal of Food Science and Technology, v. 57, n. 12, p. 4514–4523, 2020. OLIVEIRA, A. P. H. DE et al. Combined adjustment of pH and ultrasound treatments modify techno-functionalities of pea protein concentrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 603, n. June, 2020. OZKAN, G. et al. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, v. 272, n. July 2018, p. 494–506, 2019. PAMIES, R. et al. The influence of mono and divalent cations on dilute and non-dilute aqueous solutions of sodium alginates. Carbohydrate Polymers, v. 80, n. 1, p. 248– 253, 2010. PHILLIPS, G. O.; WILLIAMS, P. A. Handbook of Hydrocolloids: Second Edition. 1. ed. Cambridge: Woodhead Publishing Limited and CRC Press LLC, 2009. PILLAI, P. K. S.; GULDIKEN, B.; NICKERSON, M. T. Complex coacervation of pea albumin-pectin and ovalbumin-pectin assessed by isothermal titration calorimeter and turbidimetry. Journal of the Science of Food and Agriculture, v. 101, n. 3, p. 1209– 1217, 2021. PINGRET, D.; FABIANO-TIXIER, A. S.; CHEMAT, F. Degradation during application of ultrasound in food processing: A review. Food Control, v. 31, n. 2, p. 593–606, 2013. RABELLO, F. DE F. P. Microencapsulação de ingredientes alimentícios - Revisão. Revista Agrogeoambiental, p. 134–144, 2009. RABELO, R. S. et al. Complexation of chitosan with gum Arabic, sodium alginate and κ-carrageenan: Effects of pH, polymer ratio and salt concentration. Carbohydrate Polymers, v. 223, n. March, 2019. RAO, S. et al. Characterization of ovalbumin-carvacrol inclusion complexes as delivery systems with antibacterial application. Food Hydrocolloids, v. 105, n. January, p. 1–7, 2020. REBELLO, F. D. F. P. Novas tecnologias aplicadas às embalagens de alimentos. Revista Agrogeoambiental, v. 1, n. 3, 2009. RODRIGUEZ-AMAYA, D. B. Quantitative analysis, in vitro assessment of bioavailability and antioxidant activity of food carotenoids-A review. Journal of Food Composition and Analysis, v. 23, n. 7, p. 726–740, 2010. RUFINO, M. DO S. et al. Determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS. Comunicado Técnico, 128 Embrapa, p. 0–3, 2007. RUFINO, M. DO S. M. et al. Determinação da atividade antioxidante total em frutas pela método de redução do ferro (FRAP). Comunicado Técnico, 125 Embrapa, p. 3– 6, 2006. RUTZ, J. K. et al. Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food. Food Chemistry, v. 202, p. 324–333, 2016. RUTZ, J. K. et al. Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chemistry, v. 220, p. 59–66, 2017. SALVIA-TRUJILLO, L. et al. Modulating β-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chemistry, v. 139, n. 1– 4, p. 878–884, 2013. SANTOS, M. B.; CARVALHO, C. W. P. DE; GARCIA-ROJAS, E. E. Microencapsulation of vitamin D3 by complex coacervation using carboxymethyl tara gum (Caesalpinia spinosa) and gelatin A. Food Chemistry, v. 343, 2021a. SANTOS, M. B.; CARVALHO, M. G. DE; GARCIA-ROJAS, E. E. Carboxymethyl tara gum-lactoferrin complex coacervates as carriers for vitamin D3: Encapsulation and controlled release. Food Hydrocolloids, v. 112, n. September 2020, 2021b. SANTOS, M. B.; COSTA, A. R. DA; GARCIA-ROJAS, E. E. Heteroprotein complex coacervates of ovalbumin and lysozyme: Formation and thermodynamic characterization. International Journal of Biological Macromolecules, v. 106, p. 1323–1329, 2018. SANTOS, M. B.; DE CARVALHO, C. W. P.; GARCIA-ROJAS, E. E. Heteroprotein complex formation of bovine serum albumin and lysozyme: Structure and thermal stability. Food Hydrocolloids, v. 74, p. 267–274, 2018. SERVAT, L. et al. Microencapsulação: uma Alternativa Promissora para a Preservação de Produtos Naturais. Revista Fitos, v. 5, n. 2, p. 52–57, 2010. SIEPMANN, J.; PEPPAS, N. A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, v. 64, n. SUPPL., p. 163–174, 2012. SILVA, P. T. DA et al. Microencapsulation: concepts, mechanisms, methods and