Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/13640
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Erika Caitano da
dc.date.accessioned2023-12-22T02:49:13Z-
dc.date.available2023-12-22T02:49:13Z-
dc.date.issued2015-07-27
dc.identifier.citationSILVA, Erika Caitano da. Emissões de N2O do solo de cana-de-açúcar plantada com fungicida via solo e fertilizada com ureia. 2015. [64 f.]. Dissertação( PROGRAMA DE PÓS-GRADUAÇÃO EM FITOTECNIA) - Universidade Federal Rural do Rio de Janeiro, [Seropédica-RJ] .por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13640-
dc.description.abstractO objetivo deste trabalho foi avaliar a eficiência de fungicida do grupo das estrobilurinas na redução da produção de N2O no solo, um potente gás de efeito estufa, além de possíveis efeitos positivos na eficiência de uso de N pela cana-de-açúcar. Foram conduzidos estudos em laboratório para avaliar o efeito do fungicida em solo fertilizado com N sobre as emissões de N2O, assim como um ensaio em casa de vegetação e outro em campo, onde se estudaram a ureia e o nitrato de amônio, tratados ou não com fungicida, sobre as emissões de N2O e indicadores de eficiência de uso de N pela cana-de-açúcar. Além do monitoramento dos fluxos de N2O com câmaras estáticas, foram também coletadas folhas da cultura para análise das frações solúveis de N e análise da enzima nitrato redutase, incluindo-se também a estimativa da produtividade e eficiência do uso de N. Os ensaios de laboratório mostraram que o fungicida aplicado ao solo reduz emissões de N2O. No ensaio em casa-de-vegetação, a análise de enzimas e frações de N na cana-de-açúcar nãos e alteraram com o uso do fungicida, independente da fonte de N, mas houve tendência de redução dos fluxos de N2O no solo tratado com ureia. No ensaio de campo, os fluxos de N2O foram de 6 a 89 μg N m-2h-1, 24 a 795 N m-2 h-1 e 27 a 508 N m-2 h-1respectivamente para os tratamentos controle (sem adição de N), ureia e ureia +fungicida, indicando queda nas emissões de N2O de aproximadamente 30% no tratamento com fungicida.O tratamento com nitrato de amônio não induziu emissões de N2O do solo.Não houve diferença significativa entre os tratamentos em todas as análises das frações solúveis e também na análise enzimática. A produtividade de colmos (TCH), estimada a partir das dimensões dos colmos, variou significativamente de 190 Mg ha-1, no tratamento controle (sem adição de N), para 238 Mg ha-1, no tratamento com ureia, porém a aplicação do produto não influenciou na produção da cultura. O uso de fungicida reduz emissões de N2O, porém não induz maior eficiência de uso de N pela cana-de-açúcarpor
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectnitrogen.eng
dc.subjectemissionseng
dc.subjectfunguseng
dc.subjectnitrogêniopor
dc.subjectemissõespor
dc.subjectN2Opor
dc.subjectfungospor
dc.titleEmissões de N2O do solo de cana-de-açúcar plantada com fungicida via solo e fertilizada com ureiapor
dc.title.alternativeEmissions of N2O from a sugarcane soil planted with soil fungicide and fertilized with ureaeng
dc.typeDissertaçãopor
dc.description.abstractOtherThe objective of this study was to evaluate the efficiency of a fungicide of the strobilurin group in reducing soil N2O production, a potent greenhouse gas, and a possible positive effect on the N use efficiency by sugarcane. Laboratory studies were conducted to evaluate the effect of fungicide in soil fertilized with N on N2O emissions, as well as greenhouse and field experiments to study the fungicide as controller of urea and ammonium nitrate induction of N2O emissions and as an enhancer of fertilizer N use efficiency by sugarcane. In addition to the monitoring of soil N2O fluxes with static chambers sugarcane leaves were collected for analysis of soluble forms of N and nitrate reductase activity together with plant parameters to estimate yield and the efficiency of fertilizer N use. Laboratory tests revealed the fungicide was capable of reducing soil N2O emissions. Regardless of N source, the fungicide did not affect the analyses of enzymes and plant N fractions in sugarcane, but there was a downward trend of N2O fluxes in the soil treated with urea in the greenhouse experiment. In the field experiment, N2O fluxes were 6 to 89 μg N m-2h-1, 24 to 795 μg N m-2h-1 and 27 to 508 μg N m-2h-1 respectively to the control (no added N), urea and urea + fungicide treatments, indicating that N2O emissions were reduced in approximately 30% by the fungicide. The treatment with ammonium nitrate did not induce N2O emissions from soil. There was no significant difference between treatments in all analyses of soluble fractions and enzyme activity. Based on the dimensions of stalks, sugarcane yield was estimated at 190 Mg ha-1for the control treatment (without added N) and at 238 Mg ha-1 for urea treatment. The application of fungicide had no effect on yield. The use of fungicide reduced soil N2O emissions, but does not induce greater N use efficiency by sugarcaneeng
