Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14348
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Isabela de Aquino
dc.date.accessioned2023-12-22T03:00:04Z-
dc.date.available2023-12-22T03:00:04Z-
dc.date.issued2020-08-18
dc.identifier.citationSOUZA, Isabela de Aquino. Estudos de soluções numéricas para a equação de Richards através do método de volumes finitos para simulação de fluxo unidimensional: um estudo de Campo. 2020. 140 f. Dissertação(Mestrado em Modelagem Matemática e Computacional) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14348-
dc.description.abstractApresenta-se, nesta disserta¸c˜ao, um estudo do modelo num´erico baseado no m´etodo de volumes finitos para fluxo de escoamento vertical de ´agua em solos. Na modelagem cl´assica de fluxo de ´agua no solo ´e utilizada a Equa¸c˜ao de Richards (ER). Pela n˜ao linearidade desta equa¸c˜ao, busca-se uma solu¸c˜ao computacional. Trabalha-se com a forma mista da ER e, preferencialmente, com esquema impl´ıcito de discretiza¸c˜ao do tempo. A n˜ao linearidade foi tratada atrav´es do m´etodo de Picard. Um c´odigo computacional foi implementado, tendo em vista predizer o fluxo de ´agua em um solo heterogˆeneo considerado com duas camadas. Para a verifica¸c˜ao e aplicabilidade do c´odigo foi realizado um experimento de campo. As sa´ıdas computacionais foram comparadas aos dados de campo e `as sa´ıdas do pacote Hydruspor
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subject-por
dc.subject-por
dc.subject-por
dc.subject-eng
dc.subject-por
dc.subject-por
dc.titleEstudos de soluções numéricas para a equação de Richards através do método de volumes finitos para simulação de fluxo unidimensional: um estudo de Campopor
dc.title.alternativeStudies of numerical solutions to the Richards equation using the finite volume method for one-dimensional flow simulation: a field studypor
dc.typeDissertaçãopor
dc.description.abstractOtherIn this work, a study of the numerical model based on the finite volume method for vertical water flow in soils is presented. In the classical modeling of water flow in the soil, the Richards Equation (ER) is used. Due to the non-linearity of this equation, working with a computational solution is suggested. The study focuses on investigating the mixed form of RE and, preferably, with an implicit time discretization scheme. Non-linearity was resolved using the Picard method. A computational code was implemented, in order to predict the flow of water in a soil composed of two layers and which was 69 cm deep. For the verification and applicability of the code, a field experiment was prepared. The computational outputs were compared to field data and with the Hydrus packageeng
dc.contributor.advisor1Oliveira, Rosane Ferreira de
dc.contributor.advisor1ID889.186.297-53por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1677695285426749por
dc.contributor.advisor-co1Santos, Wilian Jeronimo dos
dc.contributor.advisor-co1ID103.175.157-21por
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0001-5602-646Xpor
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5298677032432741por
dc.contributor.referee1Oliveira, Rosane Ferreira de
dc.contributor.referee1ID889.186.297-53por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1677695285426749por
dc.contributor.referee2Ceddia, Marcos Bacis
dc.contributor.referee2IDhttps://orcid.org/0000-0002-8611-314Xpor
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2115137917689655por
dc.contributor.referee3Meyer, João Frederico da Costa Azevedo
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9611168473482242por
dc.contributor.referee4Teixeira, Wenceslau Geraldes
dc.contributor.referee4Latteshttp://lattes.cnpq.br/4136381865367906por
dc.creator.ID143.455.817-70por
dc.creator.Latteshttp://lattes.cnpq.br/6357992160735144por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Modelagem Matemática e Computacionalpor