some applications in food technology. Ciência Rural, v. 44, n. 7, p. 1304–1311, 2014. SILVA, P. T. DA et al. Microencapsulação de probióticos por spray drying: Avaliação da sobrevivência sob condições gastrointestinais simuladas e da viabilidade sob diferentes temperaturas de armazenamento. Ciencia Rural, v. 45, n. 7, p. 1342–1347, 2015a. SILVA, T. M. DA et al. Coacervação complexa : uma técnica para a encapsulação de probióticos Complex coacervation : a technique for encapsulation of probiotics. Ciência e Natura, v. 37, p. 49–55, 2015b. SILVA, T. M. DA et al. Development, characterization and viability study of probiotic microcapsules produced by complex coacervation followed by freeze-drying. Ciencia Rural, v. 49, n. 7, 2019. SILVA, E. K. et al. Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocolloids, v. 47, p. 1–13, 2015c. SINGH, J.; VENNAPUSA, J. R.; CHATTOPADHYAY, S. Protein-polysaccharide based microencapsulated phase change material composites for thermal energy storage. Carbohydrate Polymers, v. 229, n. November 2019, p. 1–11, 2020. SOARES, B. DA S. et al. Microencapsulation of sacha inchi oil (Plukenetia volubilis L.) using complex coacervation: Formation and structural characterization. Food Chemistry, v. 298, 2019. SOARES, B. DA S.; CARVALHO, C. W. P. DE; GARCIA-ROJAS, E. E. Microencapsulation of Sacha Inchi Oil by Complex Coacervates using Ovalbumin- Tannic Acid and Pectin as Wall Materials. Food and Bioprocess Technology, p. 817– 830, 2021. SOUZA, A. L. R. et al. Microencapsulação de Sucos e Polpas de Frutas por Spray Drying: Uma Revisão. Revista Brasileira de Produtos Agroindustriais, v. 17, n. 3, p. 327–338, 2015. SOUZA, C. J. F. et al. Interpolymer complexation of egg white proteins and carrageenan: Phase behavior, thermodynamics and rheological properties. International Journal of Biological Macromolecules, v. 109, p. 467–475, 2018. SOUZA, C. J. F.; GARCIA-ROJAS, E. E. Effects of salt and protein concentrations on the association and dissociation of ovalbumin-pectin complexes. Food Hydrocolloids, v. 47, p. 124–129, 2015. SPONTON, O. E.; PEREZ, A. A.; SANTIAGO, L. G. Protein-polysaccharide associative phase separation applied to obtain a linoleic acid dried ingredient. Food Hydrocolloids, v. 71, p. 158–167, 2017. SRIVASTAVA, S.; MISHRA, H. N. Development of microencapsulated vegetable oil powder based cookies and study of its physicochemical properties and storage stability. Lwt, v. 152, n. April, p. 112364, 2021. STRUGALA, V. et al. Inhibition of pepsin activity by alginates in vitro and the effect of epimerization. International Journal of Pharmaceutics, v. 304, n. 1–2, p. 40–50, 2005. SUAVE, J. et al. Microencapsulação: Inovação em diferentes áreas. Health and Environment Journal, v. 7, n. July, p. 12–20, 2006. TAN, Y. et al. Factors impacting lipid digestion and ß-carotene bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Oil droplet concentration. Food and Function, v. 11, n. 8, p. 7126–7137, 2020. TANG, Y.; SCHER, H. B.; JEOH, T. Industrially scalable complex coacervation process to microencapsulate food ingredients. Innovative Food Science and Emerging Technologies, v. 59, n. June 2019, 2020. THAKUR, D. et al. Microencapsulation of β-Carotene Based on Casein/Guar Gum Blend Using Zeta Potential-Yield Stress Phenomenon: an Approach to Enhance Photostability and Retention of Functionality. AAPS PharmSciTech, v. 18, n. 5, p. 1447– 1459, 2017. TIAN, Y. et al. Preparation and characterization of gelatin-sodium alginate/paraffin phase change microcapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 586, n. September 2019, 2020. TIMILSENA, Y. P. et al. Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates. International Journal of Biological Macromolecules, v. 91, p. 347–357, 2016. VENTURINI, L. H. et al. Partial Substitution of Margarine by Microencapsulated Chia Seeds Oil in the Formulation of Cookies. Food and Bioprocess Technology, v. 12, n. 1, p. 77–87, 2019. VICENTE, J. et al. Microencapsulation of sacha inchi oil using emulsion-based delivery systems. Food Research International, v. 99, n. June, p. 612–622, 2017. XIE, H. et al. Fabrication of PGFE/CN-stabilized β-carotene-loaded peppermint oil nanoemulsions: Storage stability, rheological behavior and intelligent sensory analyses. Lwt, v. 138, n. December 2020, 2021. XIONG, W. et al. Ovalbumin-chitosan complex coacervation: Phase behavior, thermodynamic and rheological properties. Food Hydrocolloids, v. 61, p. 895–902, 2016. XIONG, W. et al. Complex coacervation of ovalbumin-carboxymethylcellulose assessed by isothermal titration calorimeter and rheology: Effect of ionic strength and charge density of polysaccharide. Food Hydrocolloids, v. 73, p. 41–50, 2017. YAMASAKI, M.; TAKAHASHI, N.; HIROSE, M. Crystal structure of S-ovalbumin as a non-loop-inserted thermostabilized serpin form. Journal of Biological Chemistry, v. 278, n. 37, p. 35524–35530, 2003. YEUNG, T. W. et al. Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Frontiers in Microbiology, v. 7, n. APR, p. 1–11, 2016. ZAPATA, A. M. O.; ARANGO, F. O. D.; RODRÍGUEZ-BARONA, S. Evaluation of probiotic microencapsulation in a prebiotic mixture with coffee extract. Coffee Science, v. 14, n. 3, p. 394–406, 2019. ZHANG, H. et al. Development of double layer microcapsules for enhancing the viability of Lactobacillus casei LC2W in simulated gastrointestinal fluids. Lwt, v. 145, n. March, 2021a. ZHANG, H. H. et al. Interaction between ovalbumin and pectin and coacervate characterization. Colloid and Polymer Science, 2021b. ZHANG, K. et al. Synthesis and release studies of microalgal oil-containing microcapsules prepared by complex coacervationColloids and Surfaces B: Biointerfaces, 2012. ZHANG, L. et al. Impact of trehalose on physicochemical stability of β-carotene high loaded microcapsules fabricated by wet-milling coupled with spray drying. Food Hydrocolloids, v. 121, n. 17, 2021c. ZHANG, R. et al. Encapsulation of β-carotene in Nanoemulsion-Based Delivery Systems Formed by Spontaneous Emulsification: Influence of Lipid Composition on Stability and Bioaccessibility. Food Biophysics, v. 11, n. 2, p. 154–164, 2016. ZHANG, R. et al. Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. Lwt, v. 123, n. September 2019, p. 109097, 2020. ZHANG, Z. et al. Encapsulation of Bifidobacterium in alginate microgels improves viability and targeted gut release. Food Hydrocolloids, v. 116, n. December 2020, p. 106634, 2021d. ZHANG, Z.; ZHANG, R.; MCCLEMENTS, D. J. Encapsulation of β-carotene in alginate-based hydrogel beads: Impact on physicochemical stability and bioaccessibility. Food Hydrocolloids, v. 61, p. 1–10, 2016. ZHENG, J. et al. Heteroprotein complex formation of soy protein isolate and lactoferrin: Thermodynamic formation mechanism and morphologic structure. Food Hydrocolloids, v. 100, n. October 2019, 2020. ZOU, W. et al. Phase separation behavior and characterization of ovalbumin and propylene glycol alginate complex coacervates. Food Hydrocolloids, v. 108, n. May, p. 105978, 2020.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/73474/2022%20-%20Alan%20Marques%20Farias.Pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6649
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-05-30T19:49:14Z No. of bitstreams: 1 2022 - Alan Marques Farias.Pdf: 2573993 bytes, checksum: 70865ca937274dc25d9a387585886ed5 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-05-30T19:49:14Z (GMT). No. of bitstreams: 1 2022 - Alan Marques Farias.Pdf: 2573993 bytes, checksum: 70865ca937274dc25d9a387585886ed5 (MD5) Previous issue date: 2022-10-20eng
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Alan Marques Farias.Pdf2.51 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.