dc.contributor.advisor1Caballero, Segundo Sacramento Urquiaga
dc.contributor.advisor1ID5889819828por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0525790556695433por
dc.contributor.advisor-co1Alves, Bruno José Rodrigues
dc.contributor.advisor-co1ID68128282700por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5238072607952859por
dc.contributor.referee1Carmo, Margarida Goréte Ferreira do
dc.contributor.referee2Boddey, Robert Michael
dc.creator.ID34684351858por
dc.creator.Latteshttp://lattes.cnpq.br/2913562760801192por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesACUNHA, J. G. et al. Suficiência amostral para a estimação da produção de cana-de-açúcar. Ciência Rural, Santa Maria, v.44, n.10, p. 1747-1754, outubro de 2014. ALBINO, J.; CRESTE, S.; FIGUEIRA, A. Mapeamento genético da cana-de-açúcar. Biotecnologia, Ciência e Desenvolvimento, v.36, p.82-91. 2006. ALVES, B. J. R. et al. Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biology & Biochemistry, 46 (2012) 129e135, 2012. ANDA. Associação Nacional para Difusão de Adubos. Estatística: principais indicadores do setor de fertilizantes. 2015. Disponível em: www.anda.org.br/ estatisticas.aspx. Acesso em 29 jun. 2015. ANJOS, I.A.; ANDRADE, L.A.B.; FIGUEIREDO, P.A.M. Avaliação do potencial industrial de duas variedades de canade- açúcar (cana-soca) sob diferentes doses de nitrogênio. In: Reunião brasileira de fertilidade do solo e nutrição de plantas, 23.Caxambu, 1998. Resumos... Caxambu: SBCS, p.87, 1998.. ANKE, T. The antifungal strobilurins and their possible ecological role. Canadian Journal Botany, Ottawa, v.7 (Suppl. 1), p. 940-945, 1995. ANVISA- Agência nacional de vigilância sanitária. Disponível em < http://portal.anvisa.gov.br/ >. Acesso em 03.jan.2014. ARAÚJO, A. M. S.; SAMPAIO, E. V. S. B.; SALCEDO, I. H. Mineralização do C e do N em amostras armazenadas de solo e cultivadas com cana-de-açúcar, ao longo de dez anos, com e sem fertilização nitrogenada. Revista Brasileira de Ciência do Solo, v. 25, n. 1, p. 43-53, 2001. AULAK, M.S.; DORAN, J.W. e MOSIER, A.R. Soil denitrification – significance, measurement and effects of management. In: Advances in Soil Sicens, Stewart, B.A. (ed.), 1-57, Springer, New York, 1992. AZEREDO,D.F.; ROBAINA, A.A.; ZANOTTI, N. E. Adubação mineral em cana-de-açúcar no Estado do Espírito Santo. Saccharum-STAB , São Paulo, v.7,n.30, p.39-43, 1984. BALASUBRAMANIAN, V.; ALVES, B.; AULAKH, M.; BEKUNDA, M.; CAI, Z.; DRINKWATER, L.; MUGENDI, D.; KESSEL, C. van; OENEMA O. Crop, environmental, and management factors affecting nitrogen use efficiency. In: MOSIER, A.R.; SYERS, J.K.; FRENEY, J. (Ed.). Agriculture and the nitrogen cycle. Washington: Scientific Committee on Problems of the Environment, p.19‑33. (SCOPE, 65), 2004. BAPTISTA, R. B.;MORAIS, R. F.; LEITE, J. M.; SCHULTZ, N.; ALVES, B. J. R.; BODDEY, R. M.; URQUIAGA, S. Variations in the 15N natural abundance of plant-available N with soil depth: Their influence on estimates of contributions of biological N2 fixation to sugar cane. Applied Soil Ecology,v.73, p.124–129, 2014. 53 BARLETT, D. W. et al. Underestanding the strobirulin fungicides. Pesticide Outlook, Cambridge, v.12, n. 4, p.143-146, 2001. BARTLETT, D.W.; CLOUGH, J.M.; GODWIN, J.R.; HALL, A.A.; HAMER, M.; PARR-DOBRZANSKI, B. Review: the strobilurin fungicides, Pest Manage. Sci. v.58, p.649–662, 2002. BASF. AgCelence: marca mundial da BASF é a excelência em produtividade no campo.Disponível em <http://www.basf.com.br/sac/web/brazil/pt_BR/index >Acesso em: 23 jan.2014. BITTENCOURT, V. C. ; FAGANELLO, B. F.; SALATA, J. C. Eficiência da adubação nitrogenada em cana-de-açúcar (planta). STAB – Açúcar, Álcool e Subprodutos, v. 5, n.1, p.26-33, 1986. BOCKMAN, O.C., OLFS, H.W. Fertilizers, agronomy, and N2O. Nutrient Cycling in Agroecosystems, v.52, p.165–170, 1998. BODDEY, R.M.; URQUIAGA, S.; ALVES, B.J.R.; REIS, V.M. Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant and Soil, v. 252, p.139‑149, 2003. BOUROCHE, J. M.; SAPORTA, G. Análise de dados. Rio de Janeiro: Zahar, 1982. BRYSON, R.J.; Leandro, L.; Jones, D.R. The physiological effects of kresoxim-methyl on wheat leaf greenness and the implication for crop yield. In: Proceedings of the righton Crop Protection Conference - Pests and Diseases, 2000, Farnham. Proceedings... Farnham: British Crop Protection Council, p.739-747, 2000. CAMPBELL, W.H. Nitrate reductase structure, function ande regulation: bridging the gap between biochemistry and physiology. Annual Review of Plant Physiology and Plant Molecular Biology, v.50, p. 277-30, 1999. CANTARELLA, H.; RAIJ, B. van. Adubação nitrogenada no estado de São Paulo. SANTA, M. B. M. (Ed.). Adubação nitrogenada no Brasil. Ilhéus: Sociedade Brasileira de Ciência do Solo, 1985. p.47-79. CANTARELLA, H. Nitrogênio. In: Fertilidade do solo. Novais, R.F.; Alvarez V.V.H.; Barros, N.F.; Fontes, R.L.F.; Cantarutti, R.B.; Neves, J.C.L. (eds). Viçosa, Sociedade Brasileira de Ciência do Solo, 375-470, 2007. CANTARELLA, H.; RAIJ, B. Van. Adubação nitrogenada no estado de São Paulo. In: Simpósio sobre adubação nitrogenada no Brasil. Ilhéus, Anais... Ilhéus: CEPLAC/SBCS, 1986, p.47-79, 1984. CARMO, J.B.; FILOSO, S.; ZOTELLI, L. C.; NETO, E. R. S.; PITOMBO, L. M.; DUARTE-NETO, P. J. ; VARGAS, V. P.; ANDRADEk, C. A. ; GAVA, G. J . C.; ROSSETTO, R.; CANTARELLA, H.; NETO, A. E.; MARTINELLI, L. A. Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. Blackwell Publishing Ltd, GCB Bioenergy, v. 5, p. 267–280, 2012. 54 CATALDO, D.A.; HAROON, M.; SCHRADEV, L.E.; YOUNGS, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, Athens, v.6, p.71-80, 1975. CAZETTA, J.O.; VILLELA, L.C.V. Nitrate reductase activity in leaves and stems of tanner Grass (Brachiaria radicans Napper). Scientia Agrícola, v.61, p. 640-648, 2004. CERRI, C.C.; MAIA, S.M.F.; GALDOS, M. V.; CERRI, C. E. P.; FEIGL, B. J.; BERNOUX, M. Brazilian greenhouse gas emissions: the importance of agriculture and livestock. Scientia Agricola, Piracicaba, v. 66, n. 6, p. 831-843, 2009. CHEN, H., MOTHAPO, N.V., SHI, W. Soil moisture and pH control relative contributions of fungi and bacteria to N2O production. Microbial Ecology, v.69, p.180-191, 2015. CHEN, H.; MOTHAPO, N. V.; SHI, W. The significant contribution of fungi to soil N2O production across diverse ecosystems. Applied Soil Ecology, v.73, p.70–77, 2014. CHIKOWO, R.; MAPFUMO, P.; NYAMUGAFATA, P.; GILLER, K. E. Mineral N dynamics, leaching and nitrous oxide losses under maize following two-year improved fallows on a Sandy loam soil in Zimbabwe. Plant and Soil, v.259, p.315-330, 2004. CONAB – Companhia Nacional de Abastecimento. Disponível em <www.conab.gov.br/> Acesso em 24.abr.2015. COURTAILLAC, N. ; BARAN, R. ; OLIVER, R. ; CASABIANCA, H. ; GANRY, F. Efficiency of nitrogen fertilizer in sugarcane-vertical system in Guadeloupe according to growth and ratoon age of the cane. Nutrient Cycling in Agroecosystems, v. 52, p. 9-17, 1998. CRENSHAW, C. L.; LAUBER, C.; SINSABAUGH, R. L.; STAVELY, L. K. Fungal control of nitrous oxide production in semiaridGrassland. Biogeochemistry, v.87, p.17–27, 2008. CRUTZEN, P.J.; MOSIER, A.R.; SMITH, K.A.; WINIWARTER, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, Katlenburg -Lindau, v.8, n. 2, p. 389-395, 2008. DALAL, R.C., WANG, W., ROBERTSON, G.P., PARTON, W. Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Australian Journal of Soil Research, v.41, p. 165–195, 2003. DANALATOS, N.G; ARCHONTOULIS F.G; MITSIOS, I. Potential growth and biomass productivity of Miscanthus giganteus as affected by plant density and N fertilization in central Greece. Biomass and Bioenergy, Rotterdam, v. 31, p. 145-152, 2007. DAVIDSON, E. A.; BUSTAMANTE, M. M. C.; PINTO, A. D. S. Emissions of nitrous oxide and nitric axid from soils of native and exotic ecossystems of the Amazon and Cerrado regions of Brazil. Scientific World, v.1, p.322-319, 2001. 55 DAVIDSON, E. A.; VERCHOT, L. V. Testing the hole in the pipe model of nitric and nitrous oxide emissions from soils using the TRAGNET database. Global Biogeochemical Cycles, 14: 1035-1043. 2000. DAVIDSON, E. A; MATSON, P. A.; VITOUSEK, R.; RILEY, R.; DUNKIN, K.; GARCÍA-MÉNDEZ, G.; MAASS, J. M. Processes regulating soil emissions of NO and N2O in a seasonally dry tropical forest. Ecology, Tempe, v. 74, p. 130-139, 1993. DAVIDSON, E.A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, v. 2, p. 659- 662, 2009. DIAS, F. L. F.; MAZZA, J. A.; MATSUOKA, S.; PERECIN, D.; MAULE, R. F. Produtividade da cana-de-açúcar em relação a clima e solos da região noroeste do estado de São Paulo. R. Bras. Ci. Solo, 23:627-634, 1999. DOBBIE, K. E.; SMITH, K. A. Impact of different forms of N fertilizen on N2O emission factors. Journal of Geophysical Research, v. 104, p. 26891-26899, 1999. EMBRAPA. Documentos 249. Uso do Nitrogênio na Agricultura e suas Implicações na Emissão do Gás de Efeito Estufa Óxido Nitroso (N2O). EMBRAPA Arroz e Feijão. Santo Antônio de Goiás - GO, 2009. EMBRAPA. Estoques de carbono e emissões de gases do efeito estufa na agropecuária brasileira. EMBRAPA Meio Ambiente. Jaguariúna – SP, 