dc.relation.referencesBOZDOGAN, H., 1987, “Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions”, Psychometrika, v. 52, n. 3 (sep), pp. 345–370. BROOKS, R., COREY, A., 1964, Hydraulic properties of porous media. Fort Collins, Colorado : Colorado State University. BUCKINGHAM, E., 1907, “Studies on the movement of soil moisture”, U. S. Dept. Agic. Bur. Soils Bull., v. 38. CAMPBELL, G. S., 1974, “A simple method for determining unsaturated conductivity from moisture retention data”, Soil science, v. 117, n. 6, pp. 311–314. CAPUTO, H. P., 1996, “Mecˆanica dos solos e suas aplica¸c˜oes”. In: Mecˆanica dos solos e suas aplica¸coes, LTC. CAVIEDES-VOULLI`EME, D., GARCI, P., MURILLO, J., et al., 2013, “Verification, conservation, stability and efficiency of a finite volume method for the 1D Richards equation”, Journal of hydrology, v. 480, pp. 69–84. CELIA, M. A., BOULOUTAS, E. T., ZARBA, R. L., 1990, “A general massconservative numerical solution for the unsaturated flow equation”, Water resources research, v. 26, n. 7, pp. 1483–1496. CICHOTA, R., VAN LIER, J., OTHERS, 2002, “Calibra¸c˜ao no campo de um equipamento de TDR segmentado”, Anais. COELHO, E. F., VELLAME, L. D. M., COELHO FILHO, M. A., et al., 2006, “Desempenho de modelos de calibra¸c˜ao de guias de onda acopladas a TDR e a multiplexadores em trˆes tipos de solos”, Revista brasileira de ciˆencia do solo, v. 30, n. 1, pp. 23–30. 68 DARCY, H., 1856, “Les fontaines publiques de la ville de Dijon, Dalmont”, Paris: Dalmont. DE LACERDA, R. D., GUERRA, H. O. C., JUNIOR, G. B., et al., 2005, “Avalia ¸c˜ao de um TDR para determina¸c˜ao do conte´udo de ´agua do solo”, Revista de Biologia e Ciˆencias da Terra, v. 5, n. 1, pp. 0. DELANDA, M., 2013, Intensive science and virtual philosophy. Bloomsbury Publishing. DOS SANTOS, M. R., ZONTA, J. H., MARTINEZ, M. A., 2010, “Influˆencia do tipo de amostragem na constante diel´etrica do solo e na calibra¸c˜ao de sondas de TDR”, Revista Brasileira de Ciˆencia do Solo, v. 34, n. 2, pp. 299–307. DURNER, W., 1994, “Hydraulic conductivity estimation for soils with heterogeneous pore structure”, Water resources research, v. 30, n. 2, pp. 211–223. EATON, J. W., BATEMAN, D., HAUBERG, S., et al., 2020, “A high-level interactive language for numerical computations”, Bristol, United Kingdom. EDELSTEIN-KESHET, L., 2005, Mathematical Models in Biology. Society for Industrial and Applied Mathematics. EYMARD, R., GUTNIC, M., HILHORST, D., 1999, “The finite volume method for Richards equation”, Computational Geosciences, v. 3, n. 3-4, pp. 259–294. EYMARD, R., GALLOU¨ET, T., HERBIN, R., et al., 2001, “Approximation by the finite volume method of an elliptic-parabolic equation arising in environmental studies”, Mathematical Models and Methods in Applied Sciences, v. 11, n. 09, pp. 1505–1528. FARTHING, M. W., OGDEN, F. L., 2017, “Numerical Solution of Richards’ Equation: A Review of Advances and Challenges”, Soil Science Society of America Journal. FERZIGER, J. H., PERIC, M., STREET, R. L., et al., 2019, Computational Methods for Fluid Dynamics. Springer-Verlag GmbH. ISBN: 978-3-319- 99691-2. FORSYTH, P. A., WU, Y., PRUESS, K., 1995, “Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media”, Advances in Water Resources, v. 18, n. 1, pp. 25–38. 69 HAVERKAMP, R., VAUCLIN, M., TOUMA, J., et al., 1977, “A comparison of numerical simulation models for one-dimensional infiltration 1”, Soil Science Society of America Journal, v. 41, n. 2, pp. 285–294. HIRSCH, C., 2007, Numerical computation of internal and external flows : fundamentals of computational fluid dynamics. Elsevier/Butterworth- Heinemann. I ´ORIO, V., 2016, “EDP um curso de gradua¸c˜ao “Cole¸c˜ao matem´atica universit ´aria””, Instituto de Matem´atica Pura e Aplicada. ISAACSON, E., HERBERT, B. K., 2012, Analysis of Numerical Methods. Guilford Publications. J´UNIOR, J., OLIVEIRA, G., 2003, Desempenho do reflectˆometro no dom´ınio do tempo na detec¸c˜ao de varia¸c˜oes de umidade do solo. Tese de Doutorado, Universidade de S˜ao Paulo. KER, J., 2015, Pedologia : Fundamentos. Vi¸cosa - Minas Gerais, Sociedade Brasileira de Ciˆenncia do Solo. KLAR, A., 1988, A ´agua no sistema solo-planta-atmosfera. Sao Paulo, Nobel. KOSUGI, K., 1996, “Lognormal distribution model for unsaturated soil hydraulic properties”, Water Resources Research, v. 32, n. 9, pp. 