2012. EWERS, R.M.; LAURANCE, W.F. e SOUZA JR., C.M. Temporal fluctuations in Amazonian deforestation rates. Environmental Conservation, 35(4), 303-310, 2008. FAGAN, E. B.; NETO, D. D.; VIVIAN, R.; FRANCO, R. B.; YEDA, M. P.; MASSIGNAM, L. F.; OLIVEIRA, R. F.; MARTINS, K. V. Efeito da aplicação de estrobilurina na taxa fotossintética, respiração, atividade da enzima nitrato redutase e produtividade de grãos de soja. Bragantia, Campinas, v. 69, n. 4, p.771-777, 2010. FAGERIA, N. K.; BALIGAR, V.C. Enhancing nitrogen use efficiency in crop plants. Advances in Agronomy, v.88, p.97- 185, 2005. FELKER, P. Microdetermination of nitrogen in seed protein extracts. Analytical Chemistry, Washington, v.49, 1980, 1977. FERNANDES, M. S. N carriers, light and temperature influences on the free amino acid pool composition of rice plants. Turrialba. 33(3):297-301, 1983. FIGUEIREDO E B and LA SCALA N Jr. Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest in Brazil Agric. Ecosyst. Environ. , v.141, p.77–85, 2011. FORSTER, P., V. RAMASWAMY, P. ARTAXO, T. BERNTSEN, R. BETTS, D.W. FAHEY, J. HAYWOOD, J. LEAN, D. C. LOWE, G. MYHRE, J. NGANGA, R. PRINN, G. RAGA, M. SCHULZ AND R. VAN DORLAND. Changes in atmospheric constituents and in radioactive forcing. In: Climate Change: The Physical Science Bases. Contribution of 56 Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignorand H.L. Miller (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2007. FRANCO, H. C. J.; TRIVELIN, P. C. O.; FARONI, C. E.; VITTI, A. C.; OTTO, R. Aproveitamento pela cana-de-açúcar da adubação nitrogenada de plantio. Revista Brasileira de Ciência do Solo, 32: 2763-2770, n especial, 2008. GALLO, J.R.; HIROCE, R.; ALVAREZ, R. Teores de nutrientes nas folhas de cana-de-açúcar (Saccharum officinarum L.) cultivar CB 41/76. Bragantia, Campinas, v.33, p.25-31, 1974. GAVA, G. J. C.; TRIVELIN, P. C. O.; VITTI, A. C.; OLIVEIRA, M. W. Balanço do nitrogênio da ureia (15N) e da palhada (15N) no sistema solo-cana-de-açúcar (cana soca). In: Congresso nacional dos técnicos açúcareiros alcooleiros do brasil, 8., Recife. Anais... Olinda: STAB. p. 245-251, 2002. GAVA, G. J. C.; TRIVELIN, P. C. O.; VITTI, A. C.; OLIVEIRA, M. W. Recuperação do nitrogênio (15N) da ureia e da palhada por soqueira de cana-de-açúcar (Saccharum spp.). Revista Brasileira de Ciência do Solo, v. 27, p. 621-630, 2003. GLAAB, J.; KAISER, W. M. Increased nitrate redutase activity in leaf tissues after application of fungicide Kresoxim-methyl. Planta, Berlim, v. 207, p. 442-448, 1999. GLORIA, N.A. & ORLANDO Fº, J. Aplicação da vinhaça como fertilizante. Boletim técnico. PLANALSUCAR, Piracicaba, 38p. 1983. GOMES, A.A.; REIS, V.M.; BALDANI, V.L.D.; GOI, S.R. Relação entre distribuição de nitrogênio e colonização por bactérias diazotróficas em cana-de-açúcar. Pesquisa agropecuária brasileira, Brasília, v.40, n.11, p.1105-1113, novembro de 2005. GRANIER, C.; ARTAXO, P. e REEVES, C.E. (Eds). Emissions of Atmospheric Trace Compunds. In: Advances in Global Change Research, 18, Kluwer Academic Publishers, 2004. GROSSMANN, K.; RETZLAFF, G. Bioregulatory effects of the fungicidal strobilurin kresoxim methyl in wheat (Triticumaestivum L.). Pesticide Science, v.50, p.11-20, 1997. HAGEMAN, R.H. & REED, A.J. Nitrate reductase from higher plants. Methods in Enzymology, San Diego, 69:270-280, 1980. HANSEN, J.; NAZARENKO, L.; RUEDY, R.; SATO, M.; WILLES, J.; GENIO, A.D.; KOCH, D.; LACIS, A. Earth’s Energy Imbalance: Confirmation and Implications, Science, 308, 1431-1435, 2005. HEFTING, M.M., BOBBINK, R., DE CALUWE, H. Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. J. Environ. Qual. 32, p. 1194–1203, 2003. 57 HOFMANN, D. J.; BUTLER, J.H.; DLUGOKENCKY, E.J.; ELKINS, J.W.; MASARIE, K.; MONTZKA, S.A.; TANS, P. The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index, Tellus, 58(5), 614-619, 2006. HOLST J.; BRACKINR.; ROBINSONN.; LAKSHMANANP., SCHMIDTS. Soluble inorganic and organic nitrogen in two Australian soils under sugarcane cultivation. Agriculture, Ecosystems and Environment, v. 155, p.16– 26, 2012. IBGE- Instituto Brasileiro de Geografia e Estatística. Disponível em < http://www.ibge.gov.br/home/> Acesso em 29.jan.2014. IEA, Internacional Energy Agency. Biofuels for transport: Technology roadmap. Paris, France, p.52, 2011. IPCC- (Intergovernmental Panel on Climate Change)-Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed Core Writing Team, R K Pachauri and A Reisinger (Geneva: IPCC), 2007. IPCC- Intergovernmental Panel on Climate Change, Climate change 1995: The Science of Climate Change– eds. Houghton, J.T., Meira Filho, L.G., Callander, B.A, Harris, N., Kattenberg, A.,e Maskell, K., Cambridge University Press, Cambridge, 1996. JABS, T. Can strobilurins still deliver? Crop Protection, Guildford, v. 17, p. 19-20, 2004. JADOSKI, C. J. Efeitos fisiológicos da estrobilurina em plantas de feijão (phaseolus vulgaris l.) condicionado sob diferentes tensões de água no solo. Dissertação de Mestrado, Unesp – Botucatu –SP, janeiro de 2012. JAGGER, A. Brazilian ethanol: an attractive proposition. Biofuels, Bioproduction e Biorefinery, v.4, p, 480-483, 2010. JAWORSKI, E.G. Nitrate redutase assay in intact plant tissues. Biochemical BiophysicalResearch. Communication, v.43, n.6, p.1274-1279, 1971. KEMPERS, A. J.; ZWEERS, A. Ammonium determination in soil extracts by the salicylate method. Comm Soil Sci Plant Anal, v. 17, n. 7, p. 715-723, 1986. KINNEY CA, MOISER AR, FERRRER I, FURLONG ET, MANDERNACK KW. The effects of the fungicides mancozeb and chlorothalonil on fluxes of CO2, N2O, and CH4 in a fertilized Colorado grassland soil. J Geophl Res-Atm 109:D05303, 2004. KOHLE, H.; GROSSMANN, K.; JABS, T.; GERHARD, M.; KAISER, W.; GLAAB, J.; CONRATH, U.; SEEHAUS, K.; HERMS, S. Physiological effects os the strobilurin fungicide F500 on plants, 2003. KONISHI, M.; YANAGISAWA, S. The regulatory region controlling the nitrate-responsive expression of a nitrate reductase gene, NIA 1, in Arabidopsis. Plant and Cell Physiology, v.52, p.824-836, 2011. 58 KORNDORFER, G. H. ; VALLE, M. R. ; MARTINS, M. ; TRIVELIN, P. C. O. Aproveitamento do nitrogênio da ureia pela cana planta. Revista Brasileira de Ciência do Solo, v. 21, p. 23-26, 1997. KOWALCHUCK, G.A., STEPHEN, G.R. Ammonia-oxidising bacteria: a model for molecular microbial ecology. Annual Reviews of Microbiology, v.55, p. 485–529, 2001. LAUGHLIN, R.J.; STEVENS, R.J. Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Sci Soc Am J, v.66, p.1540–1548, 2002. LEE, T.S.G.; BRESSAN, E. A. The potential of ethanol production from sugarcane in Brazil. Sugar Technology, v.8, p.195-198, 2006. LI, C.; ABER, J.; BUTTERBACH-BAHL, K. P. H. A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. Journal of Geophysical Research, v. 105, p. 4369-4384, 2000. LINN, D.M., DORAN, J.W. Aerobic and anaerobic microbial populations in no till and plowed soils. Soil Sci. Soc. Am. v.48, p. 794–799, 1984. LINN, D.M., DORAN, J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non tilled soils. Soil Sci. Soc. Am. v. 48, p. 1267–1272, 1984. LISBOA, C. C.; BUTTERBACH-BAHL, K.; MAUDER, M.; KIESE, R. Bioethanol production from sugarcane and emissions of greenhouse gases – known and unknowns. GCB Bioenergy. 3:277–292, 2011. MACEDO, I.C.; LEAL, M.R.L.V.; SILVA, J.E.A.R. Balanço das emissões de gases do efeito estufa na produção e no uso do etanol no Brasil. São Paulo: Secretaria do Meio Ambiente, p.37, 2004. MACLAREN, R.G.; CAMERON, K.C. Soil, plant and fertilizer nitrogen. In: McLAREN, R.G. (Ed.) Soil science: Sustainable production and environmental protection. 2.ed. New York: Oxford University Press, p.192-207, 1996. MALAVOLTA, E. ; VITTI, G. C.; OLIVEIRA, S. A. Avaliação do estado nutricional das plantas. Piracicaba: Associação Brasileira para a Pesquisa da Potassa e do Fosfato, p.319, 1997. MANSELL, B.O.; SCHROEDER, E.D. Biological denitrification in a continous flow membrane reactor. WaterScience Tecnology, London., v.38, n.1, p.9-14, 1998. MARCELINO, R. Inibidor de Nitrificação em Fertilizantes Nitrogenados e Rendimento de Milho. Dissertação. Instituto Agronômico, Campinas, 2009. MARINHO, M.L. Aspectos agronômicos e econômicos da adubação da cana-de-açúcar em Alagoas. Rio Largo: EECA, p.60, 1974. 59 MARQUES T. A., SILVA W. H., PALARETTI, L. F., RAMPAZO, E. M. Vegetative Growth And Maturation In Three Sugarcane Varieties. Bioenergia em revista: diálogos, v. 2, n. 1, p. 85-95, jan./jun. 2012. MATSON, P. A.; MCDOWELL, W.H.; TOWNSEND, A. R.; VITOUSEK, P. M. The globalization of N deposition: ecosystem consequences on tropical environments. Biogeochemistry, Amsterdam, NL, v.46, p.67-83, 1999. MAZID, M.; KHAN, T.A.; MOHAMMAD, F. Role of nitrate reductase in nitrogen fixation under photosynthetic regulation. World Journal of Pharmaceutical Research, v.1, p.386-414, 2012. MCLAIN JET, MARTENS DA. Nitrous oxide flux from amino acid mineralization. Soil Biol Biochem, v.37, p.289–299, 2005. MCLAIN JET, MARTENS DA. N2O production by heterotrophic N transformations in a semiarid soil. Appl Soil Ecol, v.32, p.253–263, 2006. MEINZER, F.C.; ZHU, J. Nitrogen stress reduces the efficiency of the C4 CO2 concentrating system, and therefore quantum yield, in Saccharum (sugarcane) species. Journal of Experimental Botany, 1998. MICHAEL, G. The influence os strobirlurin containing fungicides on physiologicalprocesses of yield formation in winter wheat varieties. 2002. 288 f. (Thesis) Technical University of Munich, Berlin, 2002. MIRANDA, KM.; ESPEY, M.G.; WINK, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, v 5, p. 67-71, 2001. MITCHELL, .L. Microdetermination of nitrogen ia plan& tissues J. AOAC 55 (1): 1-3, 1972. MIYAZAWA, M., PAVAN, M.A., MURAOKA, T., CARMO, C.A.F.S., MELO, W.J. Análises químicas de tecido vegetal. In: Manual de análises químicas de solos, plantas e fertilizantes. SILVA, F. C (ed.). Brasília, EMBRAPA, p. 171-223, 1999. MORAIS, R. F.; BODDEY, R. M.; URQUIAGA, S.; JANTALIA C. P.; ALVES B. J. R. Ammonia volatilization and nitrous oxide emissions during soil preparation and N fertilization of elephant grass (Pennisetum purpureum Schum.)Soil Biology & Biochemistry, v. 64, p. 80-88, 2013. MOSIER A R. Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere Plant Soil, v.228, p.17–27, 2001. NEVES, M. F.; PINTO, M. J. A.; CONEJERO, M. A. TROMBIN, V. G. The example of Brazil, Food and fuel. p.105, 2011. NEVISON, C. D. & HOLLAND, E. A.A re-examination of the impact of anthropogenically fixed nitrogen on the atmospheric N2O and the stratospheric O3 layer. Journal of Geophysical Research, v.102, p.25519-25536. 1997. 60 NEVISON, C. Review of the IPCC methodology for estimating nitrous oxide emissions associated with agricultural leaching and runoff. Chemosphere, p.493–500, 2000. NIELSEN, T.H., REVSBECH, N.P. Nitrification, denitrification, and Nliberation associated with two types of organic hot-spots in soil. Soil Biol. Biochem, v.30, p. 611–619, 1998. NUNES JUNIOR, D.; PINTO, R.S.A.; TRENTO, F.E.; ELIAS, A.I. Indicadores agrícolas do setor canavieiro: safra 2003/2004. Ribeirão Preto: Idea, p.111, 2005. OLIVEIRA, B.G.; FEIGL, B.J.; NETO, M.S.; CERRI, C.C. Emissões de gases de efeito estufa nos canais de distribuição da vinhaça, subproduto da agroindústria sucroalcooleira. In: XXXII Congresso Brasileiro de Ciência do Solo. 2009. Fortaleza- CE. Anais... Fortaleza: SBCS; UFC, CD-ROOM, 2009. OLIVEIRA, M.W.; TRIVELIN, P.C.O.; BOARETTO, A.E.; MURAOKA, T.; MORTATTI, J. Lixiviação de nitrogênio, potássio, cálcio e magnésio em solo arenoso cultivado com cana-de-açúcar. Pesquisa Agropecuária Brasileira, Brasília, v.37, n.6, p.861-868, 2002. OLSEN, K.K. (2008). Multiple Wavelength Ultraviolet Determinations of Nitrate Concantration, Method Comparisons from the Preakness Brook Monitoring Project, October 2005 to October 2006. Springer Science + Business Media B.V. 2007. ORLANDO FILHO, J.; HAAG, H.P. & ZAMBELLO Jr. E. Crescimento e absorção de macronutrientes pela cana-de-açúcar, variedade CB 41-76 em função de idade em solos do Estado de São Paulo. Boletim Técnico Planalsucar, n.2, 128p. Piracicaba, 1980. PANOSSO, A. R.;PERILLO, L. I.;FERRAUDO A. S.; PEREIRA, G. T.;MIRANDA, J. G. V.; LA SCALA, N. Fractal dimension and anisotropy of soil CO2 emission in a mechanically harvested sugarcane production area. Soil and Tillage Research, Volume 124, Pages 8–16, August 2012. PASSIANOTO, C.C.; AHRENS, T.; FEIGL. B.J.; STEUDLER, P.A.; DO CARMO, J.B.; MELILO, J.M. Emissions of CO2, N2O, and NO in conventional and no-till management oractices in Rondônia, Brazil. Biol. Ferlil Soils, v.38, p.200-208, 2003. PAUL, E. A.; CLARK, F. E. Soil microbiology and biochemistry. San Diego: Academic, p.340, 1996. PHILIPPOT, L.; Denitrifying genes in bacterial and Archeal genomes. Biochimica et Biophysica Acta, Amsterdam, v. 1577, p. 355-376, 2002. PRADO, R. M.; PANCELLI, M. A. Resposta de soqueira de cana-de-açúcar à aplicação de nitrogênio em sistema de colheita sem queima. Bragantia, Campinas, v.67, n. 4, p. 951-959, 2008. PRATHER, J. M. Times scales in atmospheric chemistry: coupled perturbations to N2O, NO, and O3. Science, New York, v. 279, p. 1339-1341, 1998. QUESADA D.M. Parâmetros quantitativos e qualitativos da biomassa de genótipos de capim elefante (Pennisetum purpureum Schum.) com potencial para uso energético, na forma de 61 carvão vegetal. 2005. Tese (Doutorado em Agronomia Ciência do Solo) Universidade Federal Rural do Rio de Janeiro. Seropédica, 2005. 65f. RAVINDRANATH, N.H; BALACHANDRA, P; DASAPPA, S; RAO, K.U. Bioenergy technologies for carbon abatment. Biomass and Bioenergy, Rotterdam, v.30, p.826-837, 2006. ROBERTSON, G.P. Abatement of nitrous oxide, methane and the other non-CO2 greenhouse gases: The need for a system approach. In: The Global Carbon Cycle: integrating humans, climate and natural world. Field, C. B. & Raupach, M.R (Ed). SCOPE series 62. Island Press, Washington, p. 112-124, 2004. ROBERTSON, G.P.; GRACE, P.R. Greenhouse gas fluxes in tropical and temperate agriculture: the need for a full-cost accounting of global warming potentials. Environment, Development and Sustainability, vol.6, p.51–63, 2004. SANTOS, C. L. R. et al. Otimização da análise da atividade da redutase do nitrato e sua caracterização em folhas de cana-de-açúcar. Pesquisa agropecuária brasileira. Brasília, v.49, n.5, p. 384-394, maio de 2014. SCARPINELLA, G. A. Reflorestamento no Brasil e o protocolo de Quioto. 2002. Dissertação (Mestrado) Programa Interunid ades de Pós-Graduação em Energia, Universidade de São Paulo, São Paulo-SP, 2002. 162f. SCHINDLBACHER, A.; ZECHMEISTER-BOLTENSTERN, S.; BUTTERBACH BAHL, K. Effects of soil moisture and temperature on NO, NO2 and N2O emissions from European forest soils. Journal of Geophysical Research, 109, D17302, 2004. SHOUN H, KIM D, UCHIYAMA H, SUGIYAMA J. Denitrification by fungi. FEMS Microbiol Lett, v. 94, p.277–282, 1992. SHUKLA, S. K.; YADAV, R. L.; SUMAN, A.; SINGH, P. N. Improving rhizospheric environment and sugarcane ratoon yield through bio-agent amended farm yard manure in Udic ustochrept soil. Soil Tillage Residual, v.99, p.158-168, 2008. SIGNOR, D. Estoques de carbono e nitrogênio e emissões de gases de efeito estufa em áreas de cana-de-açúcar na região de Piracicaba. Dissertação (Mestrado em Solos e Nutrição de Plantas) – Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, p.119, 2010. SIGNOR, D.; CERRI, C. E. P.; CONANT, R. N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental research letters,8, 015013 (9pp), UK, 2013. SILVA, G.M.A. & GURGEL, M.N.A. Aplicação de vinhaça como fertilizante em cana-de-açúcar em solo L.E., fase arenosa. In: Congresso nacional da sociedade de técnicos açucareiros do brasil, 2., Rio de Janeiro, 1981. Anais. STAB-Rio de Janeiro, 1981. SILVEIRA, J.A.G. da & CROCOMO, O.J. Biochemical and physiological aspoects of sugarcane (Saccharum spp;) I. Effect of NO3 nitrogen concentration on the metabolism of sugars and nitrogen. Energia Nuclear na Agricultura, Piracicaba, 3:19-33, 1981. 62 SILVEIRA, J.A.G. da. Interações entre assimilação de nitrogênio e o crescimento de cana-de-açúcar (Saccharum spp) cultivada em condições de campo. Piracicaba. (Doutorado - Escola Superior de Agricultura “Luiz de Queiroz”/USP), p.152, 1985. SILVEIRA, J.A.G.; CROCOMO, O.J. Assimilação de nitrogênio em cana-de-açúcar cultivada em presença de elevado n´´ivel de N e de vinhaça no solo. Revista Brasileira de Fisiologia Vegetal, v. 2(2):p 7-15, 1990. SINGH, K. P.; SUMAN, A.; SINGH, P. N.; LAL, M. Yield and soil nutrient balance of sugarcane plant ratoon system with conventional and organic nutrient management in subtropical India. Nutrient Cycling in Agroecosystems, v.79, p.209-219, 2007. SMITH, K. A.; BALL, T.; CONEN, F.; DOBBIE, K. E.; MASSHEDER, J.; REY, A. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, Oxford, v. 54, n. 4, p. 779-791, 2003. SMITH, P.; MARTINO, D.; CAI, Z.; GWARY, D.; JANZEN, H.; KUMAR, P.; MCCARL, B.; OGLE, S.; O’MARA, F.; RICE, C.; SCHOLES, B.; SIROTENKO, O. Agriculture. In: METZ, B.; DAVIDSON, O. R.; BOSCH, P. R.; DAVE, R.; MUYER, L. A. (Ed). Climate change: mitigation of climate change. Cambridge: Cambridge University Press, p. 497-540, 2007. SOARES, L. H. DE B.; ALVES, B. J. R.; URQUIAGA, S.; BODDEY, R. M. Mitigação das emissões de gases do efeito estufa pelo uso de etanol da cana de açúcar produzido no Brasil. Seropédica, Embrapa Agrobiologia, 2009. 14p. (Circular Técnica 27). STUPIELLO, J. P. A cana-de-açúcar como matéria-prima. In: PARANHOS, S. B., Cana-de-açúcar: Cultivo e Utilização. Campinas: Fundação Cargill, v. 2, cap. 7, p. 759-804, 1987. STURSOVA M, CRENSHAW CL, SINSABAUGH RL. Microbial responses to long term N deposition in a semi-arid grassland. Microbial Ecol 51:90–98, 2006. TAKASHI, D. Nitrate in sugarcane. In: Hawaii an sugar planter’s association. Annul Report. 1965. Hawaii, 1965. 34p. TEIXEIRA, M.A.; MURRAY, M.L.; CARVALHO, M.G. Assessment of land use and land use change and forestry (LULUCF) as CDM projects in Brazil. Ecological Economics, New York, v.60, p. 260-270, 2006. TEIXEIRA, N.T. Comportamento do nitrogênio “solúvel” em cana-de-soca em condições de campo e em variedade de cana- de-açúcar cultivadas em solução nutritiva. Piracicaba, 1980. 83p. (Doutorado - Escola Superior de Agricultura “Luiz de Queiroz”/USP). TER BRAAK, C.J.F.; SMILAUER, P. Canoco for Windows v. 4.5. CPRO-DLO, Wageningen, Netherlands, 2002. 63 TOFOLI, J. G. Ação de fungicidas e acibenzolar-s-methyl no controle da pinta preta do tomateiro. 2002. 