2697–2703. KUMAR, C., 1998, “A numerical simulation model for one-dimensional infiltration”, ISH Journal of Hydraulic Engineering, v. 4, n. 1, pp. 5–15. LAI, W., OGDEN, F. L., 2015, “A mass-conservative finite volume predictor– corrector solution of the 1D Richards’ equation”, Journal of Hydrology, v. 523, pp. 119–127. LAX, P. D., RICHTMYER, R. D., 1956, “Survey of the stability of linear finite difference equations”, Communications on pure and applied mathematics, v. 9, n. 2, pp. 267–293. LEHMANN, F., ACKERER, P., 1998, “Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media”, Transport in porous media, v. 31, n. 3, pp. 275–292. LEPSCH, I., 2011, 19 li¸c˜oes de pedologia. S˜ao Paulo, Oficina de Textos. LIBARDI, P., 2005, Dinˆamica da ´agua no solo. S˜ao Paulo, Edusp. LIMA, E. L., 2004, “Curso de An´alise Vol 1. 11a edi¸c˜ao”, Rio de Janeiro: IMPA. 70 MALISKA, C., 2004, Transferˆencia de calor e mecˆanica dos fluidos computacional. Rio de Janeiro, Livros Tecnicos e Cientificos. MANNICH, M., 2009, Desenvolvimento de solu¸c˜oes anal´ıticas e num´ericas da Equa¸c˜ao de Richards. Tese de Mestrado, UFPR. Programa de P´os- Gradu¸c˜ao em Engenharia de Recursos H´ıdricos e Ambientais, Paran´a. MANUAL-TDR, 2017. “User Manual TRIME-PICO T3/IPH44 and T3/IPH50”. Dispon´ıvel em: <https://www.imko.de/en/ technical-documentation/>. MANZINI, G., FERRARIS, S., 2004, “Mass-conservative finite volume methods on 2-D unstructured grids for the Richards’ equation”, Advances in Water Resources, v. 27, n. 12, pp. 1199–1215. MARQUARDT, D. W., 1963, “An algorithm for least-squares estimation of nonlinear parameters”, Journal of the society for Industrial and Applied Mathematics, v. 11, n. 2, pp. 431–441. MUALEM, Y., 1976, “A new model for predicting the hydraulic conductivity of unsaturated porous media”, Water resources research, v. 12, n. 3, pp. 513– 522. NEVES, M. C. P., GUERRA, J. G. M., CARVALHO, S. D., et al., 2005, “Sistema integrado de produ¸c˜ao agroecol´ogica ou fazendinha agroecol´ogica do km 47”, Agroecologia: princ´ıpios e t´ecnica para uma agricultura orgˆanica sustent ´avel. Bras´ılia: Embrapa-Informa¸c˜ao Tecnol´ogica, pp. 147–172. NIMMO, J. R., LANDA, E. R., 2005, “The soil physics contributions of Edgar Buckingham”, Soil Science Society of America Journal, v. 69, n. 2, pp. 328– 342. OGDEN, F. L., ALLEN, M. B., LAI, W., et al., 2017, “The soil moisture velocity equation”, Journal of Advances in Modeling Earth Systems, v. 9, n. 2, pp. 1473–1487. OR, D., WRAITH, J. M., TULLER, M., 1997, “Agricultural and environmental soil physics”, Logan, Utah State University. PANDAY, S., HUYAKORN, P. S., THERRIEN, R., et al., 1993, “Improved threedimensional finite-element techniques for field simulation of variably saturated flow and transport”, Journal of contaminant hydrology, v. 12, n. 1-2, pp. 3–33. 71 PANICONI, C., PUTTI, M., 1994, “A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems”, Water Resources Research, v. 30, n. 12, pp. 3357–3374. PHILIP, J. R., 1969, “Theory of infiltration”. In: Advances in hydroscience, v. 5, Elsevier, pp. 215–296. POULSEN, T. G., MOLDRUP, P., IVERSEN, B. V., et al., 2002, “Three-region Campbell model for unsaturated hydraulic conductivity in undisturbed soils”, Soil Science Society of America Journal, v. 66, n. 3, pp. 744–752. PREVEDELLO, C. L., LOYOLA, J. M. T., SANTOS, C. M., et al., 2002, “Solucao num´erica para o processo da infiltracao da agua no solo”, Scientia Agraria, v. 3, n. 1, pp. 29–39. QUEIR´ OZ, B. F., 2017, Estudo de solu¸c˜oes num´ericas da equa¸c˜ao de Richards atrav´es do m´etodo de elementos finitos e diferen¸cas finitas para simula¸c˜ao de fluxo unidimensional em solo n˜ao-saturado. Tese de Mestrado, UFRRJ. Programa de P´os Gradua¸c˜ao em Modelagem Matem´atia e Computacional, Rio de Janeiro. REICHARDT, K., 1985, Processos de transferˆencia no sistema solo-plantaatmosfera. Funda¸c˜ao Cargill. REICHARDT, K., 1987, A ´agua em sistemas agr´ıcolas. S˜ao Paulo, Manole. REICHARDT, K., TIMM, L. C., 2004, Solo, planta e atmosfera: conceitos, processos e aplica¸c˜oes. Manole Barueri. RICHARDS, L., 1949, “Methods of measuring soil moisture tension”, Soil science, v. 68, n. 1, pp. 95. RICHARDS, L. A., 1931, “Capillary conduction of liquids through porous mediums”, physics, v. 1, n. 5, pp. 318–333. ROSS, P., PARLANGE, J.