127 f. Dissertação (Mestrado em Agronomia)- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, 2002. TRIVELIN, P. C.; VITTI, A. C.; OLIVEIRA, M. W. ; GAVA, G. J. C.; SARRIÉS, G. A. Utilização de nitrogênio e produtividade de cana-de-açúcar (cana-planta) em solo arenoso com incorporação de resíduos da cultura. Revista Brasileira de Ciência do Solo, v. 26, n. 3, p. 636-646, 2002b. ÚNICA. União da Indústria de Cana de açúcar. http://www.unica.com.br/, acessado em 01 jul. 2015. URQUIAGA, S.; CRUZ, K.H.S.; BODDEY, R.M. Contribution of nitrogen fixation to sugarcane: nitrogen-15 and nitrogen balance estimates. Soil Science Society of America Journal, v.56, p.105-114, 1992. URQUIAGA, S.; XAVIER, R. P.; MORAIS, R. F.; BAPTISTA, R. B.; SCHULTZ, N.; LEITE, J. M.; SÁ, J. M.; BARBOSA, K. P.; RESENDE, A. S.; ALVES, B. J. R.; BODDEY, R. M. Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil, v.356, p.5–21, 2012. VENANCIO, W.S. et al. Physiological Effects of Strobirulin Fungicides on Plants. Ci. Exatas Terra, Ci. Agr. Eng., Ponta Grossa, v.9 (3), p.59-68, dez, 2003. VENANCIO, W.S.; RODRIGUES, M.A.T.; BEGLIOMINI, E.; SOUZA, N.L. Physiological effects of Strobirulin Fungicides on Plants. Publication UEPG, Ponta Grossa, v.9, n.3, p.59-68, 2004. VENANCIO, W.S.; ZAGONEL, J.; FURTADO, E.L.; SOUZA, N.L. Novos fungicidas. I produtos naturais e derivados sintéticos: estrobilurinas e fenilpirroles. In: LUZ, W.C.; FERNANDES, J.M.; PRESTES, A.M.; PICININI, E.C. Revisão anuel de patologia de plantas, Passo Fundo, v.7 p.103-155, 1999. VICINI, L. Análise multivariada da Teoria à prática. UFSM- Santa Maria- RS, 2005. VITTI, A. C. Adubação nitrogenada da cana-de-açúcar (soqueira) colhida mecanicamente sem a queima prévia: manejo e efeito na produtividade. Piracicaba, 2003. 114 f. Tese (Doutorado)- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 2003. WELL, R., AUGUSTIN, J., DAVIS, J., GRIFFITH, S.M., MEYER, K., MYROLD, D.D. Production and transport of denitrification gases in shallow ground water. Nutr. Cycl. Agroecosyst, v.60, p. 65–75, 2001. YADAV, R. L.; SUMAN, A.; PRASAD, S. R.; PRAKASH, O. Effect of Gluconacetobacter diazotrophicus and Trichoderma viride on soil health, yield and N economy of sugarcane cultivation under subtropical climatic conditions of India. European Journal of Agronomy, v.30, p.296-30, 2009. 64 YANAI, Y., TOYOTA, K., MORISHITA, T., TAKAKAI, F., HATANO, R., LIMIN, S.H., DARUNG, U., DOHONG, S. Fungal N2O production in an arable peat soil in Central Kalimantan, Indonesia. Soil Sci. Plant Nutr. v.53, p. 806–811, 2007. YEMM, E.W. e COCKING, E.C. The determination of Aminoacid with ninhydrin. Analyst, v. 80, p.209-213, 1955. YOU, X.; LIU, C.; LIU, F.; LIU, Y.; DONG, J. Dissipation of pyraclostrobin and its metabolite BF-500-3 in maize under field conditions. Ecotoxicology and Environmental Safety, v. 80 p. 252–257, 2012. ZAMAN, M., CHANG, S.X.. Substrate type, temperature, and moisture content affect gross and net soil N mineralization and nitrification rates in Agroforestry systems. Biol. Fertil. Soils 39, 269–279, 2004. ZANATTA, J. A. Emissão de óxido nitroso afetada por sistemas de manejo do solo e sistemas de manejo. 2009. 79 f. Tese (Doutorado em Ciência do Solo) - Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre. ZHANG, W.; ZHANG, X. A forecast analysis on fertilizers consumption worldwide. Environment Monitoring and Assessment, Dordrecht, v. 133, p. 427-434, 2007. ZHOU A, TAKAYA N, SAKAIRI MAC, SHOUN H. Oxygen requirement for denitrification by the fungus Fusarium oxysporum. Arch Microbiol, v.175, p.19–25, 2001.por
dc.subject.cnpqCiências Agráriaspor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5824/2015%20-%20Erika%20Caitano%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/20584/2015%20-%20Erika%20Caitano%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/26853/2015%20-%20Erika%20Caitano%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/33270/2015%20-%20Erika%20Caitano%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/39694/2015%20-%20Erika%20Caitano%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/46056/2015%20-%20Erika%20Caitano%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/52472/2015%20-%20Erika%20Caitano%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/58942/2015%20-%20Erika%20Caitano%20da%20Silva.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/2052
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-09-26T17:06:38Z No. of bitstreams: 1 2015 - Erika Caitano da Silva.pdf: 1958258 bytes, checksum: 61fcc63494dc0f8b0966ba187b5280a0 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-09-26T17:06:38Z (GMT). No. of bitstreams: 1 2015 - Erika Caitano da Silva.pdf: 1958258 bytes, checksum: 61fcc63494dc0f8b0966ba187b5280a0 (MD5) Previous issue date: 2015-07-27eng
Appears in Collections:Mestrado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2015 - Erika Caitano da Silva.pdfErika Caitano da Silva1.91 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.