-Y., 1994, “Comparing exact and numerical solutions of Richards equation for one-dimensional infiltration and drainage”, Soil science, v. 157, n. 6, pp. 341–344. SANTOS BRAND˜AO, V. D., PRUSKI, F. F., SILVA, D. D. D., 2004, Infiltration of water in soil. N. 02. Vi¸cosa, Brazil, Editora UFV, Universidade Federal de Vi¸cosa. SEBER, G. A., WILD, C. J., 2003, “Nonlinear Regression. Hoboken”, New Jersey: John Wiley & Sons, v. 62, pp. 63. 72 SEKI, K., 2007, “SWRC fit–a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure”, Hydrology and Earth System Sciences Discussions, v. 4, n. 1, pp. 407–437. SILVA, E. L. D., GERV´ASIO, E. S., 1999, “Uso do instrumento TDR para determina ¸c˜ao do teor de ´agua em diferentes camadas em um latossolo roxo distr´ofico”, Revista Brasileira de Engenharia Agr´ıcola e Ambiental, v. 3 (12), pp. 417 – 420. SIMUNEK, J., SEJNA, M., VAN GENUCHTEN, M. T., 1998, “HYDRUS-1D”, Simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, version, v. 2. SIMUNEK, J., VAN GENUCHTEN, M., SEJNA, M., 2008, “Development and applications of the HYDRUS and STANMOD software packages and related codes”, Vadose Zone Journal, v. 7, n. 2, pp. 587–600. SIMUNEK, J., 2006, “Models of water flow and solute transport in the unsaturated zone”, Encyclopedia of hydrological sciences. TAKEUCHI, J., KAWACHI, T., IMAGAWA, C., et al., 2010, “A physically based FVM watershed model fully coupling surface and subsurface water flows”, Paddy and Water Environment, v. 8, n. 2, pp. 145–156. TAYLOR, S., 1972, Physical edaphology; the physics of irrigated and nonirrigated soils. San Francisco, W.H. Freeman. TEIXEIRA, P. C., DONAGEMMA, G. K., FONTANA, A., et al., 2017, “Manual de m´etodos de an´alise de solo”, Rio de Janeiro, Embrapa. 573p. TOMMASELLI, J. T. G., 1997, Influencia de algumas caracteristicas do solo sobre a califracao de um aparelho de TDR (Time-Domain Reflectometry). S˜ao Paulo, USP/CENA. TOPP, G. C., DAVIS, J., ANNAN, A. P., 1980, “Electromagnetic determination of soil water content: Measurements in coaxial transmission lines”, Water resources research, v. 16, n. 3, pp. 574–582. VAN GENUCHTEN, M. T., 1980, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1”, Soil science society of America journal, v. 44, n. 5, pp. 892–898. VAN GENUCHTEN, M., LEIJ, F., YATES, S., et al., 1991, “The RETC Code for Quantifying Hydraulic Functions of Unsaturated Soils”, EPA/600/2- 91/065, R.S., v. 83 (01). 73 VOGEL, T., VAN GENUCHTEN, M. T., CISLEROVA, M., 2000, “Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions”, Advances in Water Resources, v. 24, n. 2, pp. 133–144. VOGEL, T., CISRELOVA, M., 1988, “on the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve”, Transport in porous media, v. 3, n. 1, pp. 1–15. ZAMBRA, C., DUMBSER, M., TORO, E., et al., 2012, “A novel numerical method of high-order accuracy for flow in unsaturated porous media”, International Journal for Numerical Methods in Engineering, v. 89, n. 2, pp. 227– 240. ZARBA, R. L., 1988, A numerical investigation of unsaturated flow. Tese de Mestrado, Massachusetts Institute of Technology. 74por
dc.subject.cnpqMatemáticapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/71788/2020%20-%20Isabela%20de%20Aquino%20Souza.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6234
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-01-19T13:37:55Z No. of bitstreams: 1 2020 - Isabela de Aquino Souza.pdf: 16895928 bytes, checksum: c37f24315ddb2b6ab8c1b989c7ee3f30 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-01-19T13:37:55Z (GMT). No. of bitstreams: 1 2020 - Isabela de Aquino Souza.pdf: 16895928 bytes, checksum: c37f24315ddb2b6ab8c1b989c7ee3f30 (MD5) Previous issue date: 2020-08-18eng
Appears in Collections:Mestrado em Modelagem Matemática e Computacional

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Isabela de Aquino Souza.pdf2020 - Isabela de Aquino Souza